Landing in netball: effects of taping and bracing the ankle

Diana M Hopper, Peter McNair, Bruce C Elliott

Abstract

Objectives—To investigate the effect of bracing and taping on selected electromyographic, kinematic, and kinetic variables when landing from a jump.

Methods—Fifteen netball players performed a jump, so as to land on their dominant limb on a force plate. Electromyographic activity was recorded from the gastrocnemius, tibialis anterior, and peroneus longus muscles. Subjects were also filmed and measures of rearfoot motion were derived.

Results—Significantly less electromyographic activity (p<0.007) was observed from the gastrocnemius and peroneus longus muscle groups when subjects were braced. No other significant electromyographical findings were observed. Peak vertical ground reaction force and time to peak for vertical ground reaction force were not affected by bracing and taping, nor were the rearfoot and Achilles tendon angles at foot strike.

Conclusions—The effect of bracing and taping on the selected biomechanics variables associated with landing was specifically limited to a reduction in muscle action, particularly for the braced condition. Netball players can be confident that the biomechanics of their landing patterns will not be altered whether they choose to wear a brace or tape their ankle joints.

Keywords: netball; ankle; electromyography; muscle action; ground reaction force; landing

Given these problems, a number of studies have investigated the prophylactic role of bracing and taping. The findings generally provide support for the role of strapping and bracing in reducing the incidence of injuries. For instance, Garrick and Requa reported the incidence of ankle injury to be 30.4 per 1000 games in basketball players who were unbraced, compared with 6.5 per 1000 games in those who were taped. More recently, Sitler et al noted the injury rate in basketball players who used an Air stirrup brace to be 1.6 per 1000 games compared with 5.2 per 1000 games in those not using the brace. Similarly in soccer players, Tropp et al noted the incidence of ankle sprain in braced players to be 3% compared with 11% in unbraced subjects. In a comparative study examining whether braces were more effective in previously injured subjects than in non-injured subjects, Surve et al reported that braces significantly reduced the re-injury rate and the severity of the re-injury. However, they were not effective in reducing the incidence and severity of injury in previously uninjured subjects.

The mechanisms by which injuries can be reduced by an external support include an enhancement of mechanical stability. Biomechanical analyses indicate that taping and bracing can limit range of motion, but mechanical stability decreases considerably after only short bouts of exercise (10–20 minutes), particularly with respect to taping. Other researchers have reported that external supports may increase proprioceptive awareness. This effect is thought to involve modulation of the neuromuscular system via cutaneous stimulation, leading to enhancement of the activity of muscles about the ankle.

Landing from a jump is a task that is important to many sports. In netball it is a skill that is intrinsic to successful performance. The forces associated with landings in netball have been shown to be considerable. For instance, Steele and Milburn noted vertical ground reaction forces (VGRFs) up to 6.8 body weights (BW) during landings. Joint motion and muscle activity are important in decreasing the impact forces associated with landing, and, given that taping and braces have been shown to limit motion, they could induce increases in the magnitude of the forces in the lower limb. Therefore the purpose of this study was to investigate the effects of bracing and taping on muscle activity, rearfoot motion, and VGRFs when undertaking a landing similar to that performed during netball.
Methods

SUBJECTS

Fifteen elite female netball players with no musculoskeletal conditions affecting the lower limb participated in this study. Mean (SD) for age, mass, and height were 22.6 (4.2) years, 67.6 (9.3) kg, and 172.3 (6.5) cm respectively. All procedures were undertaken with the approval of the University of Western Australia human ethics committee.

LANDING TASK

Subjects performed a landing task that involved a single leg forward jump to land on the dominant limb, as indicated by each player, in a balanced position on a force plate. The distance from the force plate was calculated to be 1.25 times the subject’s leg length. Based on pilot work, this distance was chosen to represent a typical distance that a player may jump during a netball game. In the laboratory, subjects were given time to practice the landing task. Thereafter, each subject performed three trials with their ankle untaped, braced, or taped, the order of which was randomly chosen.

In the bracing condition, subjects wore a lace-up Swede-O-Brace (Orthotic Consultants). This brace is commonly used by netball players. In accordance with the manufacturer’s instructions, subjects were asked to lace the brace in a manner that provided firm support about the ankle joint. The technique used to tape the subjects involved four “figure of six” tapes, together with calcaneal slings and locking strips. This technique is commonly used and is well documented. To establish the reliability of this taping technique, range of motion after taping on two separate occasions was measured. Intraclass correlation coefficients derived from measures of plantar flexion and inversion were 0.98 and 0.95 respectively.

FORCE DATA

A force plate (type 9281; A G Kistler, Winterthur, Switzerland) was used to measure the VGRFs. Data were sampled at 500 Hz and relayed to a computer based data acquisition and analysis package. The variables of interest were the peak VGRF and time to peak vertical force.

ELECTROMYOGRAPHIC DATA

Electromyographic (EMG) activity from the medial gastrocnemius, tibialis anterior, and peroneus longus muscles was recorded using pre-gelled Ag-AgCl electrodes (3M; model 2259). After skin preparation which involved shaving and cleaning with alcohol, two electrodes were placed longitudinally over the belly of each muscle, between the motor point and the muscle’s insertion. An earth electrode was placed over the lateral femoral condyle. Impedance levels were then checked, and if they were greater than 2500 ohms, the electrode site was prepared again. The raw EMG signals were amplified 1000 times, band-pass filtered (5 dB down at 10 Hz and 1 kHz) by a Grass series P511 amplifier (Grass Medical Instruments, Quincy, Massachusetts, USA). Data were collected at 500 Hz over a 200 ms epoch centered on footstrike, and transmitted to a computer based data acquisition system. The integrated EMG activity over a 100 ms period before footstrike was used in the analysis of these data.

FILM DATA

A 16 mm Photosonics high speed camera fitted with an Angenieux 12-120 mm zoom lens was used to film subjects at a nominal rate of 200 Hz (45° shutter angle). The camera was secured to a tripod so that the focal axis of the lens was in line with the plane of motion of the landing, and the camera-subject distance was large enough to minimise perspective error.

On each subject, four adhesive retroreflective markers were placed on the skin, tape, or brace of the landing limb as reference markers for the motion of the lower leg and calcaneus (fig 1). The placement of these markers has been described by Edington et al. Specifically, the proximal lower leg marker was placed on the posterior midline of the lower leg about 15 cm above the distal marker, which was placed 2 cm above the superior aspect of the calcaneus. The two markers on the calcaneus were placed to bisect the posterior aspect of this bone.

These reference markers were digitised using a Calcomp 648 digitiser, and the displacement data were smoothed with a second order digital filter at 6 Hz. Angular displacement information was then determined for the lower leg and footstrike. The first angle of interest was the rearfoot angle, which is defined as the angle between the calcaneus and the landing surface. The second angle of interest was the Achilles tendon angle, which is defined as the angle between the calcaneus and the lower leg on the medial aspect of the limb.20

Figure 1 Adhesive retro-reflective markers fixed to the subject’s leg.
Table 1 Mean and SEM of electromyographic activity (mU) across muscles and conditions

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Muscles</th>
<th>Mean</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Peroneus longus</td>
<td>68.51</td>
<td>5.83</td>
</tr>
<tr>
<td></td>
<td>Gastrocnemius</td>
<td>142.81</td>
<td>18.56</td>
</tr>
<tr>
<td></td>
<td>Tibialis anterior</td>
<td>47.55</td>
<td>5.06</td>
</tr>
<tr>
<td>*Braced</td>
<td>Peroneus longus</td>
<td>48.57</td>
<td>5.31</td>
</tr>
<tr>
<td></td>
<td>Gastrocnemius</td>
<td>100.39</td>
<td>16.79</td>
</tr>
<tr>
<td></td>
<td>Tibialis anterior</td>
<td>51.49</td>
<td>6.85</td>
</tr>
<tr>
<td>Taped</td>
<td>Peroneus longus</td>
<td>57.86</td>
<td>6.69</td>
</tr>
<tr>
<td></td>
<td>Gastrocnemius</td>
<td>129.82</td>
<td>20.99</td>
</tr>
<tr>
<td></td>
<td>Tibialis anterior</td>
<td>42.60</td>
<td>5.82</td>
</tr>
</tbody>
</table>

*p<0.007.

Table 2 Mean and SEM of peak vertical ground reaction forces (body weight) across conditions

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Mean</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>3.37</td>
<td>0.14</td>
</tr>
<tr>
<td>Braced</td>
<td>3.12</td>
<td>0.21</td>
</tr>
<tr>
<td>Taped</td>
<td>3.33</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Table 3 Mean and SEM of time to peak ground reaction forces (milliseconds) across conditions

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Mean</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>43.71</td>
<td>2.07</td>
</tr>
<tr>
<td>Braced</td>
<td>34.56</td>
<td>4.54</td>
</tr>
<tr>
<td>Taped</td>
<td>37.97</td>
<td>2.12</td>
</tr>
</tbody>
</table>

Table 4 Mean and SEM of joint angles (radians) across conditions at footstrike

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Joints</th>
<th>Mean</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Rearfoot</td>
<td>1.56</td>
<td>0.06</td>
</tr>
<tr>
<td>Braced</td>
<td>Achilles</td>
<td>3.11</td>
<td>0.03</td>
</tr>
<tr>
<td>Taped</td>
<td>Rearfoot</td>
<td>1.53</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Results

Table 1 reports the mean (SEM) of the integrated EMG data recorded during the 100 milliseconds before landing for the normal, braced, and taped conditions. There was a significant difference between normal, braced, and taped conditions for peroneal EMG activity. Post hoc comparisons showed that the braced condition was significantly less than the normal condition. There were no significant differences between normal and taped conditions and between taped and braced conditions.

With respect to gastrocnemius EMG activity, there was a significant difference between normal, braced, and taped conditions. Post hoc comparisons showed that the EMG activity was significantly less in the braced than in the normal condition. There were no significant differences between normal and taped conditions and between taped and braced conditions.

No significant differences were observed in tibialis anterior EMG activity across normal, braced, and taped conditions.

Table 2 and 3 show the mean (SEM) of the peak and time to peak VGRFs respectively. There were no significant differences between the normal, braced, and taped conditions for these force variables.

With respect to the kinematics, all subjects landed on the forefoot in all conditions. Table 4 shows the mean (SEM) for the rearfoot and Achilles angles at footstrike. No significant differences were found for either the rearfoot angle or the Achilles angle across conditions.

Discussion

Jumping and landing activities form a major skill component of netball. The current rules related to stepping at landing from a jump restrict the player to taking only one step after landing. Therefore rapid deceleration of the body must occur, and VGRFs on landing are typically high—for example, 6.8 BW\(^{15}\). As taping and bracing decrease the amount of motion at the ankle and subtalar joints, it was speculated that ground reaction forces would be higher when subjects were taped or braced. However, this was not the case, as the peak VGRFs ranged from 3.12 to 3.37 BW across conditions. The magnitude of these forces is relatively low in comparison with previously reported landings in netball and for other landing activities. For instance, during fast running (7.8 m/s), peak VGRFs of 4.4 BW have been reported.\(^{22}\) In the triple jump, Ramey and Williams\(^{27}\) reported initial VGRF peaks ranging from 7 to 12 BW, while Panzer et al\(^{28}\) reported ground reaction forces ranging from 8.8 to 14.4 BW for vault landings in gymnastics.

Variations in the velocity at which the player approaches the force plate may have been the primary influence on landing forces. In the current study, all subjects landed on their forefoot. However, other researchers have noted that receiving a pass at the time of jumping can influence the position of the foot at time of landing.\(^{25–27}\) Steele and Milburn\(^{15}\) noted that subjects tended to land on the heel after receiving a pass at chest height, whereas higher passes led to forefoot landings. Those who landed on the heel in that study generated peak VGRFs 1.2 BW greater than those who landed forefoot.

Thus, these researchers also noted a trend toward shorter times to peak force in heel strikers, a finding similar to that of Valiant and Cavanagh,\(^{26}\) who examined landings in basketball. Although landing on the forefoot may therefore be a technique recommended to decrease ground reaction forces, there is evidence that it leads to increased stresses in tissues. For instance, Denoth\(^{30}\) showed that, in heel strike jogging, the initial ground reaction forces were significantly higher than those during forefoot jogging (2.0 BW vs 0.8 BW). However, about 20% higher forces were generated in the Achilles tendon and ankle joints during forefoot running.
It is apparent that muscle activity and movement at lower limb joints can influence the magnitude of impact forces and resultant joint loadings. A number of authors have commented that the plantar flexors are important in reducing the VGRFs associated with landing. Interestingly, in this study, whereas gastrocnemius EMG activity was decreased when using a brace, mean VGRF measures were unchanged across the different conditions. However, there was a trend to a shorter time to peak vertical force when subjects were braced, and that may be worthy of further investigation.

At footstrike, the calcaneus was very close to the vertical position with respect to the landing surface, and the angle between the calcaneus and lower leg was in slight varus. No previous studies have examined rearfoot angles during landings from a jump. However, the rearfoot and Achilles tendon angles at foot strike were in the range of those reported for jogging. No changes in the phasing pattern of the peroneus brevis were reported. Hence, it is apparent that muscle activity and external support—likely to be much smaller than those associated with the ground reaction forces, and hence may not influence the motion at the rearfoot.

A possible source of error in the kinematic data is that the markers placed on the skin over the calcaneum had to be re-attached to the strapping tape and the brace when they were worn. Care was taken to ensure that the initial position of these markers was similar across conditions. However, whether the movement of the tape and brace followed that of the calcaneum is unknown. As it is not adhesive, the brace would be more likely to induce this error than the tape. Work examining shoes has shown that there is a small systematic error between calcaneal movement and the movement of the rear part of the shoe; however, the number of subjects used in that study was small.

With respect to the EMG findings in this study, the decreased EMG activity of the peroneal and gastrocnemius muscles induced by bracing may reflect a decrease in the need for these muscles to provide mechanical stability to the joint. These findings are in contrast with those of other researchers who examined subjects without significant ankle instability. For instance, in a small number of subjects (n = 2) with previous ankle injuries but no significant talar tilt, Glick et al noted no change in EMG activity in peroneus brevis muscle when taped during running. In subjects with no history of ankle problems, Sprigings et al noted no effect of taping on peroneus longus EMG activity during a sudden inversion motion. More recently, Karlsson and Andresson noted that reaction times were unchanged when subjects with low grade mechanical instability were taped during sudden ankle inversion. Interestingly, these authors reported that, when subjects had a significant degree of instability, as measured by talar tilt and anterior translation, reaction times were longer than those of subjects without instability. Furthermore, these researchers showed that reaction time was decreased in subjects with instability when their ankles were taped. With respect to jogging, in subjects with significant talar tilt, Glick et al noted that taping led to changes in the phasing pattern of the peroneus brevis. Not all studies support the notion that injury is related to muscle activation changes. For instance, Nawozenksi et al and Ebig et al compared injured and uninjured ankles and noted no differences in peroneal response times in response to sudden inversion stress.

In this study, it is not clear why the changes in EMG activity were observed only when subjects were braced. However, some researchers, although not all, have noted that bracing provides a longer period of restriction to motion than taping. It may have been that the time between taping the subjects’ ankles and the completion of the jumps (about 10 minutes) was sufficient to generate this effect.

CONCLUSION

The findings of this study indicate that the use of an ankle brace can lead to specific changes in muscle activity. However, these changes were not of a magnitude to influence the position of the foot at landing or affect the time to peak VGRF. Thus, no changes were observed that may be perceived as having the potential to increase the likelihood of injury or be detrimental to performance. Therefore, our findings suggest that whether to use braces or tape should remain a matter of personal choice. In this respect, other researchers have noted that many players prefer a brace as they are more convenient to use and are more cost effective.

Gratitude is expressed to Curtin University of Technology and the University of Western Australia for funding this project and to Rob Bakes of Orthotic Consultants for donating the Swede-O Braces.

Contributors: D H initiated and coordinated the formulation of the primary hypotheses in this study, designed the statistical analysis, and writing the paper. P Mc discussed the core ideas, collaborated in the design of the methodological protocol, participated in data collection, data documentation, and quality control, and edited the paper. B E participated in the core issues of the study and its design and edited the paper.

Take home message
Netball players can be confident that the biomechanics of their landing patterns will not be altered whether they choose to wear a brace or tape their ankle joints.