Effects of exercise on lymphocytes and cytokines

Bente Klarlund Pedersen, Anders Dyhr Toft

Abstract

Objectives—To review results on exercise induced changes in the immune system following strenuous and moderate exercise.

Methods—A literature search over the past 15 years was conducted using Medline and selected papers.

Results—After intense long term exercise, the immune system is characterised by concomitant impairment of the cellular immune system and increased inflammation. Thus low concentrations of lymphocytes, suppressed natural immunity, suppressed lymphocyte proliferation, and suppressed levels of secretory IgA in saliva are found simultaneously with high levels of circulating proinflammatory and anti-inflammatory cytokines. The underlying mechanisms are multifactorial and include neuroendocrinological and metabolic factors. The clinical consequences of the exercise induced immune changes have not formally been identified, but the exercise effect on lymphocyte dynamics and immune function may be linked to the exercise effects on resistance to infections and malignancy and the cytokine response may be linked to muscle damage or muscle cell growth.

Conclusions—Moderate exercise across the life span seems to increase resistance to upper respiratory tract infections, whereas repeated strenuous exercise suppresses immune function. It is premature to offer advice on nutrition to athletes in order to alter the exercise induced immunosuppression found after exercise.

(Br J Sports Med 2000;34:246–251)

Keywords: exercise; cytokine; lymphocytes; immunosuppression; nutrition

Epidemiological evidence exists that supports the anecdotal impression that regular exercise increases resistance to infections such as the common cold, whereas hard training is associated with increased upper respiratory tract infections. Also, there is accumulating evidence that exercise is a lifestyle that offers some protection against malignancy. It has become clear that moderate exercise stimulates the immune system and may be somewhat responsible for exercise related reduction in illness. However, strenuous exercise induces immunosuppression in the recovery period and may explain the increased risk of infection in athletes.

Interest in the effect of physical activity on the immune system is not limited to exercise physiologists. It is a valid aim that results from studies on exercise immunology can be integrated into understanding immunological processes in clinical medicine. Furthermore, results from the field of exercise immunology may help to guide athletes and contribute to public health recommendations on exercise and infections.

This article provides a review of various aspects of exercise immunology. Effects of acute and chronic exercise on lymphocyte function and cytokine levels are described and this is followed by a discussion of the clinical consequences. Furthermore, the underlying mechanisms of action are presented and the possibility of nutritional intervention is discussed.

Methods

A literature search of the past 15 years was conducted using Medline and selected papers. The most important immunological techniques include enzyme linked immunosorbent assay techniques to measure circulating cytokine protein concentrations and quantitative polymerase chain reaction to measure mRNA for various cytokines. Flow cytometry was used to identify lymphocyte subpopulations using monoclonal antibodies. Lymphocyte function was estimated by lymphocyte proliferative responses, and cytotoxic activities were measured by assay of 11Cr release.

Effects of acute exercise

EFFECT OF ACUTE EXERCISE ON LYMPHOCYTE FUNCTION

In relation to acute exercise, there are several consistent patterns that emerge with regard to leucocyte subpopulations in the blood. The neutrophil concentration increases during...
Exercise effects on lymphocytes and cytokines

EFFECT OF ACUTE EXERCISE ON CYTOKINE LEVELS

Strenuous exercise induces increased levels of cytokines in the blood (fig 1). Interleukin (IL)-6 has been found to be enhanced in several studies.7 Thus, after a marathon, the level of IL-6 is increased 100-fold. Although initial studies suggested that the level of IL-1 was increased in response to exercise,14 recent studies using more specific assays have shown no increase or only a modest increase. Studies from our group have shown no effect of exercise on the levels of the anti-inflammatory cytokine transforming growth factor-β1 (A D Toft, unpublished data). The concentrations of tumour necrosis factor (TNF)-α have been shown to increase 2–3-fold16 after strenuous exercise. The increase in IL-6 is followed by an increase in the concentrations of the IL-1 receptor antagonist (IL-1ra), a naturally occurring inhibitor of IL-1.14 16 17 Thus the level of IL-6 peaks immediately after cessation of exercise, whereas levels of IL-1ra do not increase until after exercise, peaking after about two hours.

Recent data from our group show that the circulating levels of soluble TNF-α receptors (sTNF-αR) 1 and 2 and the chemokines IL-8 and macrophage inflammatory protein (MIP-1β) are also increased in response to strenuous exercise.17 (K Ostrowski and A D Toft, unpublished data). Thus exercise induces a strong anti-inflammatory response.

POSSIBLE ASSOCIATIONS BETWEEN THE CYTOKINE RESPONSE AND MUSCLE DAMAGE

Bruunsgaard et al18 compared concentric and eccentric ergometer bicycle exercise and found an association between increased IL-6 level and muscle damage, as illustrated by the increase in creatine kinase. Thus the level of IL-6 increased more during the eccentric exercise, and a significant association was found between peak IL-6 and peak creatine kinase on the subsequent days (r = 0.722; p = 0.028). The eccentric bicycle model results in delayed muscle damage, with peak creatine kinase levels on day four or five after exercise.

One source of IL-6 has recently been identified. We were able to detect IL-6 mRNA in skeletal muscle biopsy specimens obtained from runners after a marathon.14 These data indicate that IL-6 is locally produced in response to strenuous exercise or exercise induced muscle damage. IL-1ra mRNA was not present in the skeletal muscle, but was expressed by blood mononuclear cells obtained after, but not before, the marathon, indicating that locally produced IL-6 induces a systemic anti-inflammatory response.

Effects of chronic exercise

The immune function (resting levels) in athletes compared with non-athletes has more similarities than disparities, as reviewed.16 Natural immunity may be slightly increased, whereas neutrophil function has been reported to be slightly suppressed. The adaptive immune system (resting state) in general seems to be largely unaffected by intensive and prolonged exercise training.20–22 The innate immune system appears to respond differentially to the chronic stress of intensive exercise, with NK cell activity tending to be enhanced while neutrophil function is suppressed.20–22

Clinical consequences

An important question is whether the exercise induced changes in concentrations of lymphocytes in the circulating pool, the proportional distribution of lymphocyte subpopulations, and the function of these cells are of clinical significance, especially with respect to resistance to infectious disease and malignancy.

Based on anecdotal information, a general feeling has been that, whereas regular training promotes resistance to upper respiratory tract infection (URTI), severe exertion, especially when coupled with mental stress, places athletes at increased risk of URTI. The epidemiological studies on exercise and URTI are based on self reported symptoms rather than clinical verification.25–28 The link between exercise associated immune changes and sensitivity to infection may be explained by the so called “open
Pedersen, Toft

colon cancer and breast cancer, whereas
port the idea that exercise protects against

cancer risk. Results are accumulating that sup-
exhaustive exercise is linked with increased

cise protects against malignancy, whereas
theory, it is to be expected that moderate exer-

the following one to two weeks.

extreme immunosuppression after heavy exer-
be shown whether athletes displaying the most

By epidural blockade in relation to physical
were infused, hormone receptors were blocked
by drugs, or hormone production was inhibited
because of the supply of glutamine itself. The
concentrations of these hormones increase
during exercise and return to original values
shortly after, but they also seem to exert effects
on lymphocytes and neutrophils during the
recovery period. Studies in which hormones
were infused, hormone receptors were blocked
by drugs, or hormone production was inhibited
by epidural blockade in relation to physical
stress contribute to our understanding of the
mechanisms of action. Based on these studies,
we have proposed a model (fig 2) for the possi-
ble roles of stress hormones in mediating exer-
cise induced immune changes during and after
exercise. Adrenaline and to a lesser degree nor-
adrenaline are responsible for acute exercise
effects on lymphocyte dynamics, including
exercise effects on NK cell activity and T cell
function. Increases in growth hormone and
catecholamines mediate the acute effects on
neutrophils, whereas cortisol exerts its effects
within a time lag of at least two hours and
therefore may help to maintain the lympho-
penia and neutrocytosis only after long term
exercise. The role of β-endorphins is less

It has been established that glutamine is an
important fuel for lymphocytes and macro-
phages. Several lines of evidence suggest that it
is used at a very high rate by these cells, even
when they are quiescent. It has been proposed
that the glutamine pathway in lymphocytes
may be under external regulation, partly
because of the supply of glutamine itself. Glutamine stimulates in vitro lymphocyte pro-
liferation, lymphokine activated killer cell
activity, and cytokine production. Skeletal
muscle is the major tissue involved
in glutamine production and it is known to
release glutamine into the bloodstream at a
high rate. It has been suggested that the skeletal
muscle plays a vital role in maintenance of the
key process of glutamine utilisation in the
immune cells. Consequently, the activity of the
skeletal muscle may directly influence the
immune system. It has been hypothesised (the
glutamine hypothesis) that during intense
physical exercise, or in association with sur-
gery, trauma, burn, and sepsis, the demands on
muscle and other organs for glutamine is such
that the lymphoid system may be forced into a

Glutamine

It has been established that glutamine is an
important fuel for lymphocytes and macro-
phages. Several lines of evidence suggest that it
is used at a very high rate by these cells, even
when they are quiescent. It has been proposed
that the glutamine pathway in lymphocytes
may be under external regulation, partly
because of the supply of glutamine itself. Glutamine stimulates in vitro lymphocyte pro-
liferation, lymphokine activated killer cell
activity, and cytokine production. Skeletal
muscle is the major tissue involved
in glutamine production and it is known to
release glutamine into the bloodstream at a
high rate. It has been suggested that the skeletal
muscle plays a vital role in maintenance of the
key process of glutamine utilisation in the
immune cells. Consequently, the activity of the
skeletal muscle may directly influence the
immune system. It has been hypothesised (the
glutamine hypothesis) that during intense
physical exercise, or in association with sur-
gery, trauma, burn, and sepsis, the demands on
muscle and other organs for glutamine is such
that the lymphoid system may be forced into a

Altered protein metabolism during exercise
may in principle help to explain exercise related
immune changes. As a consequence, supple-
mentation with nutrients such as glutamine,
carbohydrate, antioxidants, or prostaglandin
inhibitors may in principle influence exercise
associated changes in immune function.

Mechanisms of action

NEUROENDOCRINOLICAL MECHANISMS

The mechanisms underlying exercise associ-
ated immune changes are multifactorial and
include neuroendocrinological factors such as
adrenaline (epinephrine), noradrenaline (nor-
epinephrine), growth hormone, and cortisol. The
concentrations of these hormones increase
during exercise and return to original values
shortly after, but they also seem to exert effects
on lymphocytes and neutrophils during the
recovery period. Studies in which hormones
were infused, hormone receptors were blocked
by drugs, or hormone production was inhibited
by epidural blockade in relation to physical
stress contribute to our understanding of the
Mechanisms of action

NEUROENDOCRINOLICAL MECHANISMS

The mechanisms underlying exercise associ-
ated immune changes are multifactorial and
include neuroendocrinological factors such as
adrenaline (epinephrine), noradrenaline (nor-
epinephrine), growth hormone, and cortisol. The
concentrations of these hormones increase
during exercise and return to original values
shortly after, but they also seem to exert effects
on lymphocytes and neutrophils during the
recovery period. Studies in which hormones
were infused, hormone receptors were blocked
by drugs, or hormone production was inhibited
by epidural blockade in relation to physical
stress contribute to our understanding of the
mechanisms of action. Based on these studies,
we have proposed a model (fig 2) for the possi-
ble roles of stress hormones in mediating exer-
cise induced immune changes during and after
exercise. Adrenaline and to a lesser degree nor-
adrenaline are responsible for acute exercise
effects on lymphocyte dynamics, including
exercise effects on NK cell activity and T cell
function. Increases in growth hormone and
catecholamines mediate the acute effects on
neutrophils, whereas cortisol exerts its effects
within a time lag of at least two hours and
therefore may help to maintain the lympho-
penia and neutrocytosis only after long term
exercise. The role of β-endorphins is less

clear, but we do not believe that they play an
important role in the immediate recruitment of
NK cells to the blood.

Adrenaline and to a lesser degree noradren-
alin e mediate the acute exercise effects on
lymphocytes. Increases in growth hormone
and catecholamines mediate the effect on
neutrophils.

METABOLIC MECHANISMS

Altered protein metabolism during exercise
may in principle help to explain exercise related
immune changes. As a consequence, supple-
mentation with nutrients such as glutamine,
lymphocytes and monocytes. After intense long term exercise and other physical stress disorders, the glutamine concentration in plasma declines. Furthermore, low glutamine levels have been described in athletes with overtraining syndrome. Optimal lymphocyte proliferation is dependent on the presence of glutamine, but there are no published data showing that glutamine supplementation restores impaired immune function after exercise. The critical question therefore is not whether concomitant decreased plasma glutamine concentration and lymphocyte function occur after intense exercise, but whether a causal relation exists. In two recent placebo controlled glutamine intervention studies, it was found that glutamine abolished the decline in plasma glutamine after exercise without influencing the immunosuppression found. Thus these studies did not support the hypothesis that the decline in immune function after exercise is caused by a decrease in plasma glutamine concentration.

Carbohydrate and immune function

Earlier research has established that a reduction in blood glucose levels is linked to hypothalamic-pituitary-adrenal activation, an increased release of adrenocorticotrophic hormone and cortisol, increased plasma growth hormone, decreased insulin, and a variable effect on blood adrenaline level. Given the link between stress hormones and immune responses to prolonged and intensive exercise, carbohydrate compared with placebo ingestion should maintain plasma glucose concentrations, attenuate increases in stress hormones, and thereby diminish changes in immunity. This hypothesis has been tested in a number of studies by Nieman et al. using double blind, placebo controlled randomised designs. Carbohydrate beverage ingestion before, during, and after 2.5 hours of exercise was associated with higher plasma glucose levels, an attenuated cortisol and growth hormone response, fewer perturbations in blood immune cell counts, lower granulocyte and monocyte phagocytosis and oxidative burst activity, and a diminished proinflammatory and anti-inflammatory cytokine response. Overall, the hormonal and immune responses to carbohydrate compared with placebo ingestion were diminished. Some immune variables were affected slightly by carbohydrate ingestion—for example, granulocyte and monocyte function—while others were strongly influenced—for example, plasma cytokine concentrations and blood cell counts.

The clinical significance of these carbohydrate induced effects on the endocrine and immune system awaits further research. At this point, the data indicate that athletes ingesting carbohydrate beverages before, during, and after prolonged and intensive exercise should experience lowered physiological stress. Research to determine whether carbohydrate ingestion improves host protection against infection in endurance athletes during periods of intensified training or after competitive endurance events is warranted.

Lipids

It has been suggested that, if the polyunsaturated fatty acid (PUFA) profile of n-6 and n-3 is shifted in favour of n-6, this will result in increased production of prostaglandin (PGE_2) and leukotriene (LT_4). The arachidonic acid derived eicosanoids PGE_2 and LT_4 modulate the production of proinflammatory and immunoregulatory cytokines. The n-3 PUFAs eicosapentaenoic acid and docosahexaenoic acid, both found particularly in fish oils, suppress the production of arachidonic acid derived eicosanoids. Eicosapentaenoic acid is a substrate for the synthesis of an alternative family of eicosanoids, PGE_2 and LT_4, whereas arachidonic acid is a substrate for PGE_2 and LT_4.

PGE_2 suppresses the cellular immune system. During stress conditions, n-3 PUFA may counteract latent immunosuppression mediated by increasing PGE_2 production, which in contrast appears to be further enhanced by intake of n-6 PUFA. Under conditions of hypermetabolism, n-3 PUFA therefore potentially acts to reduce the incidence of new infections.

In animal studies, the stress response after application of endotoxin, IL-1, or TNF-α was reduced when the animals were pretreated with n-3 PUFA (fish oil). The diet rich in n-3 PUFA caused reduced catabolism, reduced febrile reaction, decreased eicosanoid production, and improved survival rate. The possible interaction between intense acute exercise, known to suppress the immune system, and PUFA was examined in inbred female C57BI/6 mice. The animals received either a natural ingredient diet or a diet supplemented with various oils such as beef tallow, safflower, fish oil, or linseed oil for eight weeks. In the group receiving 18:3 (n-3 PUFA) linseed oil, post-exercise immunosuppression of the IgM plaque forming cell response was abolished. The mechanism underlying the absence of exercise induced immunosuppression in animals fed linseed oil may be that linseed oil decreases the n-6/n-3 ratio and thereby diminishes the PGE_2 level after intense exercise. Thereby, the prostaglandin mediated immunosuppression may be abolished.

Thus the effect of linseed oil may be ascribed to a link between a diet rich in n-3 PUFA and abolition of prostaglandin related immunosuppression. In support of this hypothesis, it has been shown that, when the blood production was inhibited by the prostaglandin inhibitor indomethacin, exercise induced suppression of the NK cell activity and B cell function was partly abolished.

Dietary fats that are rich in n-3 PUFA have the potential to alter cytokine production. Most studies provide evidence that feeding plant or fish oils rich in n-3 PUFA alters the ex vivo production of TNF-α, IL-1, IL-2, and IL-6, but contradictory observations do exist. Human studies provide more consistent data: several studies have shown that supplementation of the diet of healthy volunteers results in reduced production of IL-1, IL-6, TNF-α, and IL-2 by peripheral blood.
mononuclear cells in vitro. In one study, supplementation resulted in decreased levels of IL-2 and IL-6 in vivo.

Our group has recently investigated whether dietary supplementation with n-3 PUFA before participation in strenuous exercise influences the production of proinflammatory and anti-inflammatory cytokines. No differences were found between the supplementation group and the control group (A D Toft, unpublished data).

Antioxidants

It has been suggested that antioxidant vitamins may influence exercise induced immune activation by neutralising the reactive species produced by neutrophils during phagocytosis. Peters et al. evaluated the effect of vitamin C on the incidence of URTI during the two-week period after the 90 km Comrades Ultramarathon using a double blind randomised design. The incidence of URTI was 68% in the placebo group, which was significantly more than in the vitamin C supplementation group, in which only 33% reported URTI when taking a 600 mg vitamin C supplementation daily for three weeks before the race. In another study, Peters et al. found that vitamin A supplementation had an insignificant effect on the incidence of URTI in marathon runners. Only one study has evaluated the effect of vitamin C on acute exercise induced changes in lymphocyte function and stress hormone levels. Supplementation with vitamin C did not influence leucocyte subsets, NK cell activity, lymphocyte proliferative response, granulocyte phagocytosis and activated burst, catecholamines, or cortisol.

Conclusion

During an acute bout of exercise, immunocompetent cells are mobilised to the circulation. Thus both the neutrophils and all lymphocyte subpopulations are recruited to the blood circulation. However, after strenuous exercise, the lymphocyte count declines below baseline, whereas the concentration of neutrophils continues to increase. Also, the levels of secretory IgA in the mucosa decrease. In response to exercise, a pronounced increase in both proinflammatory and anti-inflammatory cytokines is found. All these factors indicate a strong inflammatory response during strenuous exercise. Thus exercise produces concomitant inflammation and immune impairment.

The clinical consequences of repeated hard exercise are subclinical and clinical infections. The explanation may be that virus and bacteria gain a foothold after exercise by the time of the “open window” with altered immunity. The underlying mechanisms are multifactorial and include both neuroendocrineological and metabolic factors. Nutritional supplementation may in principle protect against the increased risk of infection in the recovery period after strenuous exercise. Carbohydrate supplementation has been shown to moderate the exercise induced immune changes, but the clinical significance remains to be shown. Thus it is premature to offer advice on nutrition to athletes from an immunological point of view.

11 Ullum H, Haahr PM, Pedersen BK, et al. Bicycle exercise enhances plasma IL-6 but does not change IL-1alpha, IL-1beta, IL-6, or TNF-alpha pre-mRNA in BMNC. *J Appl Physiol* 1994;77:93–7.
Exercise effects on lymphocytes and cytokines

Take home message

(a) Straining exercise induces immune changes, including lymphopenia, neutrophilia, and elevated levels of proinflammatory cytokines.

(b) Straining exercise is associated with decreased resistance to upper respiratory tract infections such as the common cold in the days after exercise, whereas moderate exercise seems to offer some protection against infections.

(c) With regard to nutritional supplementation, only carbohydrate ingestion before, during, and after straining exercise has been experimentally shown to moderate exercise induced immunosuppression.

True or false?

1 The lymphocyte count increases during exercise and is suppressed in the period after exercise.

2 Glutamine supplementation abolishes the immunosuppression found after exercise.

3 There is epidemiological evidence that exercise protects against colon cancer.

4 There is epidemiological evidence that exercise protects against rectum cancer.

5 Neuroendocrinological factors do not play a role in exercise immunology.

(Answers p 318.)

Essay question

Describe the effect of exercise on cytokine production. What is the name of the cytokine that increases the most?