Case reports

Chronic compartment syndrome affecting the lower limb: MIBI perfusion imaging as an alternative to pressure monitoring: two case reports

Simon Owens, Philip Edwards, Ken Miles, Jumbo Jenner, Mike Allen

Abstract

Intracompartamental pressure monitoring remains the primary method of diagnosing chronic compartment syndrome. MIBI perfusion imaging is widely available and offers a radionuclear imaging technique for diagnosing this condition. Although the results are not identical with those from pressure monitoring, MIBI may offer a useful screening test for this condition.

Keywords: chronic compartment syndrome; MIBI perfusion imaging; compartmental pressure monitoring

Chronic compartment syndrome should always be considered in the differential diagnosis of exercise induced lower limb pain, which also includes medial tibial stress syndrome (peritostis) and stress fracture. Mavor1 was the first to describe the condition as anterior tibial syndrome, and since then the condition has become more frequently diagnosed with the increase in popularity of jogging and other endurance sports.

A unified concept to explain the condition was first proposed by Matsen in 1975, postulating that chronic compartment syndrome occurs when the exercise induced pressure within a fixed fascial compartment is raised sufficiently to produce ischaemia.2 However, the pathophysiology of the condition continues to be poorly understood. The causes are probably many and other proposals for components that contribute to the condition have included oedema, accumulation of muscle metabolites, muscle hypertrophy, and thickened inelastic fascial compartments.3

Compartment syndromes remain difficult to diagnose. An accurate medical history is important as clinical examination often produces no conclusive results. The initial investigation may include a plain radiograph and bone scan to detect stress fractures. However, the ideal diagnostic test remains compartmental pressure monitoring.4

The diagnosis of chronic compartment syndromes is still reliant on accurate compartmental pressure measurement. There is still some debate about the most appropriate criteria for diagnosis. There can be practical difficulties in obtaining reproducible pressure readings, although in experienced hands accurate readings can be taken without too much difficulty. However, it requires insertion of a pressure monitoring catheter into the muscle compartment, which may be uncomfortable for the patient and has the potential for local complications.

We describe two cases that suggest that MIBI perfusion imaging may offer a simple, well tolerated, and readily available technique for diagnosing compartment syndrome.

MIBI perfusion imaging

MIBI perfusion imaging is a technique that assesses the uptake of an intravenously injected radiopharmaceutical, technetium-99m methoxyisobutyl isonitrile (MIBI), by peripheral muscles. The uptake of the radiopharmaceutical is largely determined by muscle perfusion but hypoxia also inhibits uptake of MIBI, enhancing its potential for detecting muscle ischaemia. The technique is already widely used for assessing myocardial perfusion and has also been shown to be of value in studying peripheral vascular disease and in diagnosis of popliteal artery entrapment.5,6

The imaging protocol is analogous to that used in myocardial perfusion imaging, but is directed at calf muscle perfusion in these two cases. The patients underwent graded treadmill exercise of sufficient intensity to reproduce the presenting symptoms. At peak exercise, 300 MBq of 99mTc-labelled MIBI was injected intravenously. Subsequent cross sectional imaging provided by emission tomography (SPECT) was used to detect regional abnormalities in muscle perfusion in the lower leg. Tomography was performed immediately after exercise and slices were reconstructed from ankle to knee at about 6 mm intervals—that is, 1 pixel thick. Images were packed into groups of three for final hard core copy. Where appropriate, coronal and sagittal slices were produced, but these were found to be less useful for comparative purposes. The images were displayed using a ten step colour scale which ranged from the blue end of the spectrum (low...
perfusion) through to the red end (high perfusion). The images were interpreted subjectively by an experienced consultant in nuclear medicine, although it is hoped that in future computer software will allow quantitative diagnostic criteria to be developed. The imaging criterion for a positive result was a visually detectable decrease in MIBI uptake in one or more compartments in the exercise study when compared with that taken at rest. Resting data were also obtained on a second occasion to act as a control for the exercise test, and to exclude the presence of any ischaemia at rest that may be due to vascular pathology. The half life of the isotope is relatively short (about six hours), which makes it difficult to conduct both resting and exercise tests on the same day. However, it has been shown during myocardial and calf muscle perfusion studies that the decay in muscle isotope occurs relatively slowly allowing adequate time immediately after the exercise for accurate readings to be taken.

Case reports

Case 1

A 39 year old office worker presented to the sports clinic with bilateral anterior lower limb pain. Over several years, he had noticed some intermittent tightening anteriorly in both lower legs on walking fast. He had then taken up jogging and, while running up to half a mile, developed bilateral pain consistently over the anterior lower legs, particularly on the left side, which required him to stop; his symptoms were gradually relieved over ten minutes.

On examination he was found to have some stiffness of the lower lumbar spine on extension, bulky calf and anterior tibial muscles without any focal muscle or bony tenderness, and normal peripheral pulses with no neurological signs.

Case 2

A 24 year old sales officer presented with a one year history of cramp-like pains in both calves, which had gradually been worsening with running and would ease with rest over about ten minutes; the pains were worse in the right leg.

Physical examination gave normal results apart from some bulkiness of the calf and anterior compartments.

Treatment

Both patients underwent MIBI perfusion imaging followed by pressure studies. Both required fasciotomy and had a satisfactory outcome (table 1 and fig 1).

Discussion

We are unaware of any previous reports that have compared MIBI perfusion imaging with pressure monitoring in compartment syndrome. The patients in the two cases presented here had classical histories of compartment syndrome. Both the MIBI imaging and pressure studies confirmed the clinical diagnosis, but in the first case the MIBI imaging only confirmed the diagnosis in the left anterior compartment whereas the pressure monitoring showed abnormalities in both anterior compartments, with the right being worse than the left, although the symptoms were worse on the left. In the second case, MIBI imaging again confirmed the clinical diagnosis but the mean compartmental pressures were greatest in the symptomatic calf, and the results also suggested that more compartments were involved. Both patients underwent surgical decompression with fasciotomy with a successful outcome in that they were asymptomatic 12 months after the operation.

Table 1 Comparison of results obtained by MIBI imaging and compartmental pressure monitoring

<table>
<thead>
<tr>
<th>Case</th>
<th>Symptoms</th>
<th>MIBI imaging</th>
<th>Mean compartmental pressures during exercise (mm Hg)</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pain in bilateral anterior compartment; left > right</td>
<td>Left anterior compartment syndrome</td>
<td>RA 109 LA 57 RDP 23 LDP 28</td>
<td>Fasciotomy</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Pain in bilateral posterior compartment; right > left</td>
<td>Bilateral posterior compartment syndrome; left > right</td>
<td>RA 87 LA 113 RDP 140 LDP 102</td>
<td>Fasciotomy</td>
<td>Good</td>
</tr>
</tbody>
</table>

RA, right anterior; LA, left anterior; RDP, right deep posterior; LDP, left deep posterior.

Normal range < 40 mm Hg for the deep posterior compartment and < 50 mm Hg for the anterior compartment.1

Figure 1 Emission tomograms at mid calf level showing regional distribution of technetium-99m methoxyisobutylisonitrile (MIBI) immediately after exercise and at rest in case 1. The scan shows reduced uptake in the left anterior compartment after exercise compared with the scan taken at rest, indicating hypoperfusion.
as a technique for diagnosing this condition, and concluded that it was not useful. However, the development of SPECT has allowed more sensitive imaging of muscle perfusion.

MIBI perfusion imaging involves the patient being tested on two separate occasions, usually consecutive days, with the total dose of radiation being equivalent to three years of background radiation. Some experience is required to interpret the scans accurately. However, MIBI imaging is widely available in most district hospitals, whereas dynamic pressure monitoring can only be carried out in a few specialist centres. These preliminary studies suggest that the information acquired by the two techniques may not be identical but that MIBI imaging may be a useful screening test for this condition when compartmental pressure monitoring is not readily available.

A prospective trial comparing MIBI imaging with pressure monitoring and outcome would help to clarify the value of MIBI imaging as a screening tool for compartment syndrome and would determine the specificity and sensitivity of the two techniques.

Commentary

This is an interesting new technique that eventually may shed some much needed light on the underlying causes of chronic compartment syndrome. However, there is still a way to go before it can be used routinely. As the authors suggest, there is a need for a prospective trial comparing MIBI imaging with pressure monitoring and outcome; “normal” studies would also be required. It is certainly true that the technology and expertise for this investigation are currently much more widespread than that used for direct compartment pressure measurements. However, I remain doubtful as to whether this technique could ever develop into a routine screening tool. It is a significantly different type of investigation producing images rather than numbers. I would be very interested to hear any views on the ethical balance between the radiation dosages required for this technique and the alternative methods of investigation.

M R BARNES
Leicester General Hospital
Painful incarcerated hernia following a rugby union lineout

R H Thomas, G O Thomas

Abstract
Discussion related to hernias in sport usually involves the diagnosis and treatment of chronic musculotendinous groin disruption. A case of acute trauma in an incarcerated inguinal hernia, occurring in a rugby union player during a lineout, is presented. The injury arose as a result of a change in the laws of the game.

Keywords: rugby union; hernia

The literature on groin hernias in sportsmen is primarily concerned with chronic groin pain, its diagnosis and treatment. Diagnosis in such cases is often difficult, with a paucity of clinical signs. The pathophysiology and treatment of groin disruption, the so-called Gilmore’s groin or sportsman’s hernia, is the subject of some debate.

Acute complications of inguinal hernias in patients participating in sport are rare, although the presence of an inguinal hernia is a common finding in the general population. Hernias in younger men are probably a result of a congenital predisposition that may be exacerbated by work or sport due to episodes of increased intra-abdominal pressure.

We report a case of an acutely painful incarcerated inguinal hernia secondary to direct injury during a contact sport.

Case report
A 35 year old professional rugby union player was playing at second row in a Welsh Premier Division match. During a lineout the player jumped into the air in order to catch the ball and was supported in that position by team mates holding his shorts (fig 1). During the lineout play the player subsequently fell to the ground. He managed to regain his feet but felt an acute pain in the groin and asked to leave the field. He was able to walk off the pitch without assistance.

Medical examination by the authors immediately after the injury disclosed tenderness around the inguinal ligament, particularly over the superficial inguinal ring and a tender swelling extending into the scrotum. No cough impulse was present and there was no abdominal tenderness. Both testes were palpable but non-tender. At subsequent medical review twenty minutes later the pain had not improved and the player was admitted to hospital.

An ultrasound scan was performed which showed gross scrotal oedema and haemorrhage and an inguinal hernia containing a loop of small bowel. Full blood count showed a white cell count of 15.5 g/dl with neutrophilia.

Surgical exploration was performed within six hours of admission. At operation a large incarcerated indirect inguinal hernia containing omentum and a loop of small bowel was found. Significant haematoma of the spermatic cord was present. No evidence of bowel strangulation or obstruction was noted. Both testes were found to be normal. The hernial contents were released and reduced and a mesh repair was performed.

The patient made an uneventful recovery and was discharged 48 hours after the operation. He returned to league rugby five weeks later with no significant complications.

Discussion
Injury during rugby union is well recognised because of its high level of contact especially during tackling. Scrummage and lineout are essentially set piece plays to restart the game but again involve contact with both opponents and team mates.

The lineout has recently been the subject of experimental variations in the rugby union laws. Law 23B(15) states “When a line-out is taking place, any player in the line-out must NOT: (a) lift a player of his team; or (b) support any player of his team before this...”
player has jumped for the ball; or (i) hold a supported player below the waist”. Interpretation of this law by referees has permitted the supporting of lineout jumpers using their shorts (Welsh Rugby Union Director of Refereeing, personal communication), and such practice is actively encouraged internationally by coaches.

Apart from direct trauma to the groin area, the player is also placed in a more unstable position in mid air by being supported caudally.

Further reports of injury during this manoeuvre may necessitate a review of this interpretation of the law.

The cause of the painful hernia in this case may be multifactorial. It is postulated that the exertion of jumping may have increased the size of the hernia as intra-abdominal pressure rose. Direct trauma to the hernial contents during lifting occurred as the shorts were pulled into the groin and subsequent pressure from the localised haematoma is likely to have contributed.

The risk of complications in an inguinal hernia is well recognised. Surgical repair of a groin hernia as an elective procedure carries almost zero mortality and little morbidity. In a professional sportsman little time is lost from activity after the operation.

It is our opinion that patients with inguinal hernias who participate in sport that exposes them to direct trauma or that raises intra-abdominal pressure should undergo herniorrhaphy to avoid potential serious complications.

Bungee jumping: is it safe?

In bungee jumping participants leap off a raised launch site, most commonly a tower, crane, or hot air balloon, and fall freely until arrested by a bungee cord made up of multiple strands of tightly bound rubber. Over the past decade the activity has become increasingly popular. The popular press has reported several deaths and serious injuries related to bungee jumping. In 1994 we surveyed jumpers at a professionally run bungee jumping site, in which the participants jumped off a fixed 130 foot structure. We found that almost half (42%) of the jumpers had a medical complaint after jumping. These complaints included six headaches, seven episodes of blurred vision, 21 episodes of dizziness, one episode of transient numbness of the leg, and 21 muscular pain complaints (two neck, three back, one chest, 12 ankle, and three abdominal). However, except for a person who changed his mind mid-launch and suffered multiple lacerations to the arms and legs as he tried to grab the platform, these complaints were minor and had resolved within one week of jumping. Thus we conclude that a single bungee jump under professional supervision is relatively safe.

CRAIG YOUNG
Associate Professor, Medical College of Wisconsin