Physiotherapy Treatment Modalities

Microwave diathermy

G.C. Goats, PhD, MCSP
Department of Physiotherapy, The Queen’s College, Glasgow, UK

Introduction

Microwave and shortwave radio frequency radiation is used clinically to heat tissue situated deep in the body and minimize the coincidental rise in skin temperature seen with other forms of therapeutic heating. Microwave radiation is defined as that with a frequency of 300 MHz–300 GHz, which lies on the electromagnetic spectrum between radio frequency and infrared radiation.

Microwave diathermy units operate at a frequency higher than that used for shortwave diathermy and this confers significant operational advantages. Microwave radiation is radiated as a beam from an antenna and absorbed by water-rich tissues 7000 times more effectively than shortwave radio frequency energy. The latter must be coupled to the patient by a capacitor or an inductor, whilst microwave energy is radiated as a beam from an antenna. A microwave beam can be narrowed to allow small areas to be treated accurately, is highly directional, and can be aligned rapidly.

A microwave diathermy unit with antenna (Figure 1) is easy to use and robust, although not found as frequently in clinics as shortwave therapy units. The common indications for microwave therapy include soft tissue lesions of traumatic origin, degenerative or chronic arthropathy and some localized infections.

Equipment

Microwave diathermy units and domestic microwave ovens usually operate at the internationally agreed frequency of 2450 MHz (2.45 GHz). Some clinical devices, particularly in the United States, emit radiation with a frequency of 915 MHz. Although these are less common in Europe, energy at this lower frequency is absorbed more efficiently and uniformly within the tissues and lies close to 750 MHz, the optimum frequency for therapeutic heating.

The power output of therapeutic microwave units can approach 250 W although the maximum in practice is limited by the design of the antenna. Small antennae and reflectors are rarely capable of radiating safely more than 25 W and protective circuitry within the generator prevents this limit being exceeded. Domestic microwave ovens often deliver 600–1000 W.

Microwave energy is generated by an electronic device known as a magnetron. The magnetron was invented in 1938, but did not find civilian application until 1945 when the classified military role in airborne radar became less important. Some apparatus is designed to emit a pulsed output that causes less heating and should promote non-thermal interactions between electromagnetic energy and the tissues.

Address for correspondence: Dr G.C. Goats, Department of Occupational Therapy and Physiotherapy, University of East Anglia, Norwich NR4 7TJ
© 1990 Butterworth–Heinemann Ltd
0306-3674/90/040212–07

Figure 1. A microwave diathermy unit with antenna
Microwave diathermy: G.C. Goats

Thermal mechanisms

Microwave energy is absorbed in the tissues principally by the movement within the electromagnetic field of dipolar water molecules and of ions in aqueous solution. This vibrational energy is heat. Furthermore, the dielectric nature of the tissues allows heat production by the relaxation of polar macromolecules, and closely associated water molecules, from the distortions caused by a strong electromagnetic field. Relaxation energy is also released as heat. Hence the tissue warms by the conversion of energy at one frequency to that at another. The rate of energy absorption by tissue can be calculated from the conductivity and dielectric constant.

The distribution of heat within the tissues caused by the passage of microwaves depends upon the properties of propagation and absorption possessed by the irradiated tissue and is, of course, superimposed upon pre-existing temperature gradients within the body. Tissues of high water content characteristically absorb microwaves strongly, and muscle, fluid filled organs such as the eye, joint effusions and surface water are heated preferentially.

The depths to which microwave energy penetrates (expressed as the distance in which the field strength has fallen to 37% of the incident value) varies according to tissue and frequency. Microwaves with a frequency of 2450 MHz penetrate 1.7 cm in muscle and skin, and 11.2 cm in fat and bone, whilst at 915 MHz these values increase to 3.04 cm and 17.7 cm respectively. Experiments with dead pig tissue demonstrate that at 2450 MHz, subcutaneous tissue with a depth greater than 2 cm warms excessively and will reduce the heating of muscle, although at 900 MHz, much less energy is deposited in the superficial layers. Subcutaneous tissue 4 cm deep reduces the heating of muscle at both microwave frequencies. Clinical studies have confirmed these findings, although frequency-dependent differences in temperature distribution are much reduced by the forced convection of the circulation and this may explain the apparent therapeutic effectiveness of 2450 MHz radiation.

The final temperature distribution is affected greatly by blood flow, which can in turn be modified by microwave diathermy. Superficial tissues moderately heated, achieve a maximum temperature within five to ten minutes, after which local vasodilation prevents further warming. Contact applicators incorporating a system of circulating coolant restrict this rise in skin temperature to acceptable levels and permit more vigorous heating of the deep tissues.

Non-thermal effects

Pulsed microwave diathermy operates by delivering a train of short pulses of high intensity microwave radiation. Whilst this causes the temperature of the tissues to rise momentarily, between pulses cooling occurs by the action of the forced convection of the circulation. This treatment is said to promote the true
Microwave diathermy: G.C. Goats

non-thermal effects of electromagnetic irradiation, although some effects might be explained by the brief temperature rise generated with each pulse. This argument also applies to the action of pulsed shortwave therapy. When applied at similar mean output, no difference was found between the therapeutic effects of pulsed or continuous microwave treatment.

Some authors remain sceptical of a non-thermal effect of microwave radiation on biological systems, although evidence is accumulating to refute this view. Summaries of Soviet and Eastern European studies, not readily available in the West, report many biological effects at levels of exposure less than 10 mW/cm² with a significant influence seen at 150 µW/cm² or less.

The animal subjects studied in this latter group would experience little heating but responded with changes in body weight and fertility; altered endocrine activity, electrolyte balance and EGG; inhibition of phagocytosis by neutrophils; and an affect upon neuromembrane function. Many of these observations are verified in the West and have informed the discussion setting current safe exposure guidelines. The frequency-dependent nature of these effects tends to obscure their relevance to electrotherapy practice.

Any non-thermal effect must be caused by an interaction between the imposed electromagnetic field and specific types, or assemblages, of receptor molecules. Weak inter- and intramolecular bonds, reversibly disrupted by the field, will allow these structures to change shape and exhibit altered biological activity. Other events such as the homogeneous orientation of large molecules in the field (including the much reported, and of doubtful significance, ‘pearl-chain formation’) and induction of transmembrane potentials sufficient to alter ion flow, are highly unlikely except at very high field strengths. Recent research indicates that exposure to microwaves may isomerise amino acids, an event with serious implications for protein metabolism.

Evidence for a direct effect of the electromagnetic field upon the shape of biologically active molecules, often referred to as the ‘electroconformational coupling model’, is drawn in part from work with Na⁺/K⁺ ATP-ases. These molecules occur within the cell membrane and appear to receive energy directly from an applied oscillating electric field. The energy appears subsequently as an enhanced rate of Na⁺ and K⁺ pumping across the cell membrane. This mechanism is fundamental to many cellular activities, is both frequency and field intensity dependent, and requires that the energy of the weak electric field is amplified at the cell membrane to exert an effect. Clearly, if this enzyme system can be affected directly by an electromagnetic field, then so might others having many and various biological effects.

Physiological effects and therapeutic applications

Diathermy, whether achieved using shortwave radio frequency or microwave energy, exerts physical effects and elicits a spectrum of physiological responses common to both. Differences will tend to be qualitative and dependent upon the pattern of heating induced within the tissue.

The thermal effects of diathermy upon biological tissue reflect closely the more general effects of heating. These include increased plasticity of connective tissue and a potential for correcting contractures, decreased viscosity of body fluids and improved joint mobility, changes in nerve conduction velocity, modified output from muscle spindles and decrease in muscle spasm. Pain is reduced by enhanced removal of nociceptive compounds and relief of pressure of interstitial fluid together with facilitation of the ‘pain gate’ mechanism. Increased metabolic rate and accelerated growth, together with vasodilatation in certain tissues, will assist the resolution of inflammation. These therapeutic effects are discussed at length elsewhere.

One should also remember that microwave diathermy is used to induce hyperthermia in the treatment of skin conditions such as psoriasis and to slow the growth of malignant neoplasia. The highly directional nature of the beam facilitates accurate treatment of the latter with minimal side effects.

Vascular responses

A local rise in temperature usually produces vasodilation and an increase in blood flow. Elevated temperature appears to affect the calibre of small blood vessels by mechanisms as diverse as the reduced activity of sympathetic nerves, a direct action upon vascular smooth muscle, release of vasoactive compounds from tissue suffering thermal stress, increased concentration of metabolites and decreased oxygen tension in the tissues as a result of accelerated metabolic rate, and stimulation of a cutaneous axon reflex.

Studies investigating the effects of microwave diathermy have generally concentrated upon rate of blood flow in muscle. Significant increases in flow, measured indirectly using mechanical sensors, were observed after treatment at 60–80 W mean output for periods of one to 30 minutes. The rate of increase was greatest early in the treatment period. Rate of blood flow in human muscle has also been estimated by monitoring the rate of washout of radioactive tracers such as Xe. Microwave irradiation of an unnamed muscle at 2.45 GHz, to the maximum tolerable temperature, was calculated to cause blood flow to rise, after a 12 minute delay, to 11.4 ml.100g.min⁻¹ compared to 2.9 ml.100g.min⁻¹ before treatment. Similar experiments using the anterior musculature of the thigh in healthy subjects showed that pre-treatment flow was 2.6 ml.100g.min⁻¹, rising to approximately 32 ml.100g.min⁻¹ after irradiation at 915 MHz with coincidental skin cooling for 20 minutes at 40 W absorbed power. Subsequent studies concluded that flow in heated muscle approaches 48 ml.100g.min⁻¹ once the threshold temperature of 42°C is achieved.

More complex vascular reflexes appear responsible
Microwave diathermy: G.C. Goats

for the reduction in blood flow occurring in rested and non-heated muscle underlying heated skin, although exercised and heated muscle shows maximal vasodilation. Cutaneous warming in one limb produces vasodilation in the contralateral extremity as well as a local response. Some suggest that this phenomenon be employed to increase blood flow in vessels partially occluded by peripheral vascular disease and for which direct heating is contraindicated.

Joints and soft tissues

Limitation of range of movement at a joint often follows contracture of the periarticular connective tissue and shortening of other soft tissues crossing the joint line. Heat alters the viscoelastic properties of collagen and, at temperatures within the therapeutic range 41–45°C, exhibits viscous, rather than elastic behaviour. When stretched passively whilst hot, collagen remains elongated as it cools and is less prone to rupture than tissue stretched without heating.

Microwave diathermy is reported to correct contractures of rectus femoris when combined with stretching, and by heating effectively structures that lie superficially, such as the interphalangeal and metacarpophalangeal joints, is likely to improve function in the hands. Deep structures such as the hip do not achieve therapeutically effective temperatures because microwave energy is dissipated in the thick subcutaneous tissues. This reduction in force, needed to deform the soft tissues permanently, is accompanied by a decrease in the viscosity of synovial fluid and subsequent frictional stiffness.

Heat is often used in the treatment of the arthritides although it can activate the enzymes responsible for the destruction of articular cartilage in rheumatoid disease. This effect is most marked during mild heating between 39–41°C, whilst at temperatures approaching 45°C proteins are denatured and collagenase activity is diminished. Experimental inhibition of the metabolic activity of animal synovial tissue by heat was achieved by microwave diathermy at 915 MHz. The microwave applicator was water-cooled and highly directional, allowing very localized irradiation. The coincidental vasodilation improved the penetration of anti-inflammatory drugs into the joint cavity.

Relief of pain and muscle spasm

Microwave diathermy can be used to reduce pain, although the narrow focus of many commercial applicators may render the treatment of diffuse lesions more difficult than with other methods of diathermy. Clinical investigations of pain relief using microwave therapy are reported rarely although the mechanisms of heat-induced pain control are well understood. Vasodilation transports nociceptive compounds such as bradykinin and histamine from the tissues. Ischaemia resulting from muscle spasm is relieved by the direct and predominantly inhibitory effect of heat upon those elements of the muscle spindle active in maintaining spasm.

Pain is also reduced by thermal activation of the ‘pain gate’ mechanism, in which cutaneous sensory information entering the spinal cord through the substantia gelatinsosa takes precedence in transmission to the higher centres over activity in fibres conveying pain information. Thus analgesia is induced.

A descending pain control mechanism, mediated by endogenous opiate compounds, may make a lesser contribution to heat induced analgesia. This mechanism is explained fully elsewhere, but would rely for activation upon a degree of heating too vigorous and uncomfortable for routine use therapeutically.

Resolution of inflammation

Many authors consider that diathermy, judiciously applied, will assist the resolution of inflammation and promote healing. The principal mechanism producing these effects is likely to be vasodilation, which facilitates the influx of material required for the healing process, efflux of metabolites and toxins, and improved drainage of the inflamed site with subsequent reduction in oedema. These effects of diathermy are described fully elsewhere, and the common indications for microwave diathermy are based largely upon experimental evidence gained using shortwave diathermy, modified with intelligent regard for the pattern of heating generated by each modality. The non-thermal effects of diathermy at various frequencies may indeed differ, although research has not advanced sufficiently in this area to allow definitive comment.

Few reports comment specifically upon the action of microwave therapy upon the resolution of inflammation. The rate of healing of radiolabelled haematoma, induced artificially in the muscles of pigs, was claimed to increase when exposed to 915 MHz microwave treatments twice daily at an output of 40 W. This caused the washout rate of radioisotope to accelerate as blood flow increased in response to a rise in tissue temperature to 42–45°C.

Patient safety

The contra-indications to microwave therapy include impaired cutaneous thermal sensitivity, ischaemia, local thrombosis or malignancy, metallic implants including pacemakers or other indwelling electrodes, pregnancy and recent radiotherapy. Tissues showing acute inflammation, infection or haemorrhage should not be treated, hearing aids should be switched off and, together with jewellery, removed from the field. Structures poorly vascularized are unable to dissipate heat effectively and should not be treated. Such sites include the eyes and testes, which must be adequately screened using wire mesh goggles or shields respectively when treatment of adjacent tissues is planned. The ovaries lie too deep for microwave diathermy to cause undesirable heating but, in the absence of detailed knowledge of the
effects of such radiation, prudence directs that these organs are not irradiated. The patient should be positioned to allow full relaxation in an environment in which adjacent metal fittings do not contribute to the formation of standing waves or stray radiation from incident or transmitted beams. The patient must understand the warning of the risk of burning which should be included with an explanation of the procedure. The skin must be exposed, dry and free from liniments or creams.

Occupational safety

The adverse effects of exposure to microwaves, such as cataract formation, appear to result primarily from altered thermal gradients within the body, and the case for a carcinogenic or teratogenic effect remains not proven. The Medical Research Council considers that continuous exposure to microwave radiation at an intensity not exceeding 10 mW.cm⁻² is safe. This recommendation is based upon previous studies made in the clinical environment by the UK National Radiological Protection Board and is derived from the Specific Absorption Rate (SAR) of microwave energy by the body. Therapists adhering to the simple safety guidelines set out below are unlikely to receive a dose of microwave radiation exceeding this limit, which is low when compared to the intensity of 100-200 mW.cm⁻² used therapeutically.

The guidelines informing the safe use of therapeutic microwave diathermy apparatus include the following. The operator should not remain within 1 m of the front or sides of an active applicator, or within 0.25 m behind, and should avoid accidental reflection of the beam from adjacent metal surfaces. On the basis of field strength measurements, other authors recommend retreat to a distance of 1-2 m from apparatus operating in continuous mode and avoiding any exposure within a radius of 0.5 m. Wire mesh goggles, which must be provided for the patient, rarely need to be used by the operator. These guidelines are broadly similar to those governing the use of microwave diathermy in many other countries, although Australian reports, described comprehensively elsewhere, recommend that the minimum safe distance is 2 m from an active antenna. Non-contact applicators must be positioned carefully to achieve the same low level of stray radiation emitted by the direct contact applicators available in North America.

Conclusion

Microwave diathermy units, although less common in clinics than those operating at shortwave radio frequency, have an important role in physiotherapy and sports medicine. Microwave energy can be directed accurately and used to treat localized lesions vigorously without greatly affecting adjacent tissues. An appropriate choice of applicator and operating frequency allows deep tissue rich in water to be heated preferentially, although with non-contact devices the warming of subcutaneous fat often limits power output. The contra-indications and safety procedures attending the use of this equipment requires that it is operated only by trained personnel.

The indications and therapeutic effects are similar to those for shortwave RF diathermy, although modified to take account of the different pattern of heating produced in the tissue. These differences are a function of the frequency-dependent nature of propagation and absorption behaviour within the tissue. Non-thermal effects have not been elucidated clearly but may contribute to the total therapeutic effect.

The principal physiological effects of microwave induced heating upon tissues that preferentially absorb this energy, such as muscle and fluid filled cavities including joints, are vasodilation, altered mechanical properties of connective tissue, increased metabolic rate and an effect upon nerve function. Therapeutically these changes accelerate the resolution of inflammation, decrease pain and restore normal function to contracted fibrous tissue.

Microwave therapy can contribute usefully to the management of many pathologies seen in sports medicine, and when used intelligently performs a function not readily replaced by other treatments.

References

Microwave diathermy: G.C. Goats

Grant, E.H. Biological effects of microwaves and radiowaves Proceedings Of The IEEE 1981, 128 A (9), 602–606

Johnson, C.C. and Guy, A.W. Non-ionising electromagnetic wave effects in biological materials and systems Proceedings Of The IEEE 1972, 60, 692–718


Richardson, A.W. Effect of microwave induced heating on the blood flow through peripheral skeletal muscles Am J Physiol 1954, 33, 103–107


McRee, D. Soviet and Eastern European research on biological effects of microwave radiation Proceedings Of The IEEE 1980, 68 (1), 84–91

Michaelson, S.M. Microwave biological effects: an overview Proceedings Of The IEEE 1980, 68 (1), 40–49


Clery, S.F. Uncertainties in the evaluation of the biological effects of microwave and radiofrequency radiation Health Physics 1973, 25, 387–404


Schwan, H.P. and Foster, K.R. RF-Field interactions with biological systems: electric properties and biophysical mechanisms Proceedings Of The IEEE 1980, 68 (1), 104–113

Lubec, G., Wolf, C. and Bartosch, B. Aminoacid isomerisation and microwave exposure Lancet 1989, 2 (8676), 1392–1393

Tsung, Yow Tian. Deciphering the language of cells TIBS 1989, 14, 89–92


Hales, J.R.S. and Iriki, M. Differential thermal influences on skin blood flow through capillaries and arteriovenous anastomoses, and on sympathetic activity Bibl Anat 1977, 16 (2), 79–89


Wight, V. and Johns, R.J. Physical factors concerned with the stiffness of normal and diseased joints Bulletin of the Johns Hopkins Hospital 1960, 106, 215–231


Fadlallah, R., Pinkas, J. and Weinberger, A. Heating rabbit joint by microwave applicator Arch Phys Med Rehabil 1987, 68, 710–712


Mense, S. Effects of temperature on the discharges of muscle spindle and tendon organs Pflugers Arch 1978, 374, 159–166


Dyson, M. Mechanisms involved in therapeutic ultrasound Physiotherapy 1987, 73 (3), 116–120


Microwave diathermy: G.C. Goats

63 Brent, R.L. The effect of embryonic and fetal exposure to X-Ray, microwaves, and ultrasound: counselling the pregnant and nonpregnant patient about these risks Semin Oncol 1989, 16 (5), 347–360


69 Rae, J.W., Martin, G.M., Treanor, W.J. and Krusen, F.H. Clinical experience with microwave diathermy. Proceedings of Staff Meetings of the Mayo Clinic 1950, 24, 441