Brief exercise induces an immediate and a delayed leucocytosis

D. A. McCarthy PhD, M. Grant† MD, M. Marbut‡ PhD, M. Watling* MRCGP, A. J. Wade* PhD, I. Macdonald§ PhD, S. Nicholson** MD, R. D. Melsom‡‡ and J. D. Perry†† FRCP

School of Biological Sciences, Queen Mary and Westfield College, London, UK
*Sports Medicine, †Department of Physiology, and ‡‡Department of Rheumatology, London Hospital and Medical College, London, UK
§Department of Physiology, University of Nottingham, Nottingham, UK
**Department of Obstetrics and Gynaecology, UMDS, St. Thomas’ Hospital, London, UK

Haematological profiles were measured: (1) before and for 5 h 30 min after 30 min sports (squash, swimming, jogging); and (2) before, during and for 2 h 30 min after 30 min cycle ergometry at workloads which required rates of oxygen consumption that were between 48% and 94% of maximal. In both instances exercise induced an immediate leucocytosis (owing to rises in both neutrophils and lymphocytes) which subsided rapidly at the finish of exercise and was followed by a delayed neutrophilia of greater magnitude which peaked at approximately 3 h after the start of exercise. Changes in plasma catecholamines and cortisol recorded during and after exercise (cycle ergometry only) support the hypothesis that the immediate leucocytosis during brief exercise is attributable to elevated catecholamine levels, whereas the delayed neutrophilia is due to raised cortisol levels.

Keywords: Haematological indices, plasma biochemicals, sports, cycle ergometry

It is well known that exercise can induce an immediate leucocytosis which persists for as long as the effort is sustained1. However, it is less widely appreciated that a brief period of exercise can induce not only an immediate leucocytosis which subsides rapidly after the finish of exercise, but also a delayed prolonged leucocytosis which peaks some hours later. Evidence indicating the start of just such a delayed leucocytosis can be seen in several older studies2–7, but the phenomenon has generally attracted little attention and consequently is poorly characterized. Recently, in a brief communication elsewhere, we reported the time course of the delayed leucocytosis elicited by 30 min jogging, squash and swimming8. We now present full details of the changes in the peripheral blood indices seen in a slightly extended version of that study (study A), together with the results of cycle ergometer experiments to investigate the mechanisms and magnitude of the immediate and delayed leucocytosis induced by 30 min exercise at known workloads (studies B1 and B2).

Subjects, materials and methods

Study A

Details of the subjects studied and the protocol used have been described already9. Briefly, 11 healthy men, mean(s.d.) age 41.4(7.3) years continued in their normal daily routine for 24 h before the experiment but avoided strenuous exercise. Between 10.00 h and 11.00 h each man exercised for 30 min at a rate close to the maximum that he could sustain for that duration, by playing squash (n = 4), jogging (n = 4) or swimming (n = 3). Blood samples taken by venepuncture at 0, 30, 60, 165, 270 and 360 min and at similar times during a normal working (control) day, were collected into K2EDTA (1 mg ml⁻¹). For statistical analysis subjects were assigned to one of three categories based on the amount of exercise taken during the 3 months preceding the study – four subjects played no sports and took no vigorous exercise whatsoever, three jogged or swam regularly for between 30 min and 1 h 30 min per week and four played sports (hockey, squash, cycling and jogging) or did circuit training for more than 2 h per week.

Study B1

Five healthy men participated in this study, two of whom had also participated in study A. Their physical characteristics (means(s.d.)) were age 42.4(4.9) years; height 1.790(0.058)m; weight 75.12(8.16)kg; VO₂max 2.729(0.271) L min⁻¹. Approximately 1 week before the experiment, the maximal oxygen uptake (VO₂max) of each subject was measured using a computer-interfaced exercise testing

Address for correspondence: Dr D. A. McCarthy, School of Biological Sciences, Queen Mary and Westfield College, Mile End Road, London E1 4NS, UK
© 1991 Butterworth-Heinemann Ltd
0306-3674/91/040191-05
system\(^a\). Subjects refrained from vigorous exercise for 24 h before the experiments and from consuming alcohol for 12 h and caffeine-containing beverages for 24 h, before and during the experiments. Between 09.30 h and 10.30 h a small cannula fitted with a three-way valve and maintained patent by a heparin-saline (20 units ml\(^{-1}\)) lock, was inserted into a vein in the antecubital fossa. Approximately 15 min later, when the subject was seated on an electronically braked bicycle ergometer (Monark, KEM 3, Cranlea and Company, Birmingham, UK), the first blood sample was taken just before starting exercise. The ECG was monitored continuously with a Reigel (Model 302) cardiac monitor (Riegel and Company, Morden, UK) with ‘Node crest’ modification, and heart rate was collected by counting square wave pulses on one line of the digital port of the computer. Subjects pedalled at between 60 r.p.m. and 80 r.p.m. at a workload of 50 W for 1 min, and then at a workload (mean(S.D.) 153(42.3) W) calculated to require an oxygen consumption equivalent to 70% of \(\dot{V}O_2\)max for 30 min. Blood samples were taken at 10, 20 and 30 min while the subjects were exercising and at 45, 90 and 180 min while they were at rest. A portion (1 ml) of each sample was collected into K\(_2\)EDTA (1 mg ml\(^{-1}\)) for haematological determinations, the remainder (9 ml) was mixed with heparin (10 units ml\(^{-1}\)) and the plasma recovered by centrifuging. Plasma for lactate and cortisol analysis was stored frozen at \(-20^\circ\text{C}\), but plasma for catecholamine analysis was first mixed (50:1 v/v) with aqueous glutathione (6%) and ethylenediamine tetra-acetic acid (EDTA) (9.5%) adjusted to pH 7. Plasma samples for lactate analysis were thawed and denatured within 60 min and lactate concentrations determined within 10 min by an enzymic procedure using an Analox (Model P-GMT) analyser (Analox, London, UK). Plasma cortisol concentrations were determined by radio-immunoassay. Values quoted for both analytes are the means of duplicate determinations. Adrenaline and noradrenaline concentrations were determined by high-pressure liquid chromatography with amperometric detection; values quoted are for single determinations.

Study B\(_2\)

One subject (who had also participated in studies A and B\(_1\)) exercised according to the protocol described for study B\(_1\) except that he did so on different occasions (14–21 days apart) at 100, 150 and 200 W.

Common procedures

Haematological parameters were measured using a Coulter (Model S, Coulter Electronics, Luton, UK) (study A, subjects 1–4) or a Technicon (Model H-1, Technicon Instruments, Basingstoke, UK) (study A, subjects 5–11; studies B\(_1\) and B\(_2\)) automatic blood cell analyser. All subjects had normal peripheral blood profiles except for one subject in study B\(_1\) who had slightly low total leucocyte and neutrophil counts (4.21 \(\times\) 10\(^3\) l\(^{-1}\) and 1.49 \(\times\) 10\(^3\) l\(^{-1}\), respectively).

Paired \(t\) tests (two-tailed) with Bonferroni’s correction were used to examine differences between variables on days with and without exercise (study A) and analysis of variance with Duncan’s correction for multiple comparisons was used to compare values during and after exercise with those before exercise. Correlations between variables were sought using Pearson’s linear regression (coefficient, \(r\)) and Spearman’s non-parametric procedure (coefficient, \(p\)). All analyses were done using the ‘number crunch’ program on a personal computer. Significance was accepted at \(P<0.05\). All subjects gave their informed consent for the studies.

Results

Study A

The results presented in Figure 1 show that the mean(S.E.M.) rise in the leucocyte count after 30 min exercise of 117(5)% (0 min value = 100%) was due to increases in both lymphocytes and neutrophils, whereas the delayed rise which peaked at 165 min (156(14)% was attributable solely to an increase in neutrophils.

![Figure 1](http://bjsm.bmj.com/)

Figure 1. a Effect of 30 min exercise (between 0 and 30 min) on the numbers of: ■, circulating leucocytes; ●, neutrophils; ▲, lymphocytes. Results are the means of 11 experiments (four playing squash, four jogging and three swimming); bars indicate the standard error. Values which differed from those at 0 min are indicated: \(\bullet\bullet\bullet\) \(P<0.05\); \(\bullet\bullet\bullet\bullet\) \(P<0.01\); and from those at comparable times on a control day (b), \(\bullet\star\) \(P<0.1\); \(\bullet\star\star\) \(P<0.05\), \(\bullet\star\star\star\) \(P<0.01\). b Variation in the number of: ◇, circulating leucocytes; ○, neutrophils; Δ, lymphocytes, in the same subjects during a normal working day without exercise.
The mean leucocyte count immediately after exercise differed from that before exercise but not significantly from that at a comparable time on a control day ($P<0.01$ only); however, between 3 h and 6 h after exercise the mean leucocyte and neutrophil counts differed both from those before exercise and from those at comparable times on a control day.

Considerable intersubject variation which was unrelated to the nature of the exercise occurred: first, in the relative increases in magnitude of both immediate (i.e. at 30 min) and delayed leucocytosis; second, in the relative changes in lymphocytes and neutrophils at 30 min; and third, in the time (between 160 and 360 min, when delayed leucocytosis reached a peak (results not shown)). Except for an increase in the platelet count (112.8(2.7)%; $P<0.01$) at 30 min, a decrease in haemoglobin concentration (96.9(0.5)%; $P<0.05$) at 270 min and decreases in the haematocrit between 30 min (97.8(0.5)%; n.s.) and 360 min (97.0(0.5)%; $P<0.05$), there were no significant changes (from the values at 0 min) in any of the other haematological parameters measured (monocyte, eosinophil, basophil and erythrocyte numbers, mean corpuscular volume (MCV), mean corpuscular haemoglobin concentration (MCHC) and mean platelet volume (MPV) during the period studied. Blood leucocyte counts at the peak of the delayed leucocytosis were correlated with those at 30 min ($r = 0.707$, $P<0.02$; $r = 0.713$, $P = 0.021$). By 24 h all haematological parameters (data available for only five experiments) had returned to their pre-exercise levels (results not shown).

Study B1

The effects on the leucocyte count of 30 min cycle ergometry at 70% V_{O_2max} (Figure 2) generally resembled those observed previously in study A, except that the magnitude of both immediate (137(8)%) and delayed (179(19)%) leucocytosis was greater. Significant changes because of exercise occurred in basophil (167(20)%), erythrocyte (107(2)%) and platelet numbers (122(8)%)) at 30 min, and in neutrophil and hence leucocyte numbers at 180 min. At 30 min, lymphocyte numbers were correlated with plasma adrenaline concentrations ($r = 0.978$, $P = 0.02$; $p = 1$, $P<0.01$). Neutrophil numbers at 180 min were correlated with the plasma concentration of cortisol at 30 min ($r = 0.952$, $P = 0.048$; $p = 1$, $P<0.01$).

Study B2

In a preliminary study to assess the effects of relative workload, one subject exercised on different occasions at 48%, 61% and 84% of his V_{O_2max}. The results (Table 1) showed that the percentage changes in plasma lactate, noradrenaline, adrenaline and cortisol concentrations at 30 min increased progressively with the relative workload. So, too, did the lymphocyte count, but the modest increases in neutrophils at this time (to 114%, 130% and 123%, respectively) were not closely linked to the workload. At 180 min, on the other hand, only the percentage change in the neutrophil count was related progressively to the workload, or to the changes in plasma concentrations of the four metabolic indicators of stress (lactate, noradrenaline, adrenaline and cortisol) as recorded at 30 min.

Table 2 presents results from analysis of five sample times (0, 10, 20, 30 and 45 min) during the experiment.
Brief exercise and leucocytosis: D. A. McCarthy et al.

Table 1. Effect of workload on changes in leucocytes and plasma biochemicals during and after exercise*. One subject exercised for 30 min on a cycle ergometer at 100, 150 and 200 W (equivalent, respectively, to 48%, 61% and 84% of his VO\(_{2\text{max}}\)). Values are given as percentages of those at 0 min (100%)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>30min</th>
<th>180min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 W</td>
<td>150 W</td>
</tr>
<tr>
<td>Leucocytes</td>
<td>108</td>
<td>140</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>114</td>
<td>130</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>76</td>
<td>152</td>
</tr>
<tr>
<td>Lactate</td>
<td>220</td>
<td>515</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>173</td>
<td>357</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>417</td>
<td>600</td>
</tr>
<tr>
<td>Cortisol</td>
<td>122</td>
<td>213</td>
</tr>
</tbody>
</table>

*Samples were taken at 0, 10, 20, 30, 45, 90 and 180 min, but for simplicity the results for changes at 10, 20, 45 and 90 min have been omitted

Table 2. Correlations between changes in plasma biochemicals and the number of circulating leucocytes in one subject during and after 30 min cycle ergometry at 200 W (equivalent to 84% of his VO\(_{2\text{max}}\))

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Lactate</th>
<th>Noradrenaline</th>
<th>Adrenaline</th>
<th>Cortisol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leucocytes</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>0.82</td>
<td>0.98</td>
<td>0.82</td>
<td>0.05</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Values given are for Spearman’s correlation coefficient (p) calculated for the five samples taken at 0, 10, 20, 30 and 45 min. Significant (P<0.05) correlations would be expected where values for p exceed 0.9

Conducted at a workload of 84% VO\(_{2\text{max}}\). It is evident that this stressful workload induced changes in both cell counts and some metabolic indicators of stress (lactate, noradrenaline and adrenaline) which were highly correlated, but these associations were not as well defined at lower workloads (results not shown). During exercise the cortisol level rose but the rise was delayed relative to the changes in leucocytes and the more volatile indicators of stress.

Discussion

Our studies show unequivocally that 30 min vigorous exercise, either as sports (study A) or as cycle ergometry at 48% VO\(_{2\text{max}}\) to 84% VO\(_{2\text{max}}\) (studies B\(_1\) and B\(_2\)), causes not only a well recognized immediate transient leucocytosis but also a substantial delayed and prolonged neutrophilia which peaks between 3 and 6 h later. Similar results were obtained also by Hansen et al.\(^{10}\) in a study of the effects of running (between 1.7 km and 10.5 km) and published after this manuscript was submitted. The changes noted in erythrocytes (study B\(_1\)) and platelets (studies A and B\(_1\)) are in agreement with those reported previously\(^{11-13}\), as are those for the changes in plasma lactate, catecholamine and cortisol levels (studies B\(_1\) and B\(_2\))\(^{14}\). Since the increase in erythrocyte count is known to be due to the fluid shift from plasma to the tissues, it is reasonable to suppose that up to 7% of the change in any other cell count may be due to the same cause. Changes greater than this are therefore attributable to cell mobilization.

In some early experiments during study A, light microscopy of stained blood films suggested a ‘left shift’ might be occurring during delayed neutrophilia. Therefore, subsequent experiments were performed using the Technicon H-I blood cell analyser, which provides a ‘lobularity index’ that is related to polymorph nuclear lobe complexity\(^{15}\). Marked decreases in the lobularity index during delayed neutrophilia were noted in samples from only two persons (one each from studies A and B\(_1\), results not shown). Thus an increase in immature cells at this time seems to be a possible, but by no means inevitable, consequence of brief exercise. It should also perhaps be mentioned that the specificity and sensitivity of this parameter under clinical conditions has been questioned\(^{16}\). Nevertheless, a moderate ‘left shift’ was also observed 2 h after a 10.5 km run\(^{10}\).

Interindividual variation in the magnitude of immediate and delayed leucocytosis seen after sports (study A) was initially thought to be due to differences in the cumulative amount of work done rather than to the intensity of exercise. However, this variability was not markedly reduced when subjects exercised for the same time at 70% VO\(_{2\text{max}}\) (study B\(_2\)). The reasons for this are not known but may arise from intersubject differences in the production, elimination and effects of stress hormones such as the catecholamines and cortisol, even at identical relative workloads. If correct, one consequence of this might be that correlations between hormone concentrations and leucocyte numbers are more apparent within than between individuals.

The correlation observed between lymphocyte numbers and plasma adrenaline concentrations at the end of exercise (study B\(_1\)) has been noted before\(^{17}\) but the correlations between leucocyte, neutrophil and lymphocyte numbers and plasma lactate, noradrenaline and adrenaline concentrations found in study B\(_2\) (Table 2) have not been reported previously, possibly because they are evident only at high relative workloads. These results provide support for the idea that either noradrenaline or adrenaline, or both, are involved in the immediate mobilization of leucocytes during exercise.

No contemporaneous correlation was found between plasma cortisol levels and leucocyte numbers, either during, or at the finish of 30 min exercise in
Brief exercise and leucocytosis: D. A. McCarthy et al.

Jenkins for the use of facilities, and to Mr P. Hall and Mr D. Worby for the haematological analyses.

References

Acknowledgements

This study was supported by a grant from the Nuffield Foundation. We are grateful to Drs I. Harper, J. Camilleri, S. McFarlane and P. Kelly for collecting blood samples (study A), to Professor G.