LETTERS TO THE EDITOR

John G P Williams

EDITOR, - I am moved to write, having just read the obituary of Dr John GP Williams, published in Volume No 29, Number 4, December 1995.

I was a trainee of Dr Williams in the early part of 1979. During my time with him at the Farnham Park Rehabilitation Centre I learnt an enormous amount of sports medicine and, more importantly, the practice of sports medicine.

As described in Dr Williams' obituary he was primarily a physician and then a surgeon. His hands-on approach to patients was a hallmark of his practice and I believe was the single most important thing impressed upon me at the time. I still teach his philosophy to my students today.

I wish to emphasise to all the readers of your journal that the contribution Dr Williams made to sports medicine around the world is enormous. He has influenced many of my colleagues directly through his teaching and research and we owe him a huge debt.

At a personal level, I attribute my success in sports medicine largely to the teaching of Dr Williams who, in every sense, my mentor. He will be greatly missed.

PETER FRICKER
Professor of Sports Medicine (University of Canberra), Director, Medical Services (Australian Institute of Sport)

Acетабулярные переломы

EDITOR, - I would like to comment on the article on acetabular fractures sustained during competition cycling by Bass and Lovell, published in the September issue.1 I would like to point out that further investigation of the fractures illustrated would be required before declaring them "minimally displaced" and assigning the patient to conservative management. This is particularly true in case 2, where we are presented an x ray which shows an anterior column fracture (iliopectineal line broken) and a posterior wall fracture involving the weightbearing zone. All acetabular fractures warrant iliac and obturator (Judet) oblique views as a minimum, bearing in mind that the acetabulum is dome shaped and no number of views will show all parts of the articular surface tangentially to best reveal displacement. In cases such as this where a significant fracture is detected, CT scanning with multplanar reconstruction is almost certainly justified to rule out articular steps which could lead on to early degenerative change within the joint. I believe this should have been pointed out as a "take home message", though I realise the full details of the cases presented may have been omitted for conciseness.

DAVID LIMB
Academic Department of Orthopaedic Surgery St James's University Hospital, Leeds

The accessory soleus muscle

EDITOR, - We read with interest the paper by Featherstone on the MRI diagnosis of accessory soleus muscle strain which appeared in the December issue.1

The accessory soleus muscle is the most common accessory muscle in the calf, present in 1-6% of the population2 and well recognised in cadaveric dissections, but relatively unknown in sports medicine clinics. Specific injuries to this muscle have not been well documented.

Our experience suggests that athletes with this condition have low grade symptoms of exertional or postexertional pain and stiffness for many years. The discomfort is felt around the Achilles tendon, particularly after running long distances. It is not clear why some athletes become more symptomatic and why, in bilateral cases, one side is affected more than the other.

In our experience MR scans have not shown any abnormality in the accessory muscle and we wonder whether in the case described the scans were postexercise.

We support the conservative treatment approach in the case. We strongly reassure the athlete that this condition is benign and we proceed with six to eight months of conservative treatment (orthoses,physiotherapy, and activity modification). We have reserved formal excision of the accessory muscle for those rare cases presenting as tennis related knee pain and I have found that this procedure may be associated with prolonged morbidity and failure to return to the pre-surgical level of activity within the first post-operative year.

Unfortunately, few studies have reported the long term outcome of the various surgical techniques available.2

STEVE MOTTO
GRAHAM HOLLOWAY
The London Bridge Clinic
1 S Thomas Street London SE1 9RY

Author's reply

EDITOR, - I was interested to read the comments made by Dr Motto and Mr Holloway with regard to my paper on MRI diagnosis of accessory soleus muscle strain.1

I agree that specific injuries to this accessory muscle have not been well documented and I have not seen any other cases in my clinical practice. In the case described the affected individual was a professional footballer and the scans were obtained within 24 hours of a recent game. This player was actively involved in heading the ball and was an established goal scorer. The affected side was his take-off leg when jumping and I assume that this contributed to the exertional pain which he experienced following a game due to the tenuous blood supply from the posterior tibial artery.1

I concur with my colleagues at the London Bridge Clinic that conservative treatment in affected individuals is very worthwhile. I have no experience of the long term outcome of any surgical techniques which have been suggested for treatment in these cases.

T FEATHERSTONE
Memorial Hospital, Darlington, United Kingdom

BOOK REVIEWS

Anyone over a certain age who teaches students will agree that the mathematical ability of today's students is in decline. This is undoubtedly due to the all-pervading electronic calculator: there is no need to know how to get from A plus B to C. At least, there is no need to know why A plus B equals C. At the lowest level, this is frustrating: the inability to manipulate numbers (such as the average of duplicate readings) without an external aid makes laboratory work much slower. More alarming is, it indicates a lack of conceptual awareness that rests on understanding: for example, the inability to convert - and freely - larger quantities to weights in grams when dealing with something like glucose results in a real loss of information. It gets worse too: some students, when asked how much of a 7% glucose solution an athlete should drink in the first hour after exercise to obtain 100 grams of glucose, recently came up with the suggestion of 8 litres - and that with the help of a calculator. Pity the poor athlete.

You might then think that I welcome this book, with its step by step approach to leading the reader through mathematics (no, the title is not a typo: math is American for what we call maths) as it applies to cardiorespiratory and metabolic physiology. There is certainly much useful information here, and most of the formulae necessary for the relevant calculations are included. The aim, however, appears to be to use exercise
I had no idea this book was on its way, so it is as unexpected as it is welcome. We have long needed a laboratory manual for exercise physiology, especially in view of the enormous growth of such laboratories in the sports science courses mushrooming around the country.

How right is MR Hawes of Calgary to start by reminding us that “The notion of densitometry as a criterion method for evaluating body composition . . . requires recognition of limitations of the method . . . over the years they appear to have been seriously neglected”. How excellent, and concise, is G Beunen of Louvain on physical growth, maturation and performance; PH Dangerfield on posture; Borrens and van Roy from Brussels on flexibility; and Winter on maximal intensity exercise (with his scholarly historical reminders). The chapters on energy balance and on VO$_2$ max and running economy from Cooke, and from Boreham on assessing performance in young children (with three pages of normal data) are particularly beautifully written. Nevill has written an eminently workable (being linked with MINITAB) chapter on statistical methods, and I am particularly gratified to see Winter and Nevill joining forces to produce the most lucid account I have yet read on the important and all-pervasive question of scaling, or adjusting for differences in body size.

Although there is an able isokinetic account (of one joint) in Baltzopoulos’ excellent chapter on skeletal muscle function, I really do feel that a whole chapter should have been devoted to a much broader range of isokinetic dynamometry applications, in view of the ever increasing number of units with this expensive equipment. Surely Boreham or Koutedakis or someone from the BOMC could have been given this brief?

A manual is nothing if not full of detail, and while this one contains a number of points that any of us might wish to debate, overall this is a truly first class and hugely useful book. Tom Reilly and Roger Eston, and the publishers, are to be heartily congratulated, on both their foresight and their effort.

CRAIG SHARPE

Systematic Reviews

Edited by Iain Chalmers, UK Cochrane Centre NHS Research and Development Programme, Oxford, and Doug Altman, Head, Medical Statistics Laboratory, Imperial Cancer Research Fund, London

This concise book:

- Explains what a systematic review is and how to prepare and evaluate one
- Shows the advantages of systematic reviews over traditional reviews
- Includes real-life case studies to illustrate the importance of this new science

Contents cover: rationale for systematic reviews; data collection; meta-analysis; checklists for assessing the quality of review articles; updating and correction of reports of reviews; a bibliography of over 250 publications relevant to the science of research synthesis.

Illustrated with tables, graphs, and boxes

118 pages 1995

UK £14.95, Overseas £17.00 (BMA members £13.95, £16.00)

To order phone our credit card hotline on 0171 383 6185/6245 (fax 0171 383 6662) or write to: BMJ Publishing Group, PO Box 295, London WC1H 9TE.