Endurance fitness and blood lactate concentration during stepping exercise in untrained subjects

S. Richardson, BSc and A.E. Hardman, PhD

Department of Physical Education and Sports Science, University of Technology, Loughborough, Leicestershire

The purpose of the present study was to explore the possibility that reference blood lactate concentrations, determined during stepping exercise, could be used to derive an index of endurance fitness. The traditional measure of endurance fitness, maximal oxygen uptake (VO₂max) and the individual relationships between blood lactate concentration and submaximal VO₂ were determined during stepping for 10 untrained males. VO₂ max values were 48.7 ± 5.1 ml.kg⁻¹.min⁻¹ (mean ±sd). The time to exhaustion during stepping at 80% per cent VO₂ max (38.82 ± 7.83 min) provided an additional measure of endurance fitness. The per cent VO₂ max at a blood lactate concentration of 4 mM was correlated significantly with endurance time (rho = 0.75, P < 0.05).

These results show that a submaximal step test can be used to determine oxygen uptake and per cent VO₂ max at a reference blood lactate concentration. However, for this group of subjects, per cent VO₂ max at a blood lactate concentration of 4 mM showed only a modest correlation with endurance.

Keywords: Lactate, endurance, stepping exercise

Introduction

Regular, frequent exercise is associated with a number of health benefits including a reduced risk of coronary heart disease¹ and an increased likelihood of maintaining desirable body weight². Consequently, exercise is now promoted by a number of agencies concerned with health. In this regard fitness testing is commonly employed because it has a role to play in stimulating and sustaining commitment to the habit of exercise.

The traditional approach to fitness testing has been in terms of absolute performance. That is, it has either involved measuring performance itself or the major determinant of endurance performance, i.e. maximal oxygen uptake (VO₂ max). The importance of VO₂ max in dictating performance has been amply demonstrated by the good correlations between this parameter and, for example, two mile run time³ or 5 km run time⁴. Fitness testing has developed in this way because well trained athletes obviously run fast and are known to possess high VO₂ max values.

Indeed, the most important aspect of the training response for initially sedentary individuals is an increase in VO₂ max.

However, for those individuals who are already active, the increases in VO₂ max resulting from further training are invariably modest. In other words, differences in training status fail to account for the range of values observed in the population. This appears to be because VO₂ max is profoundly constrained by heredity⁵.

Maximal oxygen uptake is therefore an insensitive index of training in already active individuals for whom performance continues to improve in the absence of increases in VO₂ max. This is attributable to an increased ability to sustain a high proportion of VO₂ max, a characteristic conferred by adaptations of skeletal muscle metabolism⁶. A more complete description of an individual’s endurance fitness would therefore include, as an adjunct to the determination of VO₂ max, some measure of the ability to sustain submaximal exercise. The purpose of the present study is to examine one approach to the problem of developing such a test.

Blood lactate concentration during exercise reflects the adaptive state of the muscle⁷. Consequently, with training, the oxygen uptake at a reference blood lactate concentration increases, both in absolute terms and relative to the individual’s VO₂ max⁸. We have found a strong relationship between the relative exercise intensity (per cent VO₂ max) at which a reference blood lactate concentration is attained, and endurance time at a given per cent VO₂ max⁹.¹⁰ In other words, the per cent VO₂ max at which an individual attains a reference blood lactate concentration reflects his ability to sustain a high proportion of his VO₂ max, i.e. his endurance.

The present study attempted to answer two questions. First, does relative exercise intensity at a reference blood lactate concentration reflect endurance in a group of untrained individuals? Secondly, can stepping, a simple, cheap and non-intimidating form of exercise, be used to determine this index? In order to provide a link with traditional, performance-based tests of fitness a two mile run/walk test was also conducted.

Methods

Ten untrained males with no previous experience of exercise testing volunteered to act as subjects. The
Endurance fitness and blood lactate in untrained subjects: S. Richardson and A.E. Hardman

procedures and risks had first been explained to them. Their age, height and weight were (mean±sd) 20.57±2.78 yrs, 1.770±0.040 m and 72.3±8.0 kg respectively.

After habituation to the experimental procedures, each subject performed five tests each on different days, namely a preparatory test, a stepping VO₂max test, a sub-maximal incremental step test, an endurance step test and a two mile (3218 m) performance test. A single 0.395 m step was used for all subjects; the stepping rate was dictated by an electronic metronome (Zen-on metrina). One beat was used for each footfall, with four beats per ascent. Work was taken as the positive work done and calculated as the product of step height, ascents per minute and body weight.

The preparatory test was a four stage, continuous, incremental step test with four minutes at each work rate. This served to derive the relationship between submaximal oxygen uptake and work rate for each subject. Maximal oxygen uptake was taken as that measured during the final minute of an open-ended progressive step test to exhaustion, using three minutes at each work rate. Linear regression was then used to predict the work rates needed to elicit 60, 70, 80, and 90 per cent of VO₂ max for each individual.

The submaximal step test employed a sixteen minute protocol such that each subject stepped at 60, 70, 80, and 90 per cent of his VO₂ max. Blood lactate concentration was determined in duplicate finger-prick samples obtained pre-exercise and at 4, 8, 12, and 16 minutes. Expired air was collected during the preceding minute. Work rates were increased at 4:30, 8:30, and 12:30 minutes, allowing 30 seconds to complete blood sampling at each work rate. Endurance was determined as the time to exhaustion whilst stepping at an intensity equivalent to a given percentage (78.3±4.1 per cent) of VO₂ max. Expired air collections were obtained at 5, 10, 20, 30, 60 minutes and the final minute of the test, at exhaustion. Finger-prick blood samples were obtained pre-exercise and immediately after each expired air collection.

Expired air samples were collected using standard Douglas bag techniques and subsequently analysed for oxygen and carbon dioxide concentration using a mass spectrometer (Centronic MGA 200). Volumes were determined using a dry gas meter (Parkinson-Cowan) which had previously been calibrated against a Tissot spirometer. The electrocardiogram was recorded from three chest electrodes by a cardiac monitor (Rigel Ltd) and heart rate was sampled by a microcomputer (BBC Model B) at five second intervals. Blood samples were deproteinized immediately after collection and stored at −20°C before analysis for lactate concentration.11

Values for predicted VO₂ max were also obtained from oxygen uptake and mean heart rate during the final minute of each submaximal work rate, using the Åstrand nomogram.12 These values were then expressed relative to body weight. The mean of two or three values was recorded.

In addition to the laboratory tests subjects performed a two mile run on the university athletics track. Heart rates were recorded with a short range telemetry system (Polar Electro Sport Tester PE5000) and lap times and final time were recorded.

Non-parametric methods of statistical analysis were used as the assumptions of parametric methods could not be adhered to.3 The five per cent level of confidence was adopted.

Results

A linear relationship was demonstrated between oxygen uptake and stepping cadence during submaximal exercise (Figure 1). Table 1 shows values for VO₂ max, endurance time, two-mile run time and oxygen uptake at a blood lactate concentration of 4 mM.

The relative exercise intensity at a blood lactate concentration of 4 mM (per cent VO₂ max(4 mM)) was related to endurance time during stepping exercise (r = 0.75, P < 0.05), but there was no relationship between VO₂ max and this measure of endurance (r = −0.01). When predicted VO₂ max was used to determine per cent VO₂ max (4 mM) the correlation with endurance was non-significant (r = 0.37). Pre-

![Figure 1. Oxygen uptake and stepping cadence during submaximal exercise](https://example.com/figure1.png)

Table 1. Maximal oxygen uptake, endurance time at 80/o2max, two-mile run time and oxygen uptake at 4 mM blood lactate concentration. (mean±sd, n = 10)

<table>
<thead>
<tr>
<th>VO₂ max (ml.kg⁻¹.min⁻¹)</th>
<th>Endurance time (min)</th>
<th>two-mile run time (min)</th>
<th>Oxygen uptake at 4 mM (mmol.kg⁻¹.min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>measured</td>
<td>predicted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>48.7</td>
<td>47.4</td>
<td>38.82</td>
</tr>
<tr>
<td>sd</td>
<td>5.1</td>
<td>9.7</td>
<td>17.83</td>
</tr>
<tr>
<td></td>
<td>14.28</td>
<td>2.00</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>73.4*</td>
<td>35.8*</td>
<td></td>
</tr>
</tbody>
</table>

*n = 9

Figure 2. Correlation between oxygen uptake at blood lactate 4 mM and two mile run time

predicted and measured maximal oxygen uptake values were correlated significantly (rho = 0.73, P < 0.05).

Oxygen uptake at a blood lactate concentration of 4 mM was correlated significantly with two-mile run time (Figure 2) (rho = -0.82, P < 0.01), but neither VO2 max nor predicted VO2 max was correlated significantly with two-mile run time (rho = -0.49, rho = -0.44 respectively). Work rate and work rate per kg body weight at a blood lactate concentration of 4 mM were both correlated significantly with two-mile run time (rho = -0.82, P < 0.01).

Discussion

The purpose of the present study was to explore the feasibility of using reference blood lactate concentrations in a test of endurance fitness in untrained subjects. Stepping was the mode of exercise selected for this initial study as it is cheap, easily controlled and non-intimidating.

The mean values for VO2 max (48.7±5.1 ml.kg⁻¹.min⁻¹) were of the order expected for young, untrained males and clearly lower than those reported from our laboratory for physical education students of comparable age (57.6±6.2 ml.kg⁻¹.min⁻¹).

The time to exhaustion at an intensity equivalent to a given per centVO2 max constitutes a measure which allows the characteristics conferred by endurance training to be discerned even in individuals with modest VO2 max values. In the context of promoting exercise in the community this is important because it is regular exercise which benefits health, not the attainment of any absolute level of performance.

The significant correlation between endurance time and per centVO2 max (4 mM) indicates that those individuals who were able to attain a high relative exercise intensity before blood lactate concentration reached 4 mM tended to be those with the greatest endurance. This is consistent with the observation that training increases the relative exercise intensity at which reference blood lactate concentrations are attained. Nevertheless, the observed correlation with per centVO2 max (4 mM) accounted for only about 56 per cent of the variation in endurance, and further studies are clearly required before the determinants of endurance can be described more fully.

If a predicted VO2 max value, rather than that determined directly, could be employed to determine per centVO2 max (4 mM) then this index of endurance fitness could be obtained without recourse to maximal exercise. This would be attractive for reasons of subject motivation and safety. However, the low and non-significant correlation between this expression of per centVO2 max (4 mM) and endurance indicates that the errors introduced by predicting VO2 max reduced the usefulness of this measure in this group of subjects.

Although predicted and directly measured VO2 max values were correlated significantly, the correlation was only modest (rho = 0.73). Investigations of the Astrand nomogram have used a wide variety of protocols and exercise modes and found a wide range of correlations between predicted and measured values, e.g. from r = 0.39 to r = 0.92.

In the present study there was no relationship between VO2 max and two-mile run time. There are several possible explanations for this finding. It may be that VO2 max determined during stepping exercise does not relate to performance in a running task. Alternatively, for this group of subjects, the state of training may have been a more important determinant of running performance than VO2 max per se. This suggestion is supported by the significant correlation between the oxygen uptake at a blood lactate concentration of 4 mM and two-mile run time (rho = -0.82).

Other workers have found oxygen uptake at a reference blood lactate concentration to be a better determinant of running performance than VO2 max in some subject groups. Strong correlations have also been reported between two-mile run time and the oxygen uptake at the onset of plasma lactate accumulation. These two studies measured blood lactate concentration during submaximal treadmill running. The results of the present study suggest that it may be possible to discern the metabolic consequences of habitual exercise during stepping exercise. This would have advantages in field testing because stepping is cheap, easily controlled and non-intimidating.

There is, however, one difficulty with using stepping exercise for determination of reference blood lactate concentrations. Our observations suggest that blood lactate concentration is somewhat low for a given relative exercise intensity during stepping exercise. For instance, one of the present subjects utilized some 82 per cent of his VO2 max during the final stage of the incremental test and still failed to reach the criterion blood lactate concentration. This experience is consistent with an earlier report which found blood lactate concentration to be higher in cycling than in running and higher in running than stepping, for a
given relative exercise intensity. This means that one
has to exercise at rather a high proportion of VO₂ max
before attaining a reference blood lactate concentra-
tion of 4 mM, provoking fears about subject safety in
high risk populations. Future studies might therefore
examine the usefulness of an alternative, non-intimi-
dating form of everyday exercise such as walking in
this approach to fitness testing.

Some running studies have found better correlations
between speed at reference blood lactate concentra-
tions and performance than between corresponding
oxygen uptake values and performance. For stepping
exercise a parallel approach would be to consider work
rate or work rate per kg body weight at a blood lactate
concentration of 4 mM. Work rate is easily controlled
and measured in stepping. Despite the fact that step-
ning and running utilize difference muscle groups,
both measures were well related to two-mile run time.
Therefore either work rate or work rate per kg body
weight at a reference blood lactate concentration could
provide a description of functional capacity, the ability
to perform work in absolute terms, which can be ob-
tained without recourse to expired air analysis.

These results indicate that a submaximal step test
can be employed to determine reference blood lactate
concentrations. Furthermore, relative exercise intensity
at a reference blood lactate concentration of 4 mM
was significantly related to submaximal endurance.
For this group of subjects, oxygen uptake at a refer-
ence blood lactate concentration was a more important
determinant of running performance over two miles
than VO₂ max.

References
1 Morris, J.N., Pollard, R., Everitt, M.G. and Chave,
S.P.W. Vigorous exercise in leisure time: Protection
against coronary heart disease Lancet 1980, 80, 1207–
1210
2 Weltman, A., Matter, S. and Stanford, B. Calorific re-
striction and/or mild exercise: effects on serum lipids
and body composition Am J Clin Nutr 1980, 33, 1002–
1009
3 Farrell, P.A., Wilmore, J.H., Coyle, E.F., Billing, J.E.
and Costill, D.L. Plasma lactate accumulation and dis-
ance running performance Med Sci Sports 1979, 11,
338–344
4 Ramsbottom, R., Nute, M.G.L. and Williams, C.
Determinants of five kilometre running performance in
active men and women Br J Sports Med 1987, 21(2),
9–13
5 Klissouras, V., Pirnay, F. and Petit, J.-M. Adaptation
to maximal effort: Genetics and age J Appl Physiol 1973,
35, 288–293
IV, C.W., Sembrowich, W.L. and Shepherd, R.E.
Effects of training on enzyme activity and fibre com-
position of human skeletal muscle J Appl Physiol 1973,
34, 107–111
7 Gollnick, P.D. and Hermansen, L. Biochemical adap-
tations to exercise. Anaerobic metabolism. Exercise and
8 Saltin, B. and Karlsson, J. Muscle ATP, CP, and lactate
during exercise after physical conditioning Muscle
metabolism during exercise, eds Pernow, B. and Saltin,
B. London, Plenum, 1971
9 Williams, C. and Nute, M.G.L. Training-induced
changes in endurance capacity of female games
players. Sports Science, Proceedings of the VIII Com-
monwealth and International Conference on Sport,
Physical Education, Dance, Recreation and Health, eds
Watts, J., Reilly, T. and Burwitz, L. London, E. and
F.N. Spon. 1986
10 Mayes, R., Hardman, A.E. and Williams, C. The influ-
ence of training on endurance and blood lactate concen-
tration during submaximal exercise Br J Sports Med
1987, 21, 119–124
11 Maughan, R.J. A simple rapid method for determina-
tion of glucose, lactate, pyruvate, alanine, 3-hydroxy-
butyrate and acetacetate on a single 20 ul blood sam-
13 Gibbons, J.D. 'Non-parametric methods of quantita-
tive analysis', London, Rinehart and Winsom, 1976
14 Saltin, B. and Astrand, P.-O. Maximal oxygen uptake
15 Hurley, B., Hagberg, J.M., Allen, L.K., Seals, D.R.,
Young, J.C., Caddchee, R.W. and Holloszy, J.O. Effect of training on blood lactate levels during
submaximal exercise J Appl Physiol 1984, 56, 1260–1264
16 Henritze, J., Weltman, A., Scherrer, R.L. and Barlow,
K. Effects of training at and above the lactate threshold
on the lactate threshold and maximum oxygen uptake.
Euro J Appl Physiol 1985, 54, 84–88
17 Louhevaara, V., Ilanarinen, J. and Oga, P. Com-
parisons of the Astrand nomogram and the WHO extra-
polation methods for estimation of maximal oxygen
18 Teraslinna, P., Ismail, A.H. and McLeod, D.F.
Nomogram by Astrand and Ryhming as a predictor of
516
19 Sjödin, B. and Svedenhag, J. Applied physiology of
marathon running Sports Medicine 1985, 2, 83–99
20 Shephard, R.J., Allen, C., Benade, A.J.S., Davies,
A.T.M., di Prampero, P.E., Hedman, R., Merriman,
J.E., Myhre, K. and Simmons, R. Standardisation of
submaximal exercise tests World Health Organisation
Bulletin 1968, 38, 765–775