The following summaries are taken from a selection of recent journals indexed in the LSMI database. A full listing is published monthly in *Sports Medicine Bulletin*.

Copies of the complete articles are available (price 15 pence per sheet subject to copyright law) from the Library, LSMI, c/o Medical College of St Bartholomew’s Hospital, Charterhouse Square, London EC1M 6BQ, telephone: 071-251 0583).

Excess postexercise oxygen consumption (EPOC), which elevates metabolism after exercise, is frequently used in the press to enhance the attractiveness of exercise as a weight reduction modality. C.J. Gore and R.T. Withers address this issue in *Effect of exercise intensity and duration on post exercise metabolism Journal of Applied Physiology* 1990, 68(6), 2362–8.

The magnitude of the EPOC following exercise at varying intensities and durations was measured. The results of this study indicated that there was no significant increase in metabolism after exercise intensities of less than 55% VO2 max and durations of less than 3 hours. Therefore, the authors suggest, exercise must be performed above a critical intensity and duration threshold before EPOC comprises a significant component of energy expenditure.

Although bicycling is popular among people of all ages, the risk of injury appears to be highest amongst children. R. Cushman et al. investigated the magnitude of the problem in a two year study in a children’s hospital emergency department. (Bicycle-related injuries: a survey in a pediatric emergency department Canadian Medical Association Journal 1990, 143(2), 108–112). Boys with a mean age of 9.4 years accounted for 70% of the patients representing a pattern typical of childhood injuries. Seventeen per cent of the 568 children seen were admitted to hospital; the most common reason for admission was due to head and skull injuries (49%). Typically, it is not the foolhardy adolescent, rather the young inexperienced rider who is being seen in emergency departments. This is highlighted by the fact that 60% of the accidents were attributable to carelessness or poor bicycle control; mechanical failure and environmental hazards were minor factors. These facts underscore the need for effective prevention programmes and campaigns in bicycle safety.

Are your patients exercising too much? And if they are, how much is too much and how dangerous is such activity? These questions are explored by Valerie DeBenedette in *The Physician and Sportsmedicine* 1990, 18(8), 119–122. Exercise extremists can be described as those individuals who work out 2 to 3 hours per day, display lack of attention to family or work and may consider exercise to be more important than anything else in life. Some people exercise to extreme because they mistakenly believe it is good for them or the proper way to exercise. Many are recent converts to exercise. While the link between too much exercise and injury is known, less is understood about whether there is a link between excessive exercise and mortality. Although appropriate standards for the maximum amount of exercise are a long way off, physicians can intervene with patients by issuing guidelines such as limiting mileage, advising individuals to switch sports or choose alternative activities.

Robin Northcote (Sport for all, danger for some Performance 1990, 3, 6–7) addresses the risks of sudden death during exercise. Sudden death in women is virtually unknown with regard to vigorous exercise. However, in men, the majority who die during exercise are between the ages of 40 and 55 years and exhibit a high frequency of coronary artery disease risk factors, especially cigarette smoking and hypertension. They also exhibit symptoms such as chest pain, breathlessness, and fatigue prior to participation in sport. Many seem to deny these warning symptoms and do not seek medical advice. In the younger age group, particularly under 25 years, death is primarily due to structural cardiovascular abnormalities such as hypertrophic cardiomyopathy and congenital heart disease. Often those who are most at risk of dying during exercise are also most liable to benefit from exercise. Identification of those at risk is most important. A Canadian protocol for effective screening using a three tier strategy is outlined.

With advances in sport science has come the knowledge of undesirability of excess body fat, especially with regard to specific sports. Unfortunately, there are also many misconceptions related to the composition of the human body. Considerable variation exists between the sexes as to presence of body fat, its distribution, and the effect growth, development and training may have on an individual. In addition, there are a variety of techniques used for measuring body fat, all subject to criticism. To date, a consensus has not been reached by scientists as to the most appropriate technique. Two recent articles (J.R. Whitehead. A study of the measurement variation among different skinfold calipers Physical Education Association of Great Britain and Northern Ireland Research Supplement 1990, 7, 10–14 and A. Hill. Body composition assessment in sport and exercise Sport Health 1990, 8(2), 27) have looked at the reliability and use of skin calipers which measure skinfold thickness at various sites for the determination of body fatness. In the article by Whitehead, measurement variation among five different skinfolds calipers was investigated. None of the calipers examined conformed precisely to the ideal standard cited in the literature and all were somewhat at odds with manufacturers’ technical information. Of those tested, the Harpenden and Lange were the most precisely engineered; the Harpenden remains the ‘gold standard’ instrument. Because inaccuracies or inconsistencies of assessment can have far reaching implications, practitioners should be cautious not only about measurement variation among calip-
ers, but proper handling and measuring techniques.

In 1963, Balke established a basis for the 12 minute run as a measure of maximal aerobic power. His investigation showed that a best effort level run of 12 minutes required a VO2max measured during a constant speed, graded walk test. However, in a further analysis of the 12 minute run prediction of maximal aerobic power (M.C. McCutcheon et al. Research Quarterly for Exercise and Sport 1990, 61(3), 280–83) the authors examined the relationship between VO2max prediction from the 12 minute track run with the VO2max measured during a graded treadmill run. It was concluded that the 12 minute track run VO2 prediction systematically underestimates VO2max measured with a graded treadmill run protocol.

The possibility of injury to the growth plate cartilage of young athletes has evoked considerable concern from the medical community. In a literature review (Growth plate injury and bone growth: an update Pediatric Sportsmedicine 1990, 1990, 2(4), 209–29) Dennis Caine reveals an accumulating body of evidence which demonstrates these injuries may be more prevalent than formerly believed. Skeletal complication resulting from these injuries may include progressive bone shortening, progressive deformity, joint incongruity and arthritic sequelae. It is emphasised that back pain or pain around a joint in young athletes may be symptomatic of significant growth plate changes that require accurate diagnosis, adequate treatment and specific recommendations about return to activity. Suggestions are given for prevention of growth plate injuries.

A review of the Mechanisms of peripheral fatigue (Medicine and Science in Sport and Exercise 1990, 22(4), 444–9) is presented by Donald Kirkendall. There are numerous definitions of fatigue, but simply stated it can be defined as the failure to maintain force or an expected power output. All too often a single factor is described as the cause of fatigue when actually fatigue is most likely a combination of factors which contribute to the sequence of events that results in decreased performance. Peripheral sites and processes include the motor neurone, neuromuscular junction, sacro-lemal membrane, excitation–contraction coupling, accumulation of metabolites or depletion of fuels.

Research suggests that physical activity increases bone density, especially at sites of maximum stress. Conversely, amenorrhea may reduce bone mineral density, especially in the lumbar spine. The possible interactions of these effects were the subject of a recent study at the British Olympic Medical Centre (R.L. Wolman et al. Menstrual state and exercise as determinants of spinal trabecular bone density in female athletes British Medical Journal 1990, 301(6751), 516–8). The results indicate that in elite weight female rowers, the effect of intensive exercise on the lumbar spine partially compensates for the adverse effect of amenorrhea on spinal trabecular bone density. Nineteen rowers, 18 runners and nine dancers, of whom 25 were amenorrheic and eumenorrheic, were tested. Computed tomography revealed mean trabecular bone mineral density to be significantly lower in the amenorrheic than the eumenorrheic athletes and significantly lower in the non-rowers than the rowers. However, there was no significant interaction between the effects of sport and menstrual state on bone mineral density, suggesting that these effects act independently of each other.

Plica syndrome of the knee is caused when plicae (bands or pleats of synovial tissue) are aggravated by over-use or trauma. Symptoms include popping, clicking, effusion, swelling, pain, weakness and a feeling of knee instability. A recent questionnaire survey of 66 patients with plica syndrome revealed non-surgical management reduced symptoms in the majority of patients within 6 weeks; if it was not successful, however, surgical intervention was an appropriate alternative. (M.D. Calvé et al. Managing plica syndrome of the knee The Physician and Sportsmedicine 1990, 18(7), 64–74). Relief of symptoms following resection and in the absence of concomitant lesions, further validates the theory that plicae can cause internal knee derangement.

A recent paper by J.M. Davis et al. provides further evidence to challenge two commonly held beliefs concerning replenishment of body fluids with carbohydrate containing beverages during prolonged exercise (Fluid and carbohydrate type and concentration American Journal of Clinical Nutrition 1990, 51(6), 1054–7). For many years it has been thought that 1) consumption of drinks containing >2.5% carbohydrate may compromise fluid replacement by decreasing gastric emptying rate and 2) maltodextrin (glucose polymer) solutions may deliver more carbohydrate without affecting fluid replenishment. This study compared plasma D2O accumulation profiles of water and four D2O labelled carbohydrate electrolyte beverages in carbohydrate type and concentration. Carbohydrate electrolyte beverages with >2.5% and ≤10% carbohydrate did not seem to enter the vascular system more slowly than water and thus should not compromise fluid replenishment. Furthermore, moderately concentrated solutions of maltodextrins and simple sugars are made available for dilution in body fluids at relatively equal rates. Maltodextrins may thus not offer extra advantages for the athlete.

The ankle sprain is the commonest musculoskeletal sports injury and is reviewed in Diagnosis and treatment of ankle sprains (A.C. Hergenroeder, American Journal of Diseases of Children 1990, 144(7), 809–14). Eighty five per cent of ankle sprains are inversion injuries; the force of the inversion determines the severity of injury and may result in one, two or three ligaments being torn. Eversion sprains tend to be more severe with a higher rate of fractures and other injuries. Most ankle injuries involve ligaments alone, but more complicated injuries may include osteochondral fractures of the talus, avulsion fractures of the tibia, fibula, talus and fifth metatarsal epiphysial injuries, talofibular syndesmosis injuries or peroneal tendon subluxation. The authors review the principles of examination, treatment and rehabilitation.

Zinc is an important trace element and it acts as a cofactor for several enzymes. Intensive training increases the sweat loss and urinary excretion of zinc and may thus result in deficiency. Several studies have shown altered zinc status in the athlete. These results are supported by a recent study which measured serum zinc four times in six young male athletes during a 9 month sporting season in relation to 11 other parameters (F. Couzy, P. Lafargue, and C.Y. Guexennec, Zinc metabolism in the athlete: influence of training, nutrition and other factors International Journal of Sports Medicine 1990, 11(4), 263–6). A significant decrease in serum zinc was observed after 5 months of intensive training. This cannot be explained by changes in dietary habits, plasma protein concentrations, hormonal changes nor by the existence of minor infections or inflammatory pathologies. However, this phenomenon (which is probably explained by an increase in zinc losses) remains limited provided an adequate diet is consumed.
Rest in underperforming elite competitors: Y. Koutedakis et al.

2. Fender, L.K. Athlete burnout: Potential for research and intervention strategies *Sport Psychologist* 1989, **3** (1), 63–71
10. Kono, I., Kitao, H., Matsuda, M., Haga, S., Fukushima, H. and Kashiwagi, H. Weight reduction in athletes may adversely affect the phagocytic function *Physic Sportsmed* 1988, **18** (7), 56–65
18. Frazier, S.E. Mood state profiles of chronic exercisers with different abilities *Int J Sport Psychol* 1988, **19** (1), 65–71
20. Crampton, J. and Fox, J. Regeneration vs burnout: Prevention better than cure *Sports Coach* 1987, April/June, 7–11
24. Parker, J. Wiping your swimmers out *Swim Techn* 1989, **26** (1), 10–16

Announcement

All readers should note that, since 21 January, the editorial office of the British Journal of Sports Medicine has a new address. All correspondence should now be addressed to:

The British Journal of Sports Medicine
Butterworth–Heinemann Ltd.
59/60 Grosvenor Street
London W1X 9DA
UK

We also have new telephone and fax numbers:
Telephone: 071-493 5841 Ex. 395
Fax: 071-499 3384
Telex: 27278

Correspondents who have written to our previous address in Guildford, Surrey, should not, however, be concerned. Butterworth–Heinemann Ltd. still has an office there and all mail will be quickly rerouted.
promulgated and encouraged when players are young. Junior clubs and schools should insist that all young rugby players use mouthguards when participating in contact sports.

Acknowledgements

The authors wish to thank Stewarts-Melville Rugby Club for their very great cooperation in this study.

References

1 Muckle, D.S. 'Injuries in sports' (2nd edition), Wright, 1982
3 Chapman, P.J. Mouthguards and the role of sporting team dentists Aust Dent J 1989, 34, 36–43
Athletic heart syndrome: Y.S.A. Lo and M.K. Chin

corroborate the diagnosis of hypertrophic cardiomyopathy.

With the increasing awareness of the importance of and necessity for regular exercise in many Asian countries in the last decade, it is important that physicians be aware that ventricular hypertrophy is part and parcel of the athletic heart syndrome, and that otherwise healthy endurance-trained athletes should not be inappropriately labelled as having cardiac pathology.

Acknowledgements

The authors are sincerely grateful to the cyclists who participated in the study. They also express their appreciation to Raymond So, Winnie Lau, Jessie Cheng and Judy Cheng for their technical and clerical support in the preparation of this manuscript.

References

1 Park, R.C. and Crawford, M.H. Heart of the athlete Curr Probl Cardiol 1985, 10, 3–73

3 Feigenbaum, H. Echocardiographic measurements and normal values, Lea & Febiger, Philadelphia, 1986

6 Burke, E.R. Physiological characteristics of competitive cyclists Phys Sports Med 1980, 8, 79–84

10 Raskoff, W.J., Cohn, K. and Goldman, S. The athletic heart, prevalence and physiological significance of left ventricular enlargement in distance runners JAMA 1976, 236, 158–162

BASM Education Programme

All details from: BASM Education Officer, c/o LSMI, St. Bartholomew's Medical College, Charterhouse Square, London EC1M 6BQ, UK. Tel: 071-253 3244; Fax: 071-251 0774.

<table>
<thead>
<tr>
<th>Date</th>
<th>Course</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 1–3</td>
<td>Advanced Medicine of Physical Exercise & Sport</td>
<td>LSMI</td>
</tr>
<tr>
<td>April 12–14</td>
<td>Advanced Physiology Module: Cardiorespiratory System</td>
<td>BOMC, Harrow</td>
</tr>
<tr>
<td>April 21–26</td>
<td>BASM Introductory Sports Medicine Course</td>
<td>Lilleshall</td>
</tr>
<tr>
<td>May 17–19</td>
<td>Advanced Injury Module: Upper Limb</td>
<td>Crystal Palace NSC</td>
</tr>
<tr>
<td>June 14–16</td>
<td>Advanced Injury Module: Chronic and Overuse Injuries</td>
<td>Hillingdon Hospital</td>
</tr>
<tr>
<td>September 29–October 4</td>
<td>BASM Introductory Sports Medicine Course</td>
<td>Lilleshall</td>
</tr>
<tr>
<td>November 8–10</td>
<td>BASM 1991 Annual Congress, sponsored by Lederle Laboratories. Details from: John Clegg, Birch Lea, 67 Springfield Lane, Ecleston, St. Helens, Merseyside, WA10 5HB, UK. Tel: (0744) 28198</td>
<td>Lowwood Hotel, Windermere, Cumbria</td>
</tr>
<tr>
<td>November 22–24</td>
<td>Advanced Physiology Module</td>
<td>BOMC, Harrow</td>
</tr>
</tbody>
</table>
Index: Volume 24 1990

Subject Index

Accident and emergency department, financial implications, roller skating rink, 240
adolescents
sports injuries, ball games, soccer, handball, basketball, 51
American football
effort thrombosis, 15
ankle
injuries, athletes (elite)
educational
eczema
exercise, blood flow properties, 45
asthma
asthmatic athletes, non-asthmatic athletes, treadmill running, 183
athlete
arthritus
bicycles, knee, soccer player, 13
assessment
echocardiographic left ventricular hypertrophy, Chinese endurance athletes, 274
physical exercise, blood flow properties, 45
asthma
asthmatic athletes, non-asthmatic athletes, treadmill running, 183
athlete
American football
endurance
financial implications, roller skating rink, 240
gastrointestinal disturbances
marathon runners, 266
grafting
rehabilitation, coronary artery bypass, quality of life, 120
hamstring
hamstring/quadriceps isokinetic strength ratios, power, tennis, squash, track athletes, 178
hand
injury, competition climbers, 16
human chorionic gonadotrophin testosterone administration, urinary ratio testosterone to epitestosterone, to luteinising hormone, exercise effects, testosterone and epitestosterone administration, 253
ibuprofen
exercise-induced muscle soreness, muscle damage indices, 191
ill-effects
intensive training, young athletes, 237
illness
injury and illness surveillance, local Special Olympic Games, 221
immunology
herbal yeast food supplement, long-distance running, immunological parameters, 103
injury
adolescents' ball games, soccer, handball, basketball, 51
amateur soccer, field position, 265
badminton, 169
BMX bicycling, 269
cervical vertebral dislocation, rugby player, congenital vertebral fusion, 167
cost of, roller skating rink, accident and emergency department, 240
diagnostic ultrasound, locomotor system, 31
athletes (elite)
rest, underperformance, 248
athletes (endurance)
educational
echocardiographic left ventricular hypertrophy, 274
athletes (young)
ill-effects, intensive training, 237
axillary vein obstruction
competitive canoeist, 127
badminton
injury, 169
ball games
sports injuries, adolescents, soccer, handball, basketball, 169
bicycle helmets
protective capability, 55
blood flow properties
physical exercise, 45
BMX
injuries, bicycling, 269
Brucella
arthritus, knee, soccer player, 13
canoing
axillary vein obstruction, 127
stress fracture, sixth rib, 247
blood flow properties
interferential current therapy, 87
cardiovascular
echocardiographic left ventricular hypertrophy, Chinese endurance athletes, 274
physical exercise, blood flow properties, 45
children
coronary risk factors, 61
sport accidents, 40
Chinese
echocardiographic left ventricular hypertrophy, endurance athletes, 274
coaching
sugar, success, 93
competition
hand injury, climbers, 16
coronary artery
rehabilitation, bypass grafting, quality of life, 120
coronary risk factors
British schoolchildren, 61

Br. J. Sports Med., Vol 24, No 4 281
isokinetics
hamstring/quadriceps isokinetic strength ratios, power, tennis, squash, track athletes, 178

knee
Brucella, arthritis, soccer player, 13

latissimus dorsi tendonitis
shoulder injury, 125

ligament, sprain prevention, ankle, taping, 47
locomotor system
athlete’s, diagnostic ultrasound, 31
luteinizing hormone
testosterone administration, urinary ratio testosterone to epitestosterone, to luteinising hormone, human chorionic gonadotrophin administration, exercise effects, testosterone and epitestosterone administration, 253

meeting report
FIMS World Congress of Sports Medicine, 143
Special Olympic Games, Mentally Handicapped, United Kingdom, 225
Worn, Transplant Games – Singapore 1989, 130 metabolism
gastrointestinal disturbances, marathon runners, 266
middle distance swimming performance, 196
testosterone administration, urinary ratio testosterone to epitestosterone, to luteinising hormone, human chorionic gonadotrophin administration, exercise effects, testosterone and epitestosterone administration, 253
microwave diathermy, 212

modalities interstitial current therapy, 87
microwave diathermy, 212
muscle damage
ibuprofen, exercise-induced muscle soreness, 191
myocardial capillaries
high carbohydrate diet, core temperature, prolonged exercise, 99
morphological study, endurance trained rats, 113

National Sports Medicine Centre, 10
The Netherlands, 7
national sports medicine centres pattern, Scotland, 83
Thailand, 139
Norway
sport accidents, childhood, 40
orofacial injuries
dental, club rugby union players, 271
international players, mouthguards, 156
users and non-users of gum shields, rugby union players, 159
overtraining
rest, underperforming elite competitors, 248
overtraining syndrome
review, 231
oxygen consumption
sugars, success, 93

paraplegia
strength training, wheelchair users, 25
performance
asthmatic athletes, non-asthmatic athletes, treadmill running, 183
hamstring/quadriceps isokinetic strength ratios, power, tennis, squash, track athletes, 178
metabolic predictors, middle distance swimming, 196
simulated swimming, VO₂ max evaluation, 201
physical exercise
health factor, 82
physiology
herbal yeast food supplement, long-distance running, immunological parameters, 103

high carbohydrate diet, core temperature, prolonged exercise, ibuprofen, exercise-induced muscle soreness, muscle damage indices, 191
morphological study, myocardial capillaries, endurance trained rats, 113
testosterone administration, urinary ratio testosterone to epitestosterone, to luteinising hormone, human chorionic gonadotrophin administration, exercise effects, testosterone and epitestosterone administration, 253

physiotherapy
interstitial current therapy, 87
microwave diathermy, 212
team physiotherapist, rugby union football, 19
position
physical exercise, health factor, 82
postoperative rehabilitation
coronary artery bypass grafting, quality of life, 120
prevention
protective capability, bicycle helmets, 55
proposed sports therapy, 74
pseudo-injury
anatomical, athletes, 207

quadriiceps
hamstring/quadriceps isokinetic strength ratios, power, tennis, squash, track athletes, 178
rats
high carbohydrate diet, core temperature, prolonged exercise, 99
morphological study, myocardial capillaries, endurance trained rats, 113
response
sports therapy, 77
rock climbing
fingertip injuries, 14
hand injury, competition climbers, 16
roller skating
cost of, accident and emergency department, 240
rugby football
vertebral dislocation, congenital vertebral fusion, 167
rugby union football
injury, oro-facial, dental, club rugby union players, 271
orofacial injuries, users and non-users of gum shields, 159
team physiotherapist, 19
running
athletic athletes, non-athletic athletes, 183
sacrum
unusual stress fracture, 243
Scotland
national sports medicine centres, pattern, 83
injury, oro-facial, dental, 271
shoulder
impingement, upper arm sports events, 173
injury, 125
soccer
amateur, injuries, field position, 265
Brucella, arthritis, knee, 13
normal course of events, Swedish players, 117
society
proposed, sports therapy, 74, 77
Special Olympic Games
injury and illness surveillance, 221
Mentally Handicapped, United Kingdom 1989, 225
sports therapy
proposed society, 74, 77
squash
hamstring/quadriceps isokinetic strength ratios, power, 178
statement
physical exercise, health factor, 82
strength
hamstring/quadriceps isokinetic strength ratios, power, tennis, squash, track athletes, 178
strength training
wheelchair users, 25
stress fracture
sixth rib, canoeist, 247
unusual, 243
sugars
intercurrent current therapy, 87

Sweden
normal course of events, soccer players, 117
swimming
metabolic predictors, performance, 196
swimming (simulated)
VO₂ max evaluation, 201
taping
ankle ligament sprains, prevention, 47
team
physiotherapist, rugby union football, 19
tennis
hamstring/quadriceps isokinetic strength ratios, power, 178
tennis elbow
ultrasoundographic study, 151
testing
testosterone administration, urinary ratio testosterone to epitestosterone, to luteinising hormone, human chorionic gonadotrophin administration, exercise effects, testosterone and epitestosterone administration, 253
testosterone administration, urinary ratio testosterone to epitestosterone, to luteinising hormone, human chorionic gonadotrophin administration, exercise effects, testosterone and epitestosterone administration, 253
Thailand
sports medicine, 139
thrombolysis
effort, American football player, 15
track athletes
hamstring/quadriceps isokinetic strength ratios, power, 178
training
ill-effects, intensive training, young athletes, 237
rest, underperformance, elite competitors, 248
review, overtraining syndrome, 251
tumours
mimicking injuries, athletes, 207

UK 1989
Special Olympic Games, Mentally Handicapped, 225
ulnar compression
cyclist’s hand, 245
ultrasound
tennis elbow, 151
ultrasound diagnosis
athlete’s locomotor system, 31
upper arm sports
shoulder impingement, 173

venography
auxiliary vein obstruction, competitive canoeist, 127
vertebral dislocation
rugby player, congenital vertebral fusion, 167
VO₂ max
simulated swimming, 201
World Transplant Games 1989
Singapore, 130
wrist
ulnar compression, cyclist’s hand, 245

yeast
herbal food supplement, long-distance running, immunological parameters, 103
Author Index

BASM Education Courses, 133, 209, 276
BASM news, 4
Calendar, 70, 134, 210, 280
Editorial, 3, 73, 137, 211
For the Coach, 93
From the Games
Crystal Palace National Sports Centre – London, UK, 10
National Sports Centre – Papendal, The Netherlands, 7
Scotland, 83
Thailand, 139
From Injury
Bottomley MB, Sacral stress fracture in a runner, 243
Chen, Carpal arthritis of the knee in a young soccer player, 13
Cole AT, Fingertip injuries in rock climbers, 14
Fowler C, Potter GE, An uncommon shoulder injury, 125
Gordon DA, Effort thrombosis in an American football player, 15
Livesey JR, Intermittent axial vein obstruction in a competitive canoeist, 127
Maffulli N, Pintore E, Petricicuolo F, Tumours mimicking sports injuries in two young athletes, 207
Maffulli N, Pintore E, Stress fracture of the sixth rib in a canoeist, 247
Maimon Y, Zadeh HG, Ulnar compression in the cyclist’s hand: two case reports and a review of the literature, 245
From the Management
T, Organization reports.
Letter to Treatment
Physiotherapy
Armstrong SR, Crystal Palace National Sports Centre – London, UK, 10
Chen S, Maffulli N, Livesey JR, DP, Griffin PA, Robson S, Society of Sports Therapists – a response, 77
Barme V, Budgett R, Overtraining Syndrome, 231
Brogger-Jensen T, Hvass I, Bugge S, Injuries at the BMX Cycling European Championship, 1989, 249
Griffith PA, World Transplant Games – Singapore, 1989, 130
McCormick DP, Niebuhr VN, Risser WL, Injury and illness surveillance at local Special Olympic games, 221
Robson HE, The Special Olympic Games for the mentally handicapped – United Kingdom 1989, 225
Journals Club, 5, 79, 149, 219
Letter to the Editor, 132
Management
Nayeem N, Shires SE, Porter JE, Cost of a roller skating rink on the local accident and emergency department, 240
Meeting reports, 143
New Organization
Society of Sports Therapists, 74, 77
Obituary
James MacGregor, 86
James Anderson Moncur, 86
Maurice Yaffe, 68
Physiotherapy Treatment Modalities
Goats GC, Interferential current therapy, 87
Goats GC, Microwave diathermy, 212
Position statements, 82
Review
Budgett R, Overtraining Syndrome, 231
Maffulli N, Pintore E, Intensive training in young athletes, 237
World Congress of Sports Medicine
BASM headquarters, Secretary’s report, 143
Pheidippides goes to Amsterdam, 144
Social side of Amsterdam, 143
Vignette Scientifique, 147
Aeppli RE see Gmfinder K, 103
Bottomley MB
Sacral stress fracture in a runner, 243
Brogger-Jensen T, Hvass I, Bugge S, Injuries at the BMX Cycling European Championship, 1989, 269
Brooks RV see Kicman A, 253
Freeman W, 183
Budgett R, Overtraining Syndrome, 231
Budgett R see Koutedakis Y, 248
Bugge S see Brogger-Jensen T, 269
Cadavid E see Ribeiro JP, 196
Capasso G see Maffulli N, 151
Carrillo F see Maffulli N, 151
Chen KM see Lo YCP, 173
Chapman PJ
Orofacial injuries and international players’ attitude to mouthguards, 156
Chen S
Brucella arthritis of the knee in a young soccer player, 13
Chin MK see Lo YSA, 274
Cilliers JF see Schwellnus MP, 99
Ciuffetti G see Borg K, Lombardini R, Milia U, Mannarino E
Physical exercise and blood flow properties, 45
Cologni M see Gmfinder FK, 103
Cole AT
Fingertip injuries in rock climbers, 14
Collier SC see Kicman A, 253
Cowan DA see Kicman A, 253
Crawford IC see Hoad NA, 120
Davis GM, Shephard RJ
Strength training for wheelchair users, 25
De Rose EH see Ribeiro JP, 196
Donnelly AE, Maughan R, Whiting PH
Effects of ibuprofen on exercise-induced muscle soreness and indices of muscle damage, 191
Ekstrand J, Roos H, Trophy H
Normal course of events amongst Swedish soccer players: an 8-year follow-up study, 117
Faulkner L see Koutedakis Y, 248
Firer P
Effectiveness of taping for the prevention of ankle ligament sprains, 47
Fowler C, Potter GE
An uncommon shoulder injury, 125
Freeman W, Nute L, Brooks S, Williams C
Responses of asthmatic and non-asthmatic athletes to prolonged treadmill running, 183
Fullford S see Hunt M, 265
Gentle P see Armstrong N, 61
Glamakers T see Halvorsen F, 266
Gmfinder FK, Joller PW, Joeller-Jemelka HI, Bechler B, Cologni M, Ziegler WH, Müller J, Aeppli RE see Gmfinder K, 103
Barna J see Ribeiro JP, 196
Balding J see Armstrong N, 61
Barna A see Ribeiro JP, 196
Bechler B see Gmfinder FK, 103
Bellamy MJ see Read MTF, 178
Bollen SR, Gunson CK
Hand injuries in competition climbers, 16
Halvorsen F-A, Lyng J, Glamakers T, Ritud S, Gastrointestinal disturbances in marathon runners, 266
Hoad NA, Crawford IC
Rehabilitation after coronary artery bypass grafting and improved quality of life, 120
Hau HYC see Lo YCP, 173
Hunt M, Fullford S
Amateur soccer: injuries in relation to field position, 265
Hvass I see Brogger-Jensen T, 269
Jakobsen BW see Kramer K, 169; Møller-Madsen B, 123
Jennings DC
Injuries sustained by users and non-users of gun shields in local rugby union players, 159
Jensen J see Kramer K, 169
Johnson A
Society of Sports Therapists – a response, 77
Joller PW see Gmfinder FK, 103
Joller-Jemelka HI see Gmfinder FK, 103
Kakarla P see Kay EJ, 271
Kaminsky LA, Padjen S, LaHam-Saeger J
Effect of split exercise sessions on excess post-exercise oxygen consumption, 95
Kay EJ, Kakarla P, MacLeod DAD, McGlashan TPL
Oral and dental injuries in club rugby union players, 271
Kefkenbaum A see Mellerowicz H, 31
Kicman AT, Brooks RV, Collier SC, Cowan DA, Nanjee MN, Southon GJ, Wheeler MJ
Criteria to indicate testosterone administration, 253
Kimura Y, Yeater RA, Martin RB
Simulated swimming: a useful tool for evaluating VO2 max of swimmers in the laboratory, 201
Kirby B see Armstrong N, 61
Kohl HW see Schwellnus MP, 99
Koutedakis Y, Budgett R, Faulkner L
Rest and underperforming elite competitors, 248
Kramer K, Schmidt SA, Nielsen AB, Yde J, Jakobsen BW, Møller-Madsen B, Jensen J, Badminton injuries, 169
Kuy J, see Schwellnus MP, 99
LaHam-Saeger J see Kaminsky LA, 95
Livesey JR
Intermittent axial vein obstruction in a competitive canoeist, 127
Lo YSA, Chin MK
Echocardiographic left ventricular hypertrophy in Chinese endurance athletes, 274
Lo YCP, Hau HYC, Chan KM
Epidemiology of shoulder impingement in upper arm sports events, 173
Lombardini R see Ciuffetti G, 45
Lyng J see Halvorsen F-A, 266
McCormick DP, Niebuhr VN, Risser WL
Injury and illness surveillance at local special Olympic games, 221
MacDonald I
Sugars for success, 93
MacDonald R
Crystal Palace National Sports Centre – London, UK, 10
McGlashan TPL see Kay EJ, 271
McLean DA
Role of the team physiotherapist in rugby union football, 19
MacLeod DAD, Porteous BW
Establishing a pattern for sports medicine centres in Scotland, 83
Br. J. Sports Med., Vol 24, No. 4 283
Macleod DAD see also Kay EJ, 271
Maffulli N, Pintore E
Intensive training in young athletes, 237
Stress fracture of the sixth rib in a canoeist, 247
Maffulli N, Pintore E, Petricciuolo F
Tumours mimicking sports injuries in two young athletes, 207
Maffulli N, Regine R, Carrillo F, Capasso G, Minelli S
Tennis elbow: an ultrasonographic study in tennis players, 151
Maimaris C, Zadeh HG
Ulnar compression in the cyclist's hand, 245
Mannarino E see Ciuffetti G, 45
Martin RB see Kimura Y, 201
Maughan RJ see Donnelly AE, 191
Mellerowicz H, Stelling E, Kefenbaum A
Diagnostic ultrason in the athlete's locomotor system, 51
Mercuri M see Ciuffetti G, 45
Mila U see Ciuffetti G, 45
Mills NJ
Protective capability of bicycle helmets, 55
Minelli S see Maffulli N, 151
Møller-Madsen B, Jakobsen BW, Villadsen I
Skiing injuries: a study from a Danish community, 123
Møller-Madsen B see also Krom K, 169
Monsaalveten E, Ribet J, 196
Müller J see Gmünder FK, 103

Nanjee MN see Kicman AT, 253
Nayeem N, Shires SE, Porter JE
Cost of a roller skating rink on the local accident and emergency department, 240
Niebuhr VN see McCormick DP, 221
Nielsen AB see Kramer K 169; Yde J, 51

Nute NGL see Freeman W, 183

Padden S see Kaminsky LA, 95
Petricciuolo F see Maffulli N, 207
Pintore E see Maffulli N, 237, 247
Porteous BW see Macleod DAD, 83
Porter JE see Nayeem N, 240
Potter GE see Fowler C, 125

Qu Xia
Morphological study of myocardial capillaries in endurance trained rats, 113

Read MTF, Bellamy MJ
Comparison of hamstring/quadriceps isokinetic strength ratios and power in tennis, squash and track athletes, 178
Regine R see Maffulli N, 151
Ribet J, Cadavid E, Baena J, Monsalve E, Barna A, De Rose EH
Metabolic predictors of middle-distance swimming performance, 196
Risser WL see McCormick DP, 221
Ritland S see Halvorsen F-A, 266
Robson HE
The Special Olympic Games for the Mentally Handicapped, United Kingdom 1989, 225
Roos H see Ekstrand J, 117

Sahlin Y
Sport accidents in childhood, 40
Scher AT
Cervical vertebral dislocation in a rugby player with congenital vertebral fusion, 167

Schmidt SA see Kramer K, 169
Schwellnus MP, Gordon NF, van Zyl GG, Cilliers JP, Grobler HC, Kuyl JM, Kohl HW
Effect of a high carbohydrate diet on core temperature during prolonged exercise, 99
Shephard RJ see Davis GM, 25
Shires SE see Nayeem N, 240
Smith GN
Society of Sports Therapists – a proposal, 74
Southon C see Kicman AT, 253
Stelling E see Mellerowicz H, 31

Tropp H see Ekstrand J, 117

van Beek PA
National Sports Centre – Papendal, The Netherlands, 7
van Zyl GG see Schwellnus MP, 99
Villadsen I see Møller-Madsen B, 123

Wheeler MJ see Kicman AT, 253
Whiting PH see Donnelly AE, 191
Williams C see Freeman W, 183

Yde J, Nielsen AB
Sports injuries in adolescents' ball games: soccer, handball and basketball, 51
Yde J see also Kramer K, 169
Yeater RA see Kimura Y, 201

Zadeh HG see Maimaris C, 245
Ziegler WH see Gmünder FK, 103
Scope
The British Journal of Sports Medicine covers all aspects of sports medicine and science – the management of sports injuries; all clinical aspects of exercise, health and sport; exercise physiology and biophysical investigation of sports performance; sports psychology; physiotherapy and rehabilitation in sport; and medical and scientific support of the sports coach.

Types of paper
Original papers (not normally over 3000 words, full length accounts of original research)
Review articles (up to 4000 words, providing concise in-depth reviews of traditional and new areas in sports medicine)
Case reports (up to 1000 words, describing clinical case histories with a message).

Refereeing
All contributions are studies by referees whose names are not normally disclosed to authors. On acceptance for publication papers are subject to editorial amendment. If rejected, papers and illustrations will not be returned. Authors are solely responsible for the factual accuracy of their papers.

Manuscripts
Authors are urged to write as concisely as possible. Three copies should be submitted, typed on only one side of the paper (quarto or A4) in double spacing with a margin of 30 mm at the top and bottom and on both sides. Papers should be arranged in the following order of presentation: title of paper; names of the authors; address of the place at which the work was carried out; an abstract of the paper (100–200 words in length); 4–6 keywords; the text; acknowledgements (if any); references; tables; and abbreviated title for use as a running headline; captions to figures (on separate sheet of paper).

Illustrations
Drawings and graphs should be on heavy white paper/card or blue-lined coordinate paper using black ink. Label axes appropriately and clearly. Please use a selection of the following symbols: +, x, □, ○, △, Δ, ▽, ■, ●, ▲, ●, ▼. Photographs should be of fine quality, large glossy prints suitable for reproduction and the top should be indicated. Negatives, transparencies or x-ray films should not be supplied, any such material should be submitted in the form of photographic prints. Authors are asked where possible to draw diagrams to one of the following widths, including lettering, 168 mm, 354 mm. During photographic reproduction, the diagrams are reduced to 1/2 their size. The maximum depth at drawn size is 500 mm. Authors are asked to use the minimum amount of descriptive matter on graphs and drawings but rather to refer to curves, points etc. by symbols and place the descriptive matter in the caption. Three copies of each illustration are required and these should be numbered in a consecutive series of figures using Arabic numerals. Legends should be typed in double spacing on a separate page but grouped together. Each figure should be identified on the back – figure number and name of the author. Figures which have been published elsewhere should be accompanied by a form of permission to reproduce, obtained from the original publisher.

References
These should be indicated in the text by superscript Arabic numerals which run consecutively through the paper. The references should be grouped in a section at the end of the text in numerical order and should take the form: author’s names and initials; title of article; abbreviated journal title; year of publication; volume number; page numbers. If in doubt authors should always write the journal title in full. References to a book should take the form: authors’ surname, followed by initials; title of book in single quotes; editors (if any); volume number/edition (if any); name of publishers; place of publication; year of publication and page number. Where a paper is cited more than once in the text, the same superior numeral should be used on each occasion. e.g.

21 Sperryn, P.N. SporA and Medicine Butterworths, UK 1983

Tables
Tables should be typed on separate sheets together with a suitable caption at the top of each table. Column headings should be kept as brief as possible, and indicate units of measurement in parentheses. Tables should not duplicate information summarized in illustrations.

Footnotes
Footnotes should be used sparingly. They should be indicated by asterisks (*), daggers (†), and double daggers (‡), in that order. In the manuscript, a footnote should be placed at the bottom of the page on which it is referred to and separated from the main text by a horizontal line above the footnote. Footnotes to tables should be placed at the bottom of the table to which they refer.

Drugs, Abbreviations and Units
Drugs should be referred to by their approved, not proprietary, names, and the source of any new or experimental materials should be given. If abbreviations are used these should be given in full the first time they are mentioned in the text. Scientific measurements should be given in SI units, but blood pressure should continue to be expressed in mm Hg.

Proofs
Authors are responsible for ensuring that all manuscripts (whether original or revised) are accurately typed before final submission. Two sets of proofs will be sent to the author before publication, one of which should be returned promptly (by Express Air Mail if outside UK). The publishers reserve the right to charge for any changes made at the proof stage (other than printers errors) since the insertion or deletion of a single word may necessitate the resetting of whole paragraphs.

Submission
Three copies of the complete manuscript and illustrations should be sent to Dr P.N. Sperryn, The Editor, British Journal of Sports Medicine, Butterworth Scientific Ltd, PO Box 63, Bury Street, Guildford, Surrey GU2 5BH, UK.
All material submitted for publication is assumed to be submitted exclusively to the British Journal of Sports Medicine. All authors must consent to publication. The editor retains the customary right to style and if necessary shorten material accepted for publication. Manuscripts will be acknowledged on receipt. Authors should keep one copy of their manuscript for reference. Authors should include their names and initials and not more than one degree each.