What is the optimal type of physical activity to enhance health?

Roy J Shephard

Summary
This review examines the potential of active daily living as a means of gaining the cardiovascular and health rewards previously sought through vigorous aerobic fitness programmes. Cross-sectional studies of occupational and leisure activity show encouraging associations between such activity and good health; in workers, the gross intensity of effort needed for health benefits has seemed to be 20 kJ/min. There has been less unanimity on the threshold intensity needed in leisure activities, but various recent "position statements" have decreased the recommendation to 50% of an individual's maximal oxygen intake, sustained for one hour three to five times per week. Lifestyle activities such as walking seem likely to reach this intensity in older individuals, but are unlikely to do so in young adults. A growing number of controlled longitudinal studies of walking programmes have demonstrated gains in aerobic fitness, modest reductions in blood pressure, improvements in lipid profile, increased bone density, and enhanced mood state, with less consistent reductions of body fat. However, gains have been greatest in the elderly, sedentary, and obese populations. The main component of active living, fast walking, seems likely to enhance health in such populations, but it is unlikely to be effective in young adults who are in good initial health.

Introduction
A number of governments, including those of the USA and Canada, are currently changing the emphasis of their health promotional programmes from the advocacy of vigorous aerobic exercise to the concept of "active living"—that is, the incorporation of moderate physical activity into everyday living. It is thus important to review the effectiveness of this tactic relative to the structured exercise classes of traditional fitness programmes.

ACTIVITY PATTERN AND HEALTH BENEFITS
It is now well accepted that the habit of regular physical activity reduces an individual's age-adjusted risk of both all-cause and cardiovascular disease specific mortality.2 3 A number of recent reports4-13 and reviews4 5-10 have further suggested that the largest gain in prognosis is realised as a person progresses from the lowest to the next lowest level of physical activity or physical fitness. Occasional dissenting reports still suggest a need for vigorous physical activity.14-17 Nevertheless, many policy makers now argue that the health of sedentary twentieth century adults can be improved through the adoption of quite low levels of leisure activity, possibly of insufficient intensity to augment traditional markers of physical fitness such as the maximal oxygen intake.

If such expectations prove well founded, then there is justification in shifting the emphasis of health promotion programmes from costly "high-tech" structured and supervised classes of aerobic exercise, with their inherent problems of limited recruitment and very high drop out rates,18 19 to the encouragement of an active daily lifestyle, including such pursuits as walking, cycling, and gardening.

ACTIVITY PATTERNS AND PSYCHOSOCIAL ISSUES
The impact of the recommended activity pattern upon recruitment, adherence, and programme costs will not be explored in any detail. Nevertheless, we may note that it is easier for a person who is currently sedentary to adopt and to maintain modest lifestyle activities such as walking than to participate in a structured programme of vigorous aerobic exercise.

Moreover, if a person elects the vigorous pursuit of daily activities, rather than attendance at a specific exercise class, then the costs of special equipment, clothing, and facilities are largely avoided, and the time demands are also much reduced. Many of those who currently fail to exercise regularly claim that a lack of time, a lack of facilities, and cost are major reasons why they remain sedentary.20 In consequence, programmes that emphasise un-supervised activity such as daily walking can sometimes be more effective than supervised structured exercise classes.19 21 Indeed, very simple local interventions such as posters recommending use of the stairs22 23 or a programme that advocates commuting by bicycle or on foot24 sometimes augment daily physical activity by a substantial amount, although attempts to incorporate a less specific vision of "active living" into a broader community-wide health promotion campaign have had only limited success.25

CURRENT ISSUES REGARDING ACTIVITY PATTERNS AND HEALTH
Taking as our criterion of programme effectiveness a reduction in cardiovascular risk factors, rather than an increase in aerobic fitness, the choice between moderate lifestyle activities and a more intensive and formal exercise programme raises several important research issues.
(1) Is adoption of the currently recommended “active daily lifestyle” correlated with indicators of future good health? If so, can issues of selection bias be excluded by appropriate longitudinal experiments?

(2) What is the minimal weekly amount of physical activity needed to yield clinically significant health benefits? Is this minimum “dose” of exercise consistent for various types of physical activity, and for population groups that differ in age, gender, socioeconomic status, and ethnic background?

(3) What weekly quantity of physical activity is likely to be generated through employment in a “heavy” occupation or the encouragement of active living?

(4) How do community gains in health related fitness compare between programmes that have focused upon encouraging an overall active lifestyle and other initiatives that have emphasised participation in formal structured exercise programmes?

Associations between an overall active lifestyle and health indicators

Cross-sectional studies of occupation and leisure have provided many encouraging reports of associations between an active lifestyle and the maintenance of good cardiovascular health. Longitudinal studies generally support the inferences drawn from the cross-sectional data, and in particular a growing number of reports indicate health benefits from the adoption of rapid walking.

OCCUPATIONAL STUDIES

Cross-sectional comparisons between physically demanding and sedentary occupations have almost without exception demonstrated an association between the physical demands of employment and protection against ischaemic heart disease. However, such observations are open to the important objection that the personnel engaged to perform “heavy” work are either recruited by management or self-selected in terms of personal health and interest in an active lifestyle.

Brunner and Manelis claimed that the problem of self-selection was overcome in their study of an Israeli kibbutz, where residents were given little choice in their assigned duties. But even in this special situation, it is difficult to believe that the management committee took no account of physique and physical abilities when deciding what work any given person should undertake.

STUDIES OF ACTIVE LEISURE

Many reports show a positive association between self-reported leisure activity and cardiac health. In general, the stronger the study design, the larger the gradient in risks of all-cause and cardiac death. The well documented impact of self selected exercise upon cardiac risk factors can be illustrated by some recent data from our laboratory. Subjects were questioned about the frequency with which they engaged in demanding activity, the intensity of their active leisure pursuits, their perceived level of fitness, and their perceived level of physical activity relative to their peers. On each of these measures, differences between the least active quartile and tertile and the most active in terms of average skinfold thickness, high density lipoprotein (HDL) cholesterol, serum triglycerides, PWC150, and resting heart rate (table 1) were as large as or larger than would have been expected in response to most structured exercise programmes. However, the problem remains that active leisure was self selected, so that at least a part of the observed gradient in cardiac risk factors could have had a constitutional origin.

RANDOMISED LONGITUDINAL STUDIES

There are fewer problems of initial subject selection in longitudinal studies where subjects are assigned randomly to a control group or a programme of enhanced physical activity.

Nevertheless, the volunteers for such experiments do tend to be young relatively fit non-smokers of high socioeconomic status. Even the findings for this subgroup of the population can be invalidated by a high drop out rate of unfit individuals from the experimental group, and/or a deflection of fit subjects from the control group.

One controlled randomised controlled trial of lifestyle activity found a 4.5% increase in aerobic power, a 10.3% increase in treadmill endurance time, and a 5% increase in HDL cholesterol in those who had been assigned to a ten week active commuting programme of walking or cycling.

REPORTED RESPONSES TO WALKING

The major component of an active lifestyle is usually rapid walking. Many studies have demonstrated that walking programmes have a beneficial influence upon various indicators of good health (table 2).

Table 1: Gradients of established cardiac risk factors with self reported physical activity. Based on the data of Shephard and Bouchard

<table>
<thead>
<tr>
<th>Perceived intensity</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total skinfolds (mm)</td>
<td>114</td>
<td>104</td>
<td>98</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.19</td>
<td>1.14</td>
<td>1.19</td>
</tr>
<tr>
<td>PWC150 (W/kg)</td>
<td>1.69</td>
<td>1.73</td>
<td>1.95</td>
</tr>
<tr>
<td>Resting heart rate (beats/min)</td>
<td>58</td>
<td>59</td>
<td>56</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total skinfolds (mm)</td>
<td>168</td>
<td>148</td>
<td>141</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.35</td>
<td>1.46</td>
<td>1.43</td>
</tr>
<tr>
<td>PWC150 (W/kg)</td>
<td>1.15</td>
<td>1.23</td>
<td>1.36</td>
</tr>
<tr>
<td>Resting heart rate (beats/min)</td>
<td>67</td>
<td>62</td>
<td>63</td>
</tr>
</tbody>
</table>

HDL = high density lipoprotein.
Table 2 Influence of walking programmes upon various measures of health status

<table>
<thead>
<tr>
<th>Health indicator</th>
<th>Sample</th>
<th>Programme</th>
<th>Design</th>
<th>Health improved</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure</td>
<td>107M aged 40-60</td>
<td>14 wk, 70-75% HRmax</td>
<td>Le</td>
<td>Yes</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>65M, 297F aged 47</td>
<td>21wk, 10000 steps/day</td>
<td>L</td>
<td>Yes</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>24M aged 40-56</td>
<td>20wk, 63-76% HRmax</td>
<td>L</td>
<td>Yes</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>42F aged 61-81</td>
<td>8wk, 70-80% HRmax</td>
<td>L</td>
<td>Yes</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>46F aged 20-40</td>
<td>24wk, 56, 67 or 86% max</td>
<td>L</td>
<td>Not at low intensity</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>56F aged 61.3</td>
<td>24wk, 60% V̇O₂ peak</td>
<td>Lr</td>
<td>Yes</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>33M&F aged 64</td>
<td>37wk, 60% V̇O₂ max</td>
<td>L</td>
<td>Yes</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>34M&F aged 61</td>
<td>58wk, 47, 57% HRRcs</td>
<td>Lc</td>
<td>Yes</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>M&F aged 60-69</td>
<td>4wk, 50% V̇O₂ max</td>
<td>L</td>
<td>Yes</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>25M, 31F aged 60</td>
<td>52wk, 75-85% V̇O₂ max</td>
<td>Lc</td>
<td>Yes</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>107M aged 40-60</td>
<td>26wk, 2wk 16-45 min</td>
<td>Lc</td>
<td>No</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>65M, 297F aged 47</td>
<td>21wk 10000 steps/day</td>
<td>L</td>
<td>Yes</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>24M aged 40-56</td>
<td>20wk, 63-76% HRmax</td>
<td>L</td>
<td>Yes</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>42F aged 61-81</td>
<td>8wk, 70-80% HRmax</td>
<td>L</td>
<td>Yes</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>46F aged 20-40</td>
<td>24wk, 56, 67 or 86% max</td>
<td>L</td>
<td>Not at low intensity</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>28F aged 44.9</td>
<td>52wk, 60% HRmax</td>
<td>L</td>
<td>Yes</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>10M aged 19-31</td>
<td>16wk, 5.1 km/h</td>
<td>L</td>
<td>Yes</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Yes 35M aged 47.0</td>
<td>Postal carriers</td>
<td>C</td>
<td>Yes</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>3621 adults (62% F)</td>
<td></td>
<td>C</td>
<td>Yes (high, moderate but not low duration)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>107M aged 30-55</td>
<td>52wk, 70-85% V̇O₂ max</td>
<td>Lc</td>
<td>Yes</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>11F</td>
<td>11wk, 71% HRmax</td>
<td>L</td>
<td>No</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>255F</td>
<td>52wk, 6.4-7.2 km/h</td>
<td>L</td>
<td>No</td>
<td>53</td>
</tr>
<tr>
<td>Body fat/body mass</td>
<td>65M, 297F aged 47</td>
<td>21wk 10000 steps/day</td>
<td>L</td>
<td>Yes</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>26M aged 40-56</td>
<td>20wk, 63-76% HRmax</td>
<td>L</td>
<td>Yes</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>80F aged 60-70</td>
<td>26wk, 2wk 16-45 min</td>
<td>L</td>
<td>No</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>6M aged 19-31</td>
<td>16wk, 5.1 km/h</td>
<td>L</td>
<td>Yes</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>81M aged 30-55</td>
<td>52wk, 70-85% V̇O₂ max</td>
<td>Lc</td>
<td>Yes</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>11F aged 40-40</td>
<td>52wk, 6.5 km/h</td>
<td>Lc</td>
<td>No</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1M, 1F aged 16</td>
<td>13wk, 80% HRmax</td>
<td>L</td>
<td>Yes</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>4FM aged 25-45</td>
<td>15wk, 5wk 45 min</td>
<td>Lc</td>
<td>Yes</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>30M aged 52-88</td>
<td>6 wk, mixed programme</td>
<td>L</td>
<td>Yes</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>7M aged 52-88</td>
<td>42wk, mixed programme</td>
<td>L</td>
<td>No</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>23F aged 57-79</td>
<td>12wk, mixed programme</td>
<td>L</td>
<td>No</td>
<td>55</td>
</tr>
<tr>
<td>Aerobic power</td>
<td>107M aged 40-60</td>
<td>14wk, 4wk</td>
<td>Lc</td>
<td>Yes</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>65M, 297F aged 47</td>
<td>21wk, 10000 steps/day</td>
<td>L</td>
<td>Yes</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>40F aged 20-40</td>
<td>24wk, 56, 67 or 86% max</td>
<td>L</td>
<td>Yes</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>24F, 8M aged 68</td>
<td>9wk, 57, 70% V̇O₂ max</td>
<td>L</td>
<td>Yes</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>25F aged 25-45</td>
<td>15wk, brisk walk</td>
<td>L</td>
<td>No</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>32M aged 52-88</td>
<td>6wk, mixed programme</td>
<td>L</td>
<td>Yes</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>7M aged 52-88</td>
<td>42 wk, mixed programme</td>
<td>L</td>
<td>Yes</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>23F aged 52-79</td>
<td>13 wk, mixed programme</td>
<td>L</td>
<td>Yes</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>64M aged 40-60</td>
<td>12wk, 42-60 or 63-81%</td>
<td>Lc</td>
<td>Yes</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>44F aged 44.9</td>
<td>52wk, 6.5 km/h</td>
<td>Lc</td>
<td>Yes @2mmol/lactate</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>14M, 12F aged 40</td>
<td>12wk, 60% V̇O₂ max</td>
<td>Lr</td>
<td>Yes</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>35-53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44M aged 22</td>
<td>2wk, 10-30 km/day</td>
<td>L</td>
<td>Yes (submax)</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>14F, 1M aged 16</td>
<td>3wk, 11 weeks</td>
<td>L</td>
<td>Yes</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>24F aged 67-89</td>
<td>10wk, 40, 80% HRRcs</td>
<td>L</td>
<td>Yes</td>
<td>67</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>7F</td>
<td>8yr</td>
<td>Lc</td>
<td>No (waist)</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>17F aged 49-64</td>
<td>62% V̇O₂ max 3 wk</td>
<td>Lc</td>
<td>No (waist)</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>220F aged 50-60</td>
<td>11 km/wk 3 yr</td>
<td>L</td>
<td>Yes with Ca¹</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>36F aged 60.2</td>
<td>52wk, weighted belt</td>
<td>Lc</td>
<td>Yes with Ca¹</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>280F, 120M</td>
<td>Case-control (femoral fractures)</td>
<td>L</td>
<td>Yes</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>23F post menopause</td>
<td>12km/wk x 1.6 km/wk</td>
<td>C</td>
<td>Yes</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>2F aged 30-60</td>
<td>52wk, 2.5b/wk</td>
<td>Lc</td>
<td>Yes</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>33F aged 45-67</td>
<td>30wk, walking</td>
<td>L</td>
<td>Yes (> anaerobic threshold)</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>162F Aerobics + walking</td>
<td></td>
<td>L</td>
<td>Yes with Ca¹</td>
<td>76</td>
</tr>
<tr>
<td>Mental health</td>
<td>619 aged 70</td>
<td>Daily 30 min walk</td>
<td>C</td>
<td>Yes</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>35F aged 25-45</td>
<td>15wk, brisk walking</td>
<td>L</td>
<td>Yes</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>4F, 17M aged 37</td>
<td>Single walk</td>
<td>C</td>
<td>Yes</td>
<td>79</td>
</tr>
</tbody>
</table>

C = cross-sectional study; L = longitudinal study; Le = longitudinal controlled study; Lr = randomised longitudinal controlled study; M = male; F = female; wk = weeks; HR = heart rate; max = maximum; res = resting; HDL = high density lipoprotein.

Those likely to benefit from such an approach have tended to be sedentary, obese⁵⁷,⁸⁵ and elderly.⁶⁸ In such individuals, even a period of deliberate walking in a shopping mall may demand 70-80% of maximal oxygen intake. Porcari et al⁷⁶ noted that 91% of women and 83% of men over the age of 50 years reached a training heart rate while carrying out unpaced walking “as fast as possible”.

Walking does not usually increase muscle strength.⁷³ Nevertheless, it seems to yield important functional gains in the frail elderly. Specifically, an association has been noted between a regular daily 30 minute walk and the ability to climb stairs.⁷⁵

Amount of activity required for cardiovascular health

If an exercise programme is very intense, then quite short sessions may be sufficient to enhance cardiovascular health. However, with more moderate lifestyle programmes, a substantial total volume of physical activity is required for benefit. Recent position state-
ments have been developed from both occupational and leisure studies.

OCCUPATIONAL STUDIES

An early review of occupational data suggested that a daily work site energy expenditure of 1.7–3.8 MJ (400–900 kcal) was needed to enhance health related fitness and reduce cardiovascular or overall mortality. If such an energy expenditure had been distributed uniformly over an entire working day, it would have boosted energy expenditure by an average of only 4–8 kJ/min (1–2 kcal/min).

In some jobs, health benefits have reflected periods of relatively high intensity effort, interspersed with relaxation breaks or rest pauses. But in other occupations such as postal carriers, the benefit appears to be due to several hours per day of moderate and relatively uniform activity at gross intensities of 20 kJ/min (5 kcal/min) or less.

STUDIES OF ACTIVE LEISURE

The minimum intensity of effort required in order to improve cardiovascular health is likely to be greater in leisure pursuits than when at work, because the duration of most active leisure pursuits is shorter than a normal eight hour workday.

Traditionally, physiologists who were interested in developing cardiovascular fitness called for intensities of exercise near to the ventilatory threshold, a level of physical activity that is likely to boost the aerobic power of the average sedentary person by as much as 20%. On the other hand, several recent papers have suggested that much of the desired increase in health related fitness can be attained by exercising at much lower intensities of effort, possibly insufficient to induce any increase in aerobic power. Moreover, with the important exception of a study of British civil servants, the largest gain in cardiovascular prognosis was seen on moving from individuals in the lowest to those in the next higher category of physical activity or aerobic fitness.

Additional health benefits associated with progression to much higher levels of physical activity or fitness have been disappointingly small. The activity related benefit was greater in two investigations where differences in habitual physical activity were inferred from measurements of aerobic fitness than in other studies where activity patterns were estimated from questionnaire responses. Indeed, self reports of walking were not associated with any protection against hypertension. Two recent studies compared cardiac risk factors with reported physical activity and physical fitness in the same subjects; in confirmation of the inferences from interstudy comparisons, the relationship to cardiac risk factors was closer for fitness than for physical activity.

This does not necessarily mean that one must increase aerobic fitness in order to enhance health. It could also be that patterns of physical activity are indicated more precisely by the measurement of aerobic fitness than by activity questionnaires.

RECENT POSITION STATEMENTS

Recent quasi-experimental data on the health benefits of moderate activity led the American College of Sports Medicine (ACSM) to modify an earlier “position stand”, reducing the recommended minimum intensity of the aerobic component of an exercise prescription to 50% of aerobic power, practiced for one hour three to five times per week. The revised recommendation is now supported by the American Heart Association and by the US Surgeon General. In an average 75 kg middle aged man with an aerobic power of 35 ml/kg per min, the revised standard implies that health needs will on average be satisfied by an energy expenditure of about 5 METS, 27 kJ/min or 6.5 kcal/min where 1 MET is an oxygen consumption of about 3.5 ml/kg per min at resting metabolic rate.

Because the peak aerobic power declines progressively with age, the intensity corresponding to 50% of aerobic power drops to around 3 METS, 19 kJ/min, or 4.5 kcal/min in an elderly or an unfit individual. One corollary of this age differential is that elderly, sedentary, obese, and disabled individuals are the groups most likely to benefit from low intensity exercise programmes.

Although most studies have focused upon the minimum intensity and duration of effort required for cardiovascular health, active living has the potential to enhance many other aspects of health (table 2). The key to obtaining some of these benefits, such as the control of body fat content, may be the absolute energy expenditure per week rather than the intensity of effort that is chosen.

Activity generated by an active lifestyle

Even the currently advocated minimum intensity of activity for health (5 METS in middle aged adults) seems fairly demanding relative to the energy cost of commonly reported voluntary leisure pursuits such as walking and cycling.

WALKING

The most commonly reported self-imposed leisure activity is walking. There is a general relationship between the self selected walking pace and aerobic power (r = 0.64). In part because of a waning aerobic power, many older people progressively decrease their walking speed. By the eighth decade, the typical woman regards 3.2 km/h (2 mph) as a comfortable walking speed. But making the assumption that the average adult adopts a walking pace of 4.8 km/h, then the gross energy cost is likely to be around 19 kJ/min (12 ml of oxygen consumption/kg per min) in a man of 75 kg. This intensity of effort plainly meets the new ACSM standard in the case of elderly subjects, but is inadequate for young or middle aged individuals.

Morris and Hardman have maintained that a prescription of “brisk” walking is appropriate to maintain physical fitness. In their experience, such a recommendation generally yields a pace that is some 60% of aerobic power; if asked to walk a mile (1.6 km) as fast
as possible, two thirds of adult men and 90% of women attain a heart rate in the optimal training zone (70% of maximal or greater). People are unlikely to walk as fast as possible in the course of their ordinary leisure, but they might do so if the activity was a part of their normal journey to and from work.

In order to develop the targeted gross expenditure of 5 METS (a net energy expenditure of 4 METS, or 14 ml/kg per min), a young or middle aged person would need to attain an unrealistically high walking pace of 140 m/min, 8.4 km/h, or 5.2 mph. Other options for reaching the 5 MET standard include jogging, or walking on soft or uneven terrain. Walking up a 5% gradient increases energy expenditure by 50% and descent of a hill demands almost as much energy as walking on the level; energy costs may also increase 2–3 fold when walking in snow.14

CYCLING AND OTHER LEISURE ACTIVITIES
Cycling is another commonly reported lifestyle activity.20 If the cyclist adopts a speed of 16 km/h (10 mph), the net energy cost is typically 29 kJ/min, an adequate intensity for maintenance of good health. Other activities of appropriate intensity include skiing at 4.0 km/h, swimming at 25 m/min, walking upstairs, the heaviest forms of gardening, sawing hardwood, and chopping wood.9 However, the majority of recreational activities and domestic chores fall below even the revised ACSM requirements.

PHYSIOLOGICAL RESPONSES
Table 2 summarises physiological responses to walking.

Duncan et al.9 compared strolling at 4.8 km/h, brisk walking at 6.4 km/h and aerobic walking at 8 km/h. The subjects, women aged 20–40 years, were followed for 24 weeks. Gains of aerobic power increased with walking speed, but the threshold for benefit was the relatively rapid pace of 5.6 km/h (4 mph). In contrast, decreases in body fat and total cholesterol were as large with moderate as with brisk exercise.

Hopkins et al.9a studied randomly selected adult New Zealanders. They noted that "hard" physical activity (as assessed by either their own CORE questionnaire or the Stanford questionnaire) was correlated relatively strongly with aerobic power (r = 0.40), a decrease in skinfold (r = 0.22), vital capacity (r = 0.19), and protection against exercise induced myocardial ischaemia (r = 0.14). However, improvements in lipid profile were seen only when subjects walked a minimum of 13 km/week11; no protection was found in subjects reporting only "low" intensities of physical activity.

DiPietro et al.9b examined adults aged 60–86 years. In their study, vigorous leisure activity was correlated with aerobic power; in contrast, leisure walking and the total leisure activity showed a modest correlation with body fat, but not with aerobic power.

COMMUTING AS A MOTIVATING FORCE
Can the time pressures of commuting generate the sense of urgency that is needed to reach an appropriate intensity of physical activity when a person is walking or cycling?

Sallis et al.9c noted that such activities as getting off the bus early or parking some distance away from one’s destination were associated with favourable cardiac risk factor profiles among 5930 participants in the Stanford five city trial. But too often, potential commuter cyclists are deterred by the unpleasantness of cycling in traffic and the difficulty in finding a secure place to park bicycles.10 Vuori et al.21 asked a small group of Tampere citizens who normally drove to work to adopt either walking or cycling as their method of commuting for a ten week period. Almost all of those who were contacted accepted the proposal for a ten week trial. Commuting boosted physical activity by 30 minutes or more in each direction every day. The pace chosen by the cyclists corresponded to an oxygen consumption of 23–24 ml/kg per min, in the range 65–70% of aerobic power for a sedentary middle aged adult. The walking speed of 5.7 km/h was also relatively brisk, but probably commanded an oxygen consumption of no more than 13 ml/kg per min, only about 37% of aerobic power. The average heart rates during the journey were 131 and 121 beats/min, corresponding to 65 and 55% of aerobic power. Presumably, the heart rates of the walkers were augmented by a combination of heat, hills, and the carrying of a briefcase.

The chosen speed of habitual walkers may be somewhat higher than that of the sedentary volunteers who were recruited by Vuori et al.10a Spelman et al.10b found an average walking speed of 6.4 km/h, corresponding to 52% of aerobic power (5.2 METS) in 22 women and seven men aged 35 (9) years (mean (SD)); the total increase in weekly energy expenditure due to walking was 4.7 (2.0) MJ.

Empirical response to structured and unstructured programmes

WEIGHT LOSS
The Behavioral Risk Factor Surveillance System survey of 1989 provides data showing the impact of various types of physical activity upon subjects who were attempting to decrease their body mass.10c Unfortunately, data on participation in aerobics programmes were included only for women. The loss of weight from unstructured running was as great, and that from unstructured cycling was almost as great, as that for formal aerobics programmes. In contrast, unstructured walking and gardening only seemed to induce weight loss in the older (and presumably the less fit) members of the group.

WORK SITE EXERCISE PROGRAMMES
Work site exercise programmes provide much information on the response to structured physical activity, although the interpretation of results is complicated because most programmes have included a variety of health promotional options in addition to exercise.10d Moreover, the random allocation of subjects to
experimental and control groups is rarely possible in the workplace, and many work site
studies have been unstructured. Finally, results are usually available only for a small residue of
high adherents to the programme, so that any benefits tend to be exaggerated.105
Perhaps the best work site study was that conducted at the Johnson & Johnson Corporation.106
This averaged the response of all employees at the test locations. Over a two
year period, a well financed and well organised programme of aerobic exercise yielded a 2% decrease in body fat, a 6% increase in aerobic power, a 7% decrease in serum cholesterol, a 4 mm Hg decrease in systolic blood pressure, and a 1 mm Hg decrease in diastolic blood pressure. Such ben-
fits are smaller than those seen among individuals who themselves select an active lifestyle, but at least in terms of aerobic power are greater than what has been achieved by asking volunteers to walk or cycle to work for three months.

SUPERVISED ACTIVITY IN THE HOME
King et al107 made a direct comparison of the efficacy of a structured versus a supervised home based programme in women and men aged 50–65 years. Probably in part because of the shorter time demands of home based activi-
ties, programme adherence over a one year period was much better than for structured exercise. Perhaps for this same reason the female subjects achieved larger gains of aerobic power with the home based than with the structured programme. However, changes in body mass and blood lipids were not significant for either type of exercise.

ISSUES OF AGE, GENDER, AND ETHNICITY
How are conclusions regarding an appropriate dose of physical activity modified by issues of age, gender, and ethnic group? The primary influence of such factors upon the health response to physical activity comes from any peculiarities in the initial fitness of the target group. To the extent that the elderly, women, and minority groups enter trials with a low level of fitness, such individuals should gain more than average benefit from a programme of moderate physical activity, whether this be structured or unstructured. Thus rapid walk-
ing is much more likely to benefit an elderly immigrant woman than a young white man.

Against the potential advantage of a low initial level of fitness, there are obvious problems in recruitment and compliance for the groups identified. Moreover, the manner of participa-
tion in either structured or unstructured activities shows age, gender, and ethnic related differences. For example, a young person on average walks or cycles at a higher speed than an older adult. Data from the Behavioral Risk Factor Survey suggest that unstructured activi-
ties are on the increase in women and in the elderly, but are decreasing in poorly educated and minority groups.108 109

SAFETY CONSIDERATIONS
Children sustain a substantial proportion of their physical injuries during unstructured exercise.110 However, in adults, one of the attractions of walking and similar activities is that the injury rate is extremely low relative to most other activities. Thus Pollock et al111 noted that a deliberate 13-week exercise programme gave rise to only one injury in 57 healthy men and women aged 70–80 years.

Conclusions
Current data suggest that structured exercise programmes may have a somewhat greater effect upon health than unstructured leisure activity, particularly in young adults. However, it is easier to encourage unstructured activity, and thus there remains a need for a well designed and sustained prospective trial that compares the impact of the two approaches to physical activity in closely matched groups of subjects. Further information is needed on how far the relative efficacy of structured and unstructured programmes differs between chil-
dren, young men, women, and older adults. However, present evidence suggests that mod-
erate lifestyle activity will enhance health in elderly, sedentary, and obese groups, but not in young adults who are in good initial health.

These studies are supported by a research grant from Canadian Tire Acceptance Limited.

1 Bouchard C, Shephard RJ, Stephens T, Sutton J, McPher-
ton B. Exercise, fitness and health. Champaign, IL: Human
2 Bouchard C, Shephard RJ, Stephens T. Physical activity, fit-
ess and health. Champaign, IL: Human Kinetics Publish-
3 Blair SN, Kohl HW, Paffenbarger RS et al. Physical fitness
and all-cause mortality: a prospective study of healthy men
4 Blair SN, Kohl HW, Barlow CE et al. Changes in physical
fitness and all-cause mortality: a prospective study of healthy
5 Ekholm LG, Haskell WL, Johnson JL et al. Physical fitness
as a predictor of cardiovascular mortality in asymptomatic
North American men: the Lipid Research Clinics Mortality
6 Leon AS, Connolly J, Jacobs DR et al. Leisure-time physical
activity levels and risk of coronary heart disease and death:
the Multiple Risk Factor Intervention Trial. JAMA 1987;258:2388–95.
7 Lie H, Mundal R, Eriksen J. Coronary risk factors and
incidence of coronary death in relation to physical fitness:
seven-year follow-up of study of middle-aged and elderly
8 Sandvik L, Eriksen J, Thauoe LE et al. Physical fitness as
a predictor of mortality among healthy, middle-aged Norwe-
9 Shaper AG, Wannamethee G. Physical activity and ischae-
66:584–94.
10 American College of Sports Medicine. The recommended
quantity and quality of exercise for developing and main-
11 American College of Sports Medicine. Guidelines for graded
exercise testing and exercise prescription. 5th ed. Philadelphia:
12 US Surgeon General. Physical activity and health. Atlanta,
GA: US Department of Health and Human Services, Centers
for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promo-
tion, 1996.
13 Haaparinen N, Millunpalto S, Vuori I et al. Characteristics of
leisure time physical activity associated with decreased risk of
premature all-cause and cardiovascular disease mortality in
14 Morris JN, Clayton DG, Evertt MG et al. Exercise in leisure
time: coronary attack and death rates. Br Heart J 1990;63:
325–34.
15 Lee I-M, Hsieh CC, Paffenbarger RS. Exercise intensity and
longevity in men: the Harvard Alumni Health Study. JAMA
16 Lakkos TA, Venaalainen JM, Rauramaa R et al. Relation of
leisure-time physical activity and cardiorespiratory fitness to
the risk of acute myocardial infarction in men. N Engl J