INTERNATIONAL SYMPOSIUM ON CONCUSSION IN SPORT

The International Ice Hockey Federation (IIHF), in partnership with FIFA, the Federation Internationale de Football Association Medical Assessment and Research Center (F-MARC), and the International Olympic Committee Medical Commission (IOC) is organizing an International Symposium on Concussion in Sport.

Faced with the increasing incidence of this potentially dangerous injury in ice hockey and other sports, we have gathered the leading medical experts from all parts of the world and from a wide sampling of different sports, experienced in dealing with sports related head injuries. Our objective is to understand, as completely as possible, what actually takes place when severe blows to the head occur. It is our hope, that with the information learned, we can begin educating our athletes with the goal of eliminating concussions in all sports.

We are most grateful to the esteemed presenters for their extraordinary efforts, and to the many others who have submitted abstracts and papers for consideration.

R FASEL President IIHF
J S BLATTER President FIFA
PRINCE A DE MERODE Chairman IOC Medical Committee

Welcome from the Scientific Committee

On behalf of the Scientific Program Committee I would like to welcome all delegates to the International Symposium on Concussion in Sport. This Symposium has been sponsored by the International Ice Hockey Federation (IIHF) in cooperation with the Federation Internationale de Football Association Medical Assessment and Research Centre (F-MARC) and the International Olympic Committee Medical Commission (IOC).

The IIHF has chosen Vienna as the host city for this meeting.

The aim of the Symposium is to provide recommendations addressing this important topic for the improvement of safety and health of athletes in all sporting fields who suffer concussive injuries. To this end, the Committee has invited a range of speakers, all eminent in their fields, to address specific issues of epidemiology, clinical science, protective equipment, cognitive assessment, and long term outcome. The faculty represents the most important gathering of “concussionologists” yet seen in sports medicine.

In addition, research poster presentations have been invited and will demonstrate the range of concussion research currently being studied throughout the world. This issue of the British Journal of Sports Medicine, which serves as the conference abstract book, also contains a number of topical articles, reviews and case reports on concussion. As the Editor of this prestigious international sports medicine journal, I would hope that delegates attending the symposium would take the time to read the Journal and appreciate our commitment to high quality evidence-based sports medicine.

The first recorded mention of concussion as a transient form of head injury was by the great Persian physician and philosopher, Rhazes, in approximately 950 AD. Over 1000 years later, we are only beginning to put the pieces of the concussion injury jigsaw in place that will enable a complete understanding of this problem. This Symposium is an important step in this journey.

DR PAUL MCCORY Scientific Program Committee, International Symposium on Concussion in Sport

001 PROBABILITY OF CONCUSSION FROM SINGLE HEADING EVENTS IN FOOTBALL

C. Barr, M. Beusenberg. Biokinetics and Associates Ltd, Ottawa, Ontario, Canada.

Scope: This pilot study takes a look at the severity levels of a football impact against the head while in different orientations relative to the ball trajectory. Biomechanical knowledge of the tolerance of the brain to concussion as a result of direct and indirect impact has been limited and controversy exists over the risk of injury as a result of purposeful and accidental heading of the ball. Recent research on concussion in professional American football make it possible to characterize the probability of this injury based on the linear and rotational responses of head.

Methods: A total of 20 tests are conducted with a ball release velocity of \(v_r = 14 \text{ m/s} (50.4 \text{ km/hr}) \). Athletes are represented by crash test dummy head-neck system. One test is conducted with a ball of lesser mass and pressure.

Results: Using a newly developed criterion called Head Impact Power (HIP), it was found that: Higher HIP values are associated with lateral impacts, with the highest numbers occurring when the vertical axis (z-axis) of the model is perpendicular to the trajectory of the ball. Lowest HIP values occurred where the z-axis of the head was 45 degrees to the ball trajectory. All impacts produced a less than 2% probability of concussion.

002 NEUROSURGICAL COMPLICATIONS OF MILD HEAD INJURIES

V. Benei Department of Neurosurgery, 1st Faculty of Medicine, Charles University, Postgraduate Institute of Medical Studies and Central Military Hospital, Prague, Czech Republic.

Objective: To summarize possible surgically treatable complications of mild head injuries.

Design: Review.

Settings: major referral neurosurgical centre at Prague, Czech Republic.

Neurosurgical complications are best divided according to the time course of their development and according to the structures involved.

- **Immediate complications**: Symptomatology usually dominates over that of cerebral concussion. In typical cerebral concussion or mild head injury the skull may be fractured at any anatomical location. Skull convexity linear fractures are of no therapeutic consequence unlike depression fractures which should be considered for surgical treatment. Skull base fractures, not infrequently without any brain damage, are of importance due to the numerous structures involved—dural tear may result in rhinorrhea, pneumocephalus, meningitis, and cerebral abscess. Injury of the cranial nerves causes relevant neurological symptomatology. Injury of the carotid artery may cause artery thrombosis, aneurysm/pseudoaneurysm, carotid-cavernous fistula with all the relevant consequences.

- **Early complications**: Symptomatology develops over the hours to days after the concussion. Apart from some of the above mentioned the most frequent and dangerous are various haematomas—epidural, subdural, and intracerebral.

- **Late complications**: Symptomatology develops over weeks to months after the initial trauma. The most frequent is chronic subdural haematoma and rare delayed intracerebral haematoma. Apparently many of the complications caused by skull base fracture may cause delayed symptoms (pneumocephalus, carotid pseudoaneurysm etc).

Diagnostic procedures and management of the complications: Diagnostic work up and management of neurosurgical complications is the domain of neurosurgeons. Minor complications—for example, depression fractures or chronic subdural haematomas—can be treated at any institution, more complex ones—for example, complex skull base fractures with rhinorrhea or carotid injuries—should be treated...
at major institutions with access to other specialists (maxillo-facial surgeon, interventional neuroradiologist etc).

Conclusion: Neurosurgical complications of cerebral concussions are rare but dangerous and should always be kept in mind when handling the patient who has suffered a cerebral concussion.

PROCEDURES AFTER MINOR TRAUMATIC BRAIN INJURY mTBi IN ICE HOCKEY TO PREVENT NEUROLOGICAL SEQUELAE

N. Biasca,1 R. Agosti,1 Y. Tegner,2 H. Battaglia,1 C. Gerber.1
1Rules and Technical Committees of the International Ice Hockey Federation (IIHF) , Orthopedic University Hospital Zurich, Balgrist, CH-8008 Zurich, Switzerland; 2University Hospital Zurich, Zurich, Switzerland; 3Institution of Health Sciences, Lulea University of Technology, Sweden; 4Swiss Accident Insurance Company SUVA, Luzern, Switzerland; 5Orthopedic University Hospital Zurich, Balgrist, CH-8008 Zurich, Switzerland.

Over the last 15 years we are observing worldwide an alarming increase in the rate of mTBI in ice hockey despite improved protective gear. According to national and international statistics the proportion of mTBI to the overall number of injuries fluctuates, in ice hockey between 2% and 20%, in American football between 5% and 24% and in soccer between 4% and 22%. In the Canadian Hockey League the proportion of mTBI rose from 4% of all injuries in the period 1991–96 to 8% in 1997 and to 17% in 2000. In the professional Ice Hockey League NHL, the proportion of mTBI is increasing as well, from 2% in the season 1989–90, to 8% in the last two seasons 1999–01. Similar increases were observed in Sweden and Switzerland. The primary neuropathology of a mTBI is a diffuse axonal injury DAI through shearing forces by sudden acceleration-deceleration. There is no universal definition of mTBI nor a standardized assessment tool. We adopted the American Academy of Neurology’s 1996 suggestions. Confusion and amnesia are the hallmarks and are difficult to assess. Many of the definitions were constructed in regard to return-to-play guidelines. It has become clear that in the minutes to days following a mTBI, many brain cells remain in a vulnerable state. Long term derangements at a cellular level include calcium accumulation, elevation of lactate, decreased glucose metabolism, axonal disconnection, and neurotransmitter disturbances. The brain cells are then particularly vulnerable to additional trauma, minor changes in cerebral blood flow and/or increases in intracranial pressure, and especially axonia. These neurometabolic changes may lead to long term physical, neurocognitive, behavioral, and emotional changes (for example, Post Concussion Syndrome). In rare cases additional mTBI and extracranial trauma may lead to cerebral edema with rapid neurologic derangement or even death (Second-Impact Syndrome). The current return-to-play guidelines do not respect this new findings appropriately—for example, allow return to the same play. The risk of further injuries is also increased. For these reasons, we recommend that any confused player with or without amnesia should be taken off the ice and not be permitted to play again for at least 24 hours.

NEUROPSYCHOLOGICAL PERFORMANCE OF ATHLETES INVOLVED IN CONTACT AND NON-CONTACT SPORTS: A PRELIMINARY STUDY.

G. Boulard,1 P. Frémont,1 Y. Langlois.1 1Quebec Physical Deficiency Readaptation Institute, Quebec, Canada; 2Laval University Hospital Research Center, Laval University, Quebec, Canada.

Objective: To compare the neuropsychological performance of athletes in sports characterised by frequent mild traumatic brain injury (with or without an history of concussion) to that of athletes in non-contact sport.

Design: This is a case-control study where the independent variables are the history of concussion and/or involvement in contact sport and the dependent variable is the neuropsychological performance. Setting: Volunteers from the university elite sport program in Quebec, Canada.

Subjects: Members of the American football team with (n = 48; age 21.7 ± 1.9) or without (n = 50; age 21.9 ± 1.8) a history of concussion and a control group of athletes with no history of concussion nor significant involvement in a contact sport (n = 19; age 22.2 ± 1.9). All subjects were male.

Methods: Each athlete completed a questionnaire on the perceived history of concussion. The neuropsychological evaluation was performed by an evaluator blind to the perceived history of concussion and involvement in contact sport. The evaluations were performed prior to the beginning of the fall 1999 or 2000 football season and included the WAIS-III digit symbol (DSY) and digit span (DSP) tests, the Stroop Color and Word test (STR), the Brown–Peter son Comaonant Trigrams test (BPT), the Controlled Oral Word Association test (CWA), and the Rivermead (RIV) post concussion symptom questionnaire. For each component, tests were compared by ANOVA and, when a significant variation was detected, Bonferroni multiple comparison test was performed.

Results: No age difference was observed between groups. Significantly better performance was observed in the control group compared to both the concussion and contact sport groups for the DSY, STR, and BPT tests as well as for the RIV symptom questionnaire (results are presented as mean and 95% CI). No difference was observed between any group for the DSP and the CWA tests nor between the athletes involved in contact sports with and without a history of concussion for any of the tests.

Table 1 Neuropsychological performance of athletes involved in contact and non-contact sports

<table>
<thead>
<tr>
<th></th>
<th>Concussion</th>
<th>Contact</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSY</td>
<td>84.4 (81.0–87.7)</td>
<td>83.3 (79.4–87.3)</td>
<td>93.4 (88.9–97.8)</td>
</tr>
<tr>
<td>STR</td>
<td>54.6 (51.8–57.5)</td>
<td>55.6 (52.7–58.5)</td>
<td>48.6 (45.6–51.5)</td>
</tr>
<tr>
<td>BPT</td>
<td>12.3 (11.7–12.9)</td>
<td>11.7 (11.1–12.4)</td>
<td>13.3 (12.8–13.9)</td>
</tr>
<tr>
<td>RIV</td>
<td>12.7 (10.4–15.0)</td>
<td>7.2 (6.3–9.0)</td>
<td>6.2 (5.9–6.5)</td>
</tr>
</tbody>
</table>

Results presented are for the 9sec delay component but p < 0.05 for all delays. *Different from control (p < 0.05).

Discussion: The interpretation of the results from this preliminary study is limited by the relatively small number of athletes involved and by its transversal nature. Neuropsychological performance impairment might be associated to participation in contact sport as much as with the self reported history of concussion. Athletes reporting a history of concussion present significantly more symptoms than other athletes. These results further support the need for prospective studies on the effect of mild traumatic brain injuries in sports.

OVERVIEW OF CONCUSION

R.C. Cantu. Neurosurgery Service, Emerson Hospital, Concord, MA, USA.

Concussion is derived from the Latin concussus, which means “to shake violently”. Initially it was thought to produce only a temporary disturbance of brain function caused by neuronal, chemical, or neuro-electrical changes without gross structural change. We now know that structural damage with the loss of brain cells does occur with some concussions. In the last several years, the neurobiology of cerebral concussion has been advancing. It has become clear that in the minutes to days following concussive brain injury, brain cells that are not irreversibly destroyed remain alive but in a vulnerable state. These cells are particularly vulnerable to minor changes in cerebral blood flow and/or increases in intracranial pressure and especially axonia. This vulnerability appears to be caused by an uncoupling of the demand for glucose, which is increased after injury, while cerebral blood flow is reduced. Although the precise mechanisms of this dysfunction are still in the process of being fully explained, it is now clear that although concussion in and of itself may not produce extensive neuronal damage, the surviving cells are in a state of vulnerability characterised by a metabolic dysfunction that can be thought of as a breakdown between energy demand and production. Precisely how long this period of metabolic dysfunction lasts is not yet fully understood. Unfortunately, at present, there are no neuroanatomic or physiologic measurements that can be used to precisely determine the exact extent of injury with concussion, nor the severity of metabolic dysfunction, nor precisely when the concussion has cleared. It is precisely this fact that makes return to play decisions after a concussion a clinical judgment.

While there is no universal agreement on the definition and grading of concussion, most tend to focus on loss or retention of consciousness (LOC) and on post traumatic amnesia as hallmarks in the grading schemes and tend to downplay the other signs and symptoms of concussion. More recent prospective studies of athletic concussion suggest all symptoms of concussion including feeling of being stunned or seeing bright lights, light headedness, vertigo, loss of balance, headaches, cognitive and memory dysfunction, tinnitus, blurred vision, difficulty concentrating, lethargy, fatigue, personality changes, inability to perform daily activities, sleep disturbance, and...
motor or sensory symptoms, must be considered. Furthermore, prospective studies have shown a poor correlation (or none) between brief periods of LOC and subsequent neuropsychological test scores raising serious doubts about any grading scale that heavily weighs brief LOC.

This paper will discuss the current role of neuropsychological testing in concussion, analyse the various grading schemes and present a revised (table 2) system based on prospective data.

Table 2 Evidence based Cantu revised concussion grading guidelines

Grade 1 (Mild)	No LOC, PTA, PCSS < 30 min
Grade 2 (Moderate)	LOC < 1 min, or PTA/PCSS > 30 min
Grade 3 (Severe)	LOC ≥ 1 min, or PTA ≥ 24 hrs, PCSS ≥ 7 days

- Loss of consciousness.
- Post traumatic amnesia (anterograde/retrograde).
- Post concussion signs/symptoms.

005 THE ACQUISITION OF CHRONIC SUBDURAL HAEMATOMA DURING TRAINING FOR COMPETITIVE RACE WALKING?

M.R. Carmont, W. Mahattanakul, T. Pigott. The Walton Centre for Neurology and Neurosurgery, Lower Lane, Fazakerley, Liverpool, UK.

Abstract: A 65 year old gentleman, anticoagulated for cardiac problems, developed a hemiparesis whilst training for race walking competitions without history of significant head injury. A computed tomography scan revealed a chronic subdural haematoma (fig 1), which was drained successfully at operation (fig 2). There has been no evidence of reaccumulation and he continues to race walk competitively.

Although the causes of chronic subdural haematoma are multifactorial, we believe this is the first case in association with the jarring compression.

Introduction: Race walking is a physically demanding sport, commonly resulting in musculoskeletal injuries, however central nervous system insult is more rare. Competitors tend to be in good physical condition, particularly with respect to their cardiovascular systems. We present the case of a regular long distance walking competitor who suffered a chronic subdural haematoma whilst on warfarin, possibly as a result of his sporting activity.

Case Report: A brief, concise and informative description of the clinical history, physical findings, operative management, post operative progress from the onset of symptoms to the resumption of training for competitive race walking.

Discussion: A brief discussion of the aetiology and management of chronic subdural haematoma related to our patient’s symptoms, physical examination findings and computed tomography images and their interpretation. Comment on the occurrence of subdural haematoma in other sports and a discussion of the rarity of chronic subdural haematoma in race walking.

The authors wish to thank the Department of Medical Photography at The University Hospital Aintree, Fazakerley, Liverpool, UK.

007 COGNITIVE DEFICITS FOLLOWING CONCUSSION IN AUSTRALIAN RULES FOOTBALLERS

A. Collie, P. Maruff, P. McCrory, M. Makdissi, D.G. Darby. Neuropsychology and Behavioural Neurology Laboratory, Mental Health Research Institute of Victoria, Australia; Centre for Sports Medicine Research and Education, The University of Melbourne, Australia.

Background: Cognitive impairments are a reliable consequence of mild head injury and concussion. Most prior studies of cognition following concussion in athletes have employed conventional ‘paper-and-pencil’ neuropsychological tests. These tests often have lengthy administration times, making the acquisition of a cognitive profile a time-consuming exercise, and restricting post-concussion data collection to one or only a few cognitive domains. We administered a brief (15 min) computerised test battery assessing multiple cognitive domains to a series of concussed Australian Football League (AFL) footballers, to comprehensively characterise post-concussion cognitive impairments.

Methods: CogState™ was administered to 240 AFL footballers pre-season. Fifteen footballers were assessed two and 14 days after receiving a concussive injury during the season. A group of matched non-injured footballers tested serially acted as a comparison group. All participants also completed the Digit Symbol Substitution Test (DSST) and the Trail Making Test (TMT) at each assessment.

Results: Significant impairments were evident on computerised tests of psychomotor function 2 days post-concussion. These were characterised by an increase in reaction time variability and in psychomotor
TEST-RETEST RELIABILITY OF CogState™: A BRIEF, COMPUTERISED COGNITIVE FUNCTION TEST DESIGNED FOR SERIAL ASSESSMENT.
D. Darby,1,4 P. Marruff,1 A. Collie,1,5 Neurophysiology and 2Behavioral Neurology Laboratory, Mental Health Research Institute of Victoria, Australia; 3Centre for Neuroscience, The University of Melbourne, Australia; School of Psychology, La Trobe University, Australia.

Background: CogState™ is a brief (15min), computerised test designed for the serial assessment of cognitive function in mildly impaired individuals. CogState™ measures a range of cognitive functions including memory, attention, problem solving, and decision making. The test-retest reliability of CogState™ was determined in a number of healthy samples, and compared to the reliability of some conventional neuropsychological tests that are commonly used to measure cognitive function in concussed athletes.

Methods: One hundred and sixty healthy individuals were assessed serially with CogState™ and with conventional neuropsychological tests. Of these individuals, 60 were aged between 18 and 30 years (young group) and 100 were aged between 50 and 85 years (older group).

Results: In both groups, test-retest reliability values for CogState™ subtests were generally higher (0.5–0.8) than those recorded for conventional neuropsychological tests (0.2–0.6). Further tests of reaction time (RT) displayed better reliability than tests of accuracy. In addition, reliability values were higher in the young group than in the older group.

Conclusions: Computerised cognitive tests have psychometric properties that provide excellent reliability when such tests are administered serially to healthy individuals. Such tests are therefore ideal for measuring cognitive change caused by concussion or other neurological insults.

CONCUSSIONS AMONG CANADIAN UNIVERSITY FOOTBALL AND SOCCER PLAYERS
J.S. Delaney, V.J. Lacroix, S. Leclerc, K.M. Johnston. McGill Sport Medicine Clinic, McGill University, Montreal, Quebec, Canada; Centre for Neuroscience, The University of Melbourne, Australia; School of Psychology, La Trobe University, Australia.

Objective: To examine the incidence and characteristics of concussions for one season of Canadian university football and soccer.

Design: Retrospective survey.

Participants: 328 Canadian football and 201 soccer players reporting to 1999 fall training camp.

Main Outcome Measures: Based on self-reported symptoms, calculations were made to determine the number of concussions experienced during the previous season, the duration of symptoms, the positions most commonly affected, and any associated risk factors for concussion.

Results: Of all the athletes who returned completed questionnaires, 70.4% of the football players and 62.7% of the soccer players had experienced symptoms of a concussion during the previous season. Only 23.4% of the concussed football players and 19.8% of the concussed soccer players realized they had suffered a concussion. More than one concussion was experienced by 84.6% of the concussed football players and 81.7% the concussed soccer players. When examining symptom duration, 51.6% of all concussed football players and 44.3% of all concussed soccer players experienced symptoms for at least one day or longer. Tight ends and defensive lineman were the positions most commonly affected in football, while goalies were the players most commonly affected in soccer. Variables which increased the odds of suffering a concussion for football players included a past history of a recognised concussion while playing football. Variables which increased the odds of suffering a concussion for soccer players included a past history of a recognised concussion while playing soccer and being female.

Conclusion: University football and soccer players seem to be experiencing a significant yet comparable amount of concussions while participating in their respective sports. Variables which seem to increase the odds of suffering a concussion during the previous season for football and soccer players include a history of a recognised concussion. Despite being relatively common, many players may not recognize the symptoms of a concussion.

COMPARATIVE REVIEW OF USA CONSUMER PRODUCT SAFETY BOARD DATA FOR SOCCER, ICE HOCKEY, AND AMERICAN FOOTBALL FROM 1990 TO 1999
J.S. Delaney, V.E. Brien, E. Baron. McGill Sport Medicine Clinic, McGill University, Montreal, Quebec, Canada; Hotel Dieu Hospital, Windsor, Ontario, Canada.

Objective: To examine the incidence of head injuries in three popular American team sports.

Sample: Patients presenting and treated at participating hospital emergency departments in the USA.

Data: Analysis of the data from the National Electronic Injury Surveillance System (NEISS) for the USA.

Study: NEISS estimates are based on a sample of participating USA hospital emergency departments rather than a census of all USA hospital emergency departments. Calculations are based on participating hospitals’ data to arrive at a national estimate for the total number of treated head injuries in USA hospital emergency departments. The data, provided by the USA Consumer Product Safety Board, was reviewed and summarised as follows; there was an estimated 86 697 head injuries in soccer, 17 098 in ice hockey, and 204 802 in American football that presented to USA emergency departments from 1990 to 1999. When we examined injuries in relation to participation rates per year, in 1999 the following numbers were estimated for head injuries per participant per year; soccer 0.10%, hockey 0.11%, and American football 0.13%. Cumulative skull and brain injuries (concussions, fractures, and internal injuries) presenting to emergency departments from 1990 to 1999 were 50 035 in soccer, 9883 in ice hockey, and 128 968 in football. Comparing years 1990 to 1999, head injuries have increased 150% in soccer, 134% in ice hockey, and 62% in American football. Concussion as an injury group has increased 250% in soccer, 269% in ice hockey, and 77% in football from 1990 to 1999.

Conclusion: While American football has experienced the highest number of head injuries and concussions from 1990 to 1999, both soccer and ice hockey also report high incidences of both head injuries and concussions. It is notable that ice hockey and soccer report dramatic increases in both head injuries and concussions. This report raises concerns regarding the risk of head injuries in soccer, football and ice hockey, especially since the NEISS data reports only those injuries which were seen and treated in hospital emergency departments across the USA.

STUDY: NEISS estimates are based on a sample of participating USA hospital emergency departments rather than a census of all USA hospital emergency departments. Calculations are based on participating hospitals’ data to arrive at a national estimate for the total number of treated head injuries in USA hospital emergency departments. The data, provided by the USA Consumer Product Safety Board, was reviewed and summarised as follows; there was an estimated 86 697 head injuries in soccer, 17 098 in ice hockey, and 204 802 in American football that presented to USA emergency departments from 1990 to 1999. When we examined injuries in relation to participation rates per year, in 1999 the following numbers were estimated for head injuries per participant per year; soccer 0.10%, hockey 0.11%, and American football 0.13%. Cumulative skull and brain injuries (concussions, fractures, and internal injuries) presenting to emergency departments from 1990 to 1999 were 50 035 in soccer, 9883 in ice hockey, and 128 968 in football. Comparing years 1990 to 1999, head injuries have increased 150% in soccer, 134% in ice hockey, and 62% in American football. Concussion as an injury group has increased 250% in soccer, 269% in ice hockey, and 77% in football from 1990 to 1999.

Conclusion: While American football has experienced the highest number of head injuries and concussions from 1990 to 1999, both soccer and ice hockey also report high incidences of both head injuries and concussions. It is notable that ice hockey and soccer report dramatic increases in both head injuries and concussions. This report raises concerns regarding the risk of head injuries in soccer, football and ice hockey, especially since the NEISS data reports only those injuries which were seen and treated in hospital emergency departments across the USA.
Abstracts

more accurately classified as impaired vs recovered using multiple regression than using other methods.

Discussion: Athletes who performed well on reaction time tests at baseline were likely to perform more slowly on a subsequent test administration regardless of whether they had sustained a concussion; this is expected due to the statistical phenomenon of regression to the mean. A technical detail that accounts for this phenomenon is multiple regression, which was the most accurate method for classifying performances of 27 athletes who sustained concussions.

012 A CHRONOMETRIC APPROACH TO ASSESSMENT OF MILD HEAD INJURY IN SPORT

D. Goodman,1 D. Meichenbaum,2 M. Gaetz,2 E. Roy.1 Simon Fraser University, Burnaby, Canada; University of Waterloo, Kitchener, Canada.

Introduction: A reduction in the speed of information processing may be a common underlying factor involved in the decrement of cognitive functioning following mild head injury. This may be of particular relevance in activities such as ice hockey, in that quick response times are an essential component of play. Moreover, in players who have previously suffered a concussion, and may be still suffering the after-effects, the appropriate and quick response to unanticipated actions may be the response that prevents further injury.

Methods: In this study we examined both the acute and recovery period effects of mild head injury of hockey players on choice reaction time in both compatible and incompatible situations. This was accomplished by comparing the players post-injury scores and post-injury recovery period scores to baseline performance levels. Prior to the season’s start of play, baseline data were collected from n = 555 (over two years) Canadian Junior Hockey League players. The 46 players who subsequently sustained a concussion underwent a serial battery of neuropsychological tests within 24 hours of the injury, which was repeated approximately one week later.

Results: The averaged (over the 1, 2 & 4 choice) reaction time of players was significantly slower immediately following mild head injury (303 ms) when compared to baseline assessment (280 ms) measures. The reaction time subsequently decreased to near baseline levels (269 ms) after a one-week recovery period. As expected, the 1-choice RT (281 ms) was faster than the 2-choice RT (287 ms), which were both faster than the 3-choice RT (332 ms).

Reaction times in the incompatible situation revealed similar results, though, as expected, the differences between conditions was somewhat larger. We further noted that an assessment of the variability in reaction times was also a sensitive indicator of performances who reverts, with the standard deviation of reaction time in the compatible conditions increasing to 79 ms over baseline of 61 ms, and in the incompatible conditions going from baseline of 61 ms to 84 ms. In both cases the variability returned to baseline levels one week post concussion.

Conclusion: A chronometric approach seems well advised in assessment of mild head injury. This assessment, however, should include a choice reaction time paradigm, under both compatible and incompatible conditions, to enhance the sensitivity of the test. In addition, measures of variability may also be important indicators of decreased cognitive functioning.

Acknowledgments: This work was supported by grants from the British Columbia Neurotrauma Initiative and the Canadian Institutes of Health Research.

013 THE EFFECT OF IMPACT SEVERITY AND MATERIAL DENSITY ON ENERGY ATTENUATION

T.B. Hoshizaki,1 E. Spyrou.1 University of Windsor, Windsor, Ontario, Canada; The Hockey Company, Montreal, Quebec, Canada.

Objective: To determine the ability of expanded polypropylene to attenuate energy from impacts of varying severity.

Design: We employed three densities of foam, 55 kg/m³, 70 kg/m³, and 90 kg/m³ measuring 125 x 125 mm and 19 mm thick. A monorail drop test apparatus was used to impact the foams with two types of impactors flat and spherical. An accelerometer was used to record acceleration during the impact. Two impact energy levels was used, 20 J and 40 J, repeated three times. The tyxoid incident variable was acceleration measured in gravity (g). The research model consisted of a S4 (I2 x E2 x D3) x T3.

Results: All three main effects were significant (95% level of confidence). Across the foam densities, the trials and impact energy levels. Closer analysis of the data revealed impacts on the flat anvils at low energy (20 J) resulted in significantly higher acceleration values (g). In the case of the 20 J impact on the flat foam the acceleration doubled from 90 g’s to 180 g’s. This difference between the two anvils was exaggerated as the foam became stiffer. When the data for the 40 J impact was observed across the three trials, impacts on the lower density foam using the spherical impactor resulted in significantly higher values in the second and third impacts.

The low density foams recorded 122 g’s on the first trial increasing to 585 g’s by the third trial when using the spherical impactor set at 40 J. The 70 kg/m³ foam increased from 110 g’s to 294 g’s from the first to third trial using the spherical impactor at 40 J.

Conclusions: Recently ice hockey helmet designers have been attracted to employing EPP foam in helmets to address more stringent standards. Unfortunately this has generally resulted in stiffer foams. Limited history and experience in using these foams increases the unpredictability of the foams under different stresses. This study provides some insight into what is a complex interaction between EEP foam and impact severity.

014 AIBA EXPERIENCE IN CONCUSSION

P. Jako. Amateur International Boxing Association, Medical Commission

The modern age of boxing began at the end of the 19th century. Since then, many adverse health effects occurred in boxing, including death. Although the death rate has been low in comparison to other sports, the allegations of acute and chronic brain damage resulted in a great number of articles (more than 1200 in the 20th century). Since the introduction of safety rules and more extensive medical control for amateur boxers during the last 20 years, both acute and chronic brain damage have decreased, and amateur and professional boxing are now absolutely two different kinds of sports. The main reasons why amateur boxing doesn’t seem to be any more dangerous than most other sports are the following: (1) very careful medical monitoring, (2) sophisticated neurodiagnostic tests, (3) health protective equipment, (4) new regulations. Nevertheless, mild brain trauma or concussion with different incidence can happen in any kind of sport, in boxing as well. The quick diagnosis of concussion in boxing is easier than in other sports. During the bout, the boxer is very closely controlled by the referee and the ringside physician. If a boxer, in the opinion of the referee is unfit to continue the contest, having received hard blows to the head, the bout shall be stopped (RSCH). If a boxer is “down” and fails to resume within ten seconds, the decision is KO. The ringside physician has the right to stop the bout at any time. The decision of RSCH or KO (without unconsciousness) does not mean necessarily the diagnosis of concussion but it can be, therefore, a very thorough visual checkup of the boxer and his head condition. It is strongly recommended that after some modifications of the rules, mandatory using of head guard, decreased duration of rounds and proper refereeing improved medical control resulted in a decreasing tendency in the ratio of those bouts which ended by KO or RSCH (11.0–0.3%); 6.4–1.5%).

015 NEW INVESTIGATION TOOLS IN CONCUSSION

K.M. Johnston. McGill Sport Medicine Clinic, Montreal, Canada.

Closed head injury in contact sport is a problem of such magnitude that improvements in diagnosis and management are now urgent. In the early 20th century, when a number of boxers died during the course of their sport, the biggest problem was the lack of reliable medical control. Since then, controversial debate on the degree of consciousness as early as 1828. The classification of concussions based on the degree of amnesia, loss of consciousness, or the severity of symptomatology. The diagnosis of concussion but it can be, therefore, a very thorough visual checkup of the boxer and his head condition. It is strongly recommended that after some modifications of the rules, mandatory using of head guard, decreased duration of rounds and proper refereeing improved medical control resulted in a decreasing tendency in the ratio of those bouts which ended by KO or RSCH (11.0–0.3%); 6.4–1.5%).
return to play following a concussion

J.P. Kelly. Chicago Neurological Institute, Chicago, USA.

Recommendations for return to play after concussion have been concerned primarily with the prevention of catastrophic outcome related to severe brain swelling after an additional concussion occurs while the athlete is still symptomatic from an earlier one. It is also important to avoid cumulative cognitive deficits and chronic post-concussion symptoms associated with multiple concussions.

The role of the health care professional in the diagnosis of concussion in sports includes providing detailed objective assessment of the athlete and offering advice regarding safe return to competition. While there is variability in the existing scales for grading the severity of concussion, there is agreement among guidelines for return to sports activities immediately. The results from the present studies suggest a physiological basis to persisting post-concussive symptoms. Furthermore, by combining patients’ neuropsychological profile with information derived from ERPs and fMRI, we believe we possess powerful diagnostic and prognostic tools relevant to the athlete’s degree of disability and readiness to return to play.

Objective: To develop a new clinically useful “on-field” exam to evaluate the concussed athlete and compare results to the National Hockey League (NHL) neuropsychological test battery currently used.

Design: Prospective study.

Setting: Varsity football and ice hockey teams at McGill University.

Patients: 187 male athletes from the varsity football team (n = 144) and ice hockey team (n = 43) at McGill University from August 1998 to April 2000.

Interventions: At pre-season exam, each athlete underwent the McGill “on-field” evaluation and the NHL test battery as a baseline measurement. During the sports season, all concussions were serially evaluated with both test batteries until concussed athletes became symptom free. All concussions were graded with the McGill grading system (Sports Medicine, in press).

Main outcome measures: Baseline scoring and post concussion scoring were compared, using both test batteries. Correlation analysis between the results were conducted.

Main results: The McGill “on-field” evaluation specifically tests orientation, immediate memory, concentration and delayed recall, and uniquely emphasizes the evaluation of post concussion symptoms.

Delayed memory and reverse digit tests, as well as post concussion symptoms were highly sensitive to detection of the concussion athlete. A statistically significant correlation exists between certain tests of the McGill on field evaluation and the NHL battery.

Conclusion: Both the McGill “on-field” evaluation and the NHL test demonstrated statistical sensitivity to detect concussed athletes. Post-concussion symptoms are important to evaluate and neuropsychological testing represents one way to detect some of the post-concussion symptoms.

Acknowledgements: Research supported by the REPAR network from the Fonds de la Recherche en Santé du Québec and the American College of Surgeons (KMJ).
NEUROPSYCHOLOGICAL TESTING IN SPORTS: PAST, PRESENT AND FUTURE

M.R. Low,

Department of Orthopaedic Surgery and Sports Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; 2Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; 3Division of Neurophysiology, Henry Ford Health System, Detroit, Michigan, USA; 4Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; 5Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA.

Introduction: Over the past decade, neuropsychological testing has evolved into a valuable tool in the diagnosis and treatment of cerebral concussion. In the United States, neuropsychological testing is now routinely utilised by the majority of National Football League (NFL) teams and has been mandated for all athletes within the National Hockey League (NHL). The utilisation of neuropsychological testing in amateur athletes has been limited by a number of practical issues including a limited number of neuropsychologists with specific training in sports medicine and the time demands of traditional “paper and pencil” neuropsychological test instruments.

Objective: This article reviews the history of neuropsychological testing in sport with a specific focus on the NFL and NHL programs. In addition, the recent use of computerised neuropsychological test batteries in sports will be reviewed with specific reference to a programme that is currently being utilised by 60 high schools and 30 college programmes in the United States (ImPACT).

Method: Preliminary data from over 100 concussed high school and college athletes is presented and is compared to and athlete control group, matched by age.

Results: The results of a Multivariate Analysis of Variance (MANOVA) analysis reveals highly significant differences between the concussed and control groups in the areas of memory, visual processing, and reaction time at 24 hours (F = 6.74, p < 0.0005) and three days post-injury (F = 5.50, p < 0.001). Significant differences between the groups were evident at five days post-injury on the memory composite index of ImPACT. No statistically significant differences were evident between the groups at seven days post-injury, although subtle differences between the concussed and control groups were evident.

Conclusions: Neuropsychological testing has become increasingly utilised in the diagnosis and treatment of concussion. The use of computerised neuropsychological test batteries holds great promise in the evaluation of the concussed athletes.

QUANTIFYING THE COGNITIVE IMPAIRMENT ASSOCIATED WITH CONCUSSION: USING BLOOD ALCOHOL CONCENTRATION AS A REFERENCE POINT

P. Maruff, 2* A. Collie, 2 D. Garber, 2 1Neuropsychology and Behavioural Neuroscience Centre, Erasmus University Rotterdam, The Netherlands.

Concussions in soccer, which soccer players may refer to as “dings”, “having your bell rung”, and “seeing stars” have received increasing attention due to concerns about longer term effects. Most concussions cause a temporary disruption in mental functioning and most concussion symptoms seen in amateur and professional soccer players fade within a week or two. In studying seven professional premier league soccer teams in The Netherlands two out of 11 players incurred grade 3 concussions during a single season (season 1999–2000). Most of the concussed players were forward and defense players and head to head collisions were the main cause of concussion, another common cause of concussion was head to body contact (players running into each other, players kicked to the head) and some players were concussed by balls to the head delivered from free kicks. Although most players seem to recover quickly from concussion, 33% of the amateur soccer players who sustained a soccer related concussion still encountered chronic cognitive problems.

In studying 53 elite professional soccer players, 54% experienced one or more grade 3 concussions during their professional careers. In addition, 79% percent of the players reported head to head collisions which could be classified as grade 1 and grade 2 concussions (mental alterations with no LOC). Moreover, the median of the number of soccer matches played annually was 50 (range 25 to 70) and the median of the number of practices per week was six (range 4 to 9). Compared to control objects (elite middle distance runners and swimmers) the professionals performed poorer on verbal and visual memory, planning, and visuospatial tasks. The differences

www.bjsportmed.com
remained significant after adjustments for confounding variables (the number of concussions not related to soccer, alcohol consumption, level of education, and the number of general anaesthetics). These psychometric test scores also remained significant after a Bonferroni correction. An increasing number of grade 3 concussions incurred during soccer participation associated negatively with memory, visuo-perceptual, and planning capacity. Field position also influenced performance on neuro-psychological testing. Forward and defensive players performed significantly poorer on visuo-perceptual and verbal and visual memory tasks. Forward and defensive players experienced a higher frequency of soccer related concussion.

In studying 33 amateur soccer players, 27% incurred one grade 3 concussion and 33% reported two to five grade 3 concussions in their soccer careers. Compared to control objects (middle distance runners and swimmers) amateur soccer players exhibited impairments in planning and memory. These scores remained statistically after Bonferroni correction and after adjustments for confounding variables (concussions unrelated to soccer, alcohol intake, level of education, and number of general anaesthetics). Concussions incurred in soccer were inversely correlated with performances on planning, attention and visual and verbal memory tasks.

The classification of severity of concussive injury is another contentious area. More than 90% of all concussions sustained in sport are considered to be “mild” characterised by no loss of consciousness, transient confusion, and/or a brief duration of post-traumatic amnesia. The classification of concussion severity is critical for effective management. At the present time, there are at least 30 different published injury-grading systems. Most of these anecdotal scales are impractical for clinical use in sport. To date there have been no prospectively validated studies of any of the current grading systems in sport related head injury. An abundance of published grading scales is therefore available for use by physicians, athletic trainers, coaches and athletes. It is possible for injured athletes to “shop around” for a scale that suits their competitive needs rather than best medical practice. Because the different published grading scales represent the personal view of “experts” in the area rather than a consensus of scientific evidence, the final management decision is a clinical judgment in every case. The published sport related concussion severity scales can be broken down into a number of broad groupings—surrogate head injury scales, neuropsychological scales, sport specific scales, sporting injury scales, and unclassifiable scales. These will be discussed in more detail. In summary, no scale exists which satisfies the clinician to be both scientifically valid and practical. It is for this reason that the final diagnostic decision following a concussion is a clinical judgment in every case, and it may be entirely appropriate to deviate from a particular set of guidelines depending on the circumstances surrounding the injury.

The performance of protective headgear and helmets is determined largely by equipment testing. Such tests are governed by national standards—for example, ASTM and CSA, and international standards—for example, ISO. Standards oriented equipment tests are complemented by field and laboratory based research in which equipment is evaluated in more realistic test scenarios or via epidemiological surveys.

The two most critical properties of helmets are impact energy attenuation and load distribution. These properties reduce the magnitude of the forces applied to the head reducing the stresses and strains in the skull and brain. Through this mechanism concussion and more serious head injury may be prevented. Impact energy attenuation is assessed by dropping a headform plus helmet with a defined kinetic energy onto an anvil and measuring the acceleration of the headform. The parameters that determine the test outcome are the impact energy (drop mass and drop height), headform type (rigid or deformable), anvil (rigid or deformable) and the helmet itself. Dus- ing the impact the deformation of the helmet, and test assembly...
(headform and anvil), and the helmet’s ability to harness the foam liner through load distribution, determine the impact force and headform acceleration. As Work equals Force by Deformation (W=Fd), the greater the deformation the lower the force and acceleration.

For example the three main ice hockey helmet standards, ISO 10256, CAN/CSA Z226.1, and ASTM F-1045, require a drop test with a pass/fail criterion of 275–300 g headform acceleration. However, the ISO and Canadian standards utilise a rigid anvil and headform, while ASTM, also referred to in HECC, employs a deformable anvil. Helmets tested on the deformable anvil will tend to produce lower peak accelerations compared to those tested on a rigid anvil with the same energy. Also, research shows that mild head injury is probable at head accelerations in the 150–200 g range. Therefore, the assessment criterion may not drive helmet improvement and a greater potential reduction in concussion.

Through an examination of the impact characteristics in sports—for example, impact energy, location, and frequency—and their relationships to concussion, it is possible to define the ideal performance properties for sports specific helmets and translate these into equipment tests. To this end match video and injury surveillance methods are an invaluable adjunct.

NHL CONCUSSION PROGRAM

W. Meeuwisse,1 C. Burke.2 1University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada; 2University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, USA.

For the past four years, the National Hockey League, through the NHL Team Physicians Society Injury Committee has been conducting a project to prospectively study mild traumatic brain injury (MTBI). This program started with the preseason baseline neuro-psychological (NPT) testing of all NHL players. Team physicians complete an initial evaluation form if any head injury occurs, and repeat NPT testing is conducted. A formal physician follow-up is done before players return to play. In addition, team athletic trainers report MTBI episodes as part of their ongoing injury surveillance. Lastly, an analysis of injury video clips is completed to assess the mechanism of injury and the location of occurrence on the ice surface.

The number of MTBI episodes has increased over the past four years, which may be attributed to differences in occurrence or changes in the reporting threshold (that is, higher sensitivity of reporting) by players, trainers, and physicians. Variables under study include injury mechanism, initial symptom scoring, NPT changes, equipment (helmet, mouthguard use), environmental factors (boards/glass), and return to play timetables. The greatest benefit of the program to date is the increased awareness of MTBI by players and medical staff. Education regarding the significance of head injury symptoms and the discussions that have ensued regarding return to play decisions have already produced improved the detection and management of MTBI in the National Hockey League.

EARLY BIOCHEMICAL MARKERS OF BRAIN INJURIES.

T. Mussack,1 T. Graf-Baumann,2 J. Dvorak,3 M. Jochum. 1Departments of Surgery and Clinical Biochemistry, Klinikum of the University of Munich, Germany; 2FIFA Medical Assessment and Research Center (F-MARC), Zurich, Switzerland.

Objective: To evaluate S-100B serum levels in young amateur soccer players after controlled heading for indication of early cellular brain damage.

Design: Prospective controlled cohort study.

Study group: 61 amateur soccer players (B-youth, FC Emmendingen, Germany) after controlled heading, median age 15.0 y (IQR 14.0–16.0); Stratification in three age cohorts: 11–13 y (group 1; n = 20), 14–15 y (group 2; n = 34) and 16–18 y (group 3; n = 20).

Concuss groups: 57 amateur handball players after training, median age 15.0 y (IQR 13.0–16.8). One hundred and five consecutively admitted minor head injured (MHI) patients (GCS score 13–15, loss of consciousness, short term memory deficits, nausea, vomiting, vertigo, seizure), median age 36.0 y (IQR 28.0–60.1).

Intervention: Venous blood samples were drawn before training, immediately and six hours after training. The neurological examination recorded the clinical status. S-100B serum levels were determined by an immunoluminescence assay (LIA-mat Sangtec 100; Byk-Sangtec, Germany). In the MHI group, CCT pathologies were identified as CCT+, no CCT findings as CCT−.

Main results: No significant differences of S-100B serum levels were measured for the three age cohorts of the study group. But median S-100B levels were significantly higher in group 1 (0.22 ± 0.20) and group 2 (0.18 ± 0.24 ± 0.20) than in group 3 (0.07 ± 0.09 ± 0.06) before heading, immediately and six hours after heading. These values were not significantly different to those of the stratified handball players. The three age cohort groups reached the median S-100B levels of the CCT+ group (0.52 ng/ml) being significantly elevated compared to those of the CCT− group (0.13 ng/ml).

Conclusions: Controlled heading in young amateur soccer players does not seem to influence S-100B serum release indicating early cellular brain damage. But S-100B levels were significantly higher in soccer as well in handball players with 11–13 y and 14–15 y than with 16–18 y of age.

MOUTHGUARDS AND CONCUSSION PREVENTION

P.M. Piccininni. York University, Toronto, Canada.

Introduction: Orofacial injuries are an unfortunate sequela of many contact sports. In some sports, these injuries may represent up to 50% of all of the reported injuries. Mouthguards, alone or in conjunction with additional face protection, have been demonstrated by numerous studies to be an effective means of preventing or reducing dental and orofacial injuries.

Types of Mouthguards: Four main types of mouthguards are currently available. Both the stock (no customisation possible) and "boil-and-bite" varieties offer significant compromises in either or all of comfort, retention, speech, breathing, and protection and have little place in modern mouthguard discussions. In fact, some of these guards may promote concussion by compressing the TMJ complex. A vacuum-formed guard is fabricated by using suction forces to adapt heated EVA or similar material over a plaster model of the teeth. While providing reasonable fit and protection, these devices are now being replaced by guards fabricated via pressure lamination. By using both heat and pressure, serial layers of material can be tightly adapted to a plaster model to develop a guard that can be sport and athlete specific with a high degree of comfort and protection.

Mouthguards and Concussion Reduction: Numerous anecdotal reports have indicated a possible correlation between mouthguard use and concussion reduction. These reports have focussed on two primary mechanisms. The first is a dissipation of forces delivered to the maxilla, skull and TMJ complex when a blow is received by the mandible. The second is a stabilization of the skull through increased neck muscle activity when chomping, which may be enhanced with the presence of a mouthguard. This stabilization may reduce the rotation imparted by the skull when receiving an acceleration/deceleration force.

Current and Future Research: Currently, studies are concentrating on data collection and scientific reporting in professional and recreational athletes; new materials which may offer increased force dissipation without added thickness; the effectiveness of clenching in head stabilization; and determination of the optimal mouthguard design to provide protection in conjunction with an ideal separation of the condylar head and glenoid fossa. Other researchers are investigating the use of computer generated trauma models to help in quantifying some of these issues.

Conclusion: At this point mouthguards can and should be promoted as effective devices for prevention of dental and orofacial injuries. Properly designed mouthguards may also play a role in the reduction of incidence or severity of concussion, and should be considered for all athletes in contact sports, and especially those at higher risk or returning to play following a concussion.

PET, SPECT AND THEIR RELIABILITY FOR DIAGNOSIS OF CONCUSSION

B. Radasan. Wilhelms Schlichten Hospital, Zürich, Switzerland.

Sporting activities can cause brain injury as a result of either direct head impact or non-contact head trauma in connection with acceleration-deceleration. In both cases, individuals may initially present with no loss of consciousness or with superficial loss of consciousness of a short duration. These individuals are considered to have suffered mild traumatic brain injury, which does not show positive neurological or neuroimaging findings. Mild traumatic brain injury may cause numerous somatic, psychological, or cognitive complaints, the latter comprising mainly problems with attention (for
The Swedish elite league consists of 12 teams and the team that has undergone a thorough Preliminary Evaluation (PE) series of interviews within the last four years. In his early 20's, this athlete could not function within the playo

The awareness of concussion in ice hockey has increased over the last two decades. In the beginning of the 80's very few physicians engaged in ice hockey were aware of the seriousness of this injury. Concussion was then considered a minor injury. In 1988 a Swedish symposium was arranged in order to classify concussion and to establish norms for treatment of this injury. At these symposia it was suggested that the term concussion should be abandoned and the term mild head injury should be used instead. Unfortunately Swedish sport physicians did not follow these recommendations.

In 1988 a survey in all of Swedish elite ice hockey was performed and 22% of the players that answered the questionnaire reported that they had a concussion. In a prospective four year study in the Swedish elite league it was found that 6% of all injuries were concussions.

Since 1984 the author has registered all injuries occurring in one of Sweden's elite ice hockey team. The injuries were registered on a special form, and for the last three years a computerised version has been used. This new computerised version allows more accurate establishment of the risk for sustaining different types of injury. Since 1987/88 the definition of a concussion used has been the same transient confusion period with or without amnesia/loss of consciousness. The classifications into different grades and treatments have varied slightly over the years. Since 1997/98 the management of concussion has, with a minor modification, followed the recommendations by American Academy of Neurology.

The Swedish elite league consists of 12 teams and the team that has been followed played between 40 and 70 league games per season. During these 17 seasons (1984/85–2000/01) 705 injuries were registered and of these 54 were concussions (8%). There was a great variability of the number of concussions over the years. There is

Subjects: A series of active or retired professional athletes having experienced at least one severe objective-witnessed head concussion with loss of consciousness. Some of them have been recognised as "plateaued" over several years. Will include a case review of an NHL Professional Player who comes back on the ice to play successfully in the playoffs after having experienced three major Head Concussions within the last four years. In his early 20's, this athlete could not function well anymore in the last three years of this same time frame, and his career was decided at stake.

Intervention: Before starting the treatment programme, patients undergo a thorough Preliminary Evaluation (PE) series of interviews and tests, to relate the underlying neurophysiological causes to the current clinical condition, make a determination of treatability, and set the proper treatment strategy (Sensory-motor Skills Rehabilitation Programme: SSRP). Treatment consists of a drugless, non-invasive series of specific central sensory-motor stimulations, which "jump-start" the trauma induced dysfunctional CNS areas to be restored, optimised, and maximised when possible.

Main outcome measures: Progress is tracked by subjective devices (patient keeps a daily journal of pain, symptoms, and performance factors on a 0–10 scale), and objective measurements (postural, visual, balance, and cognitive testing) which are initially performed weekly, then as needed towards end of a six month program. Evaluation is performed in a specific setting using a unique technology (DOWS) which electronically tracks postural-visual performance in a comparable way. Symptoms are corrected within 12 weeks of the treatment programme commencing, and then performance then begins to improve.

Main results: Of nine patients who had head concussions, eight had concussion chronic resistant conditions (CRCR). Four patients showed similar progression of symptom patterns following the concussions, even though the concussions occurred in different types of sports activities. These were tracked by the measurements and procedures of the NeuroKinetics Preliminary Evaluation (PE). Though they had stabilized in recovery using standard treatment modalities, after the start of treatment, all showed signs of significant improvement in pain, muscle stiffness, sensory-motor, and cognitive performance between 2–12 weeks. Medications which may have been in use by the patients with these symptoms were able to be stopped.

Conclusion: After proper identification of the sensory-motor control dysfunction, our 12 week treatment protocol has been proven superior in respect to recovery pattern consistency. Recognised as a very successful "cutting edge" medical procedure since the mid-80s in the treatment of concussion syndromes and related chronic resisting conditions, this innovative rehabilitation strategy and the unique related technology permitting predictable post-treatment outcomes have been awarded grants by National Research Council of Canada in 1999 and 2000.

Several case histories including post-MVA patients, NHL, and CFL professional athletes demonstrate the effectiveness of this approach that relies on:

- Specific neurophysiological paradigms
- A new invasive technology for assessment and drugless treatment
- Comprehensive treatment and skills restoration programmes.

Over the last 16 years, many other types of non-sports patients have also benefited from this programme.

032 CONCUSSION EXPERIENCE: SWEDISH ELITE ICE HOCKEY LEAGUE.

Y. Tegner. The Ernisse Clinic Wisternett, Institution of Health Sciences, Timmermansgatan 60 University of Technology, Boden, Sweden.

The awareness of concussion in ice hockey has increased over the last two decades. In the beginning of the 80’s very few physicians engaged in ice hockey were aware of the seriousness of this injury. Concussion was then considered a minor injury. In 1988 a Swedish symposium was arranged in order to classify concussion and to establish norms for treatment of this injury. At these symposia it was suggested that the term concussion should be abandoned and the term mild head injury should be used instead. Unfortunately Swedish sport physicians did not follow these recommendations.

In 1988 a survey in all of Swedish elite ice hockey was performed and 22% of the players that answered the questionnaire reported that they had a concussion. In a prospective four year study in the Swedish elite league it was found that 6% of all injuries were concussions.

Since 1984 the author has registered all injuries occurring in one of Sweden's elite ice hockey team. The injuries were registered on a special form, and for the last three years a computerised version has been used. This new computerised version allows more accurate establishing of the risk for sustaining different types of injury. Since 1987/88 the definition of a concussion used has been the same transient confusion period with or without amnesia/loss of consciousness. The classifications into different grades and treatments have varied slightly over the years. Since 1997/98 the management of concussion has, with a minor modification, followed the recommendations by American Academy of Neurology.

The Swedish elite league consists of 12 teams and the team that has been followed played between 40 and 70 league games per season. During these 17 seasons (1984/85–2000/01) 705 injuries were registered and of these 54 were concussions (8%). There was a great variability of the number of concussions over the years. There is
though a clear tendency of an increase in the number of concussions per year. The first three years, when loss of consciousness was used as a definition of concussion, only one concussion was registered. The following five years a more accurate definition of concussion was used, and 10 concussions were registered. During the final five years of the registration a total of 32 concussions were found. Thus there has been a significant increase during the last years. The total number of injuries increased as well as the number of concussions, but the increase of concussions was more significant. During the first five years of the new definition 5% of the injuries were concussions and for the last 5 years 14%. Most of these concussions were minor (grade 1) and grade 3 concussions with prolonged loss of consciousness were rare. One player that had sustained over 12 concussions stopped playing ice hockey due to those injuries.

This increase in concussions is alarming. Today's ice hockey is faster and more physical. This probably contributes to the high number of head injuries. There is a need for further research in order to find the accurate way to prevent and treat these injuries.
The trunk muscles of elite oarsmen

A H McGregor, L Anderton, W M W Gedroyc

ORIGINAL ARTICLE

The trunk muscles of elite oarsmen

A H McGregor, L Anderton, W M W Gedroyc

Objective: To investigate the trunk strength of elite rowers and the impact of low back pain on these measures in order to determine if asymmetries or weakness were present.

Methods: Twenty-two elite rowers were recruited: 13 reported previous low back pain, five current low back pain, and the remainder had no history of low back pain. All subjects were scanned during simulated rowing in an interventional open magnetic resonance imaging scanner. In each simulated rowing position, axial scans were obtained at the level of the L4–5 and L5–S1 disc interspace to determine the cross sectional area of the posterior trunk muscles.

Results: Considerable differences were observed between the three groups of rowers. In contrast with expectations and previous literature, the trunk muscles of rowers with low back pain had significantly larger cross sectional areas (p<0.001). No left/right asymmetries were observed and no differences between oarside and non-oarside in terms of muscle cross sectional area.

Conclusion: These findings suggest that low back pain in rowers does not arise as a result of muscle weakness.

Competitive rowing is a strenuous sport which requires high levels of dedication. It is an endurance sport associated with long hours of intensive training both on and off the water. Roy et al. suggested that people with fatigue resistant back muscles and general physical fitness have fewer back problems, but the most common injury in rowers is low back pain. There is concern that the incidence of low back pain is rising, particularly in club rowers; however, further work is required to substantiate this. Whether or not it is increasing in incidence, low back pain is a considerable problem in the rowing world. It is unclear why such injuries occur, although the many speculations include poor rowing technique and weight training skills, inadequate stretching and flexibility, and changes in the equipment.

In people with low back pain, the role of the paraspinal muscles with respect to stability and functional movement has been stressed. Particular emphasis has been placed on the multifidus muscle, the largest and most medial of the lumbar back muscles. Isolated unilateral wasting of this muscle has been observed in patients with low back pain. Since this initial work, it has been shown that recovery of this muscle is not spontaneous after remission of symptoms, and this may therefore be a factor in re-injury. However, the role of reduced muscle strength as a causative or predisposing factor in back disorders is controversial.

Little is known about the strength of the back muscles in rowers; a pilot study investigating global parameters of strength did note that rowers did not have stronger backs than control subjects, although they exhibited greater strength in the thigh muscles. The significance of this finding with respect to back pain is not clear.

Rowing is an asymmetric activity which involves loading the back in a rotated and flexed position, factors already identified in back pain. Repetition of an asymmetric activity can lead to the development of muscle asymmetry and injury, if not addressed by appropriate training methods. Hides et al. noted right to left differences in terms of muscle cross sectional area in subjects with and without low back pain, suggesting that muscle asymmetry may be important in the development of low back pain in the general population. Parke et al. noted a left/right asymmetry in muscle activity during isometric contraction of the back extensor muscles.

As well as bilateral asymmetry, imbalances can occur between the agonist and antagonist muscles. Motion studies have noted changes in the motion of the pelvis during rowing in rowers with low back pain, which may be caused by an imbalance of back flexors and extensors and the muscles acting at the pelvis. However, relatively few studies have investigated the relation between imbalance in muscle strength and the occurrence of injuries. Previous studies have investigated muscle weakness and imbalance after injury and surgery and suggested that imbalance is associated with injury and recurrence of injuries.

We examined measures of cross sectional area of the muscles acting directly on the lumbar spine (the multifidus, erector spinae, and iliopsoas) during simulated rowing in elite oarsmen with and without low back pain.

METHODS

Study population

Twenty-two elite rowers ranging from international under 23 to senior 1 open oarsmen were recruited primarily from the Imperial College Boat Club. The mean (SD) age of the subjects was 22.6 (4.3) years. Ten subjects rowed stroke side and 12 bow side. All had been rowing for four years or more. Thirteen subjects (mean age 23.2 (5.3) years, mean weight 87.8 (8.5) kg) reported previous low back pain which had required non-surgical intervention and had resulted in time off training, five subjects (mean age 22.0 (1.8) years, mean weight 88.7 (6.9) kg) reported current low back pain preventing full training, and four had no history of low back pain (mean age 21.0 (2.2) years, mean weight 83.4 (3.2) kg).

Imaging

Subjects were scanned using a General Electric Signa SP10 interventional magnetic resonance imaging (MRI) scanner (Milwaukee, Wisconsin, USA). This is an open configuration MRI scanner consisting of two connected but opposing ring “doughnut” magnets. The gap between these magnets is 56 cm generating a uniform field of 0.5 T. A transmit receive flexible coil was secured around the subject’s waist and lumbar spine, and a multicoil magnetic resonance tracking device was positioned in line with the subject’s lumbar spinous processes. Subjects were scanned with an FSPGR sequence. The parameters set were: time of repetitions (TR) 14.6; time of excitations (TE) 7.3; scan time two seconds; flip angle 60°; thickness, 10 mm; field of view (FOV) 30 cm; matrix 256 ×
128; number of excitations 1. This was performed in conjunction with the magnetic resonance tracking programme (General Electric) via a Sun SPARC workstation (Sun Microsystems Corporation, Mountain View, California, USA), which permitted the subject’s spine to be tracked within the scanner.\(^\text{27}\)

Protocol

An MRI compatible wooden rowing jig was constructed which permitted the simulation of four key stages in the rowing stroke (the catch, early and late drive, and the finish) within the scanner.\(^\text{27}\) This study focused on simulation of the catch position within the scanner. Subjects were asked to adopt their usual position at the catch phase of the stroke, the length of the oar was adjusted accordingly, and they were asked to pull on the oar (thus loading the spine and contracting the muscles) as they would while rowing. With the rower in this position, a sagittal scan of the lumbar spine was performed to localise the region of interest followed by a series of axial scans through the intervertebral junction of the L4–5 disc interspace and the L5–S1 disc interspace. Subjects were asked to remain as still as possible during scanning.

Image analysis

Images were analysed on a conventional workstation to allow the measurement of muscle cross sectional area. Previous studies have shown a good correlation between MRI measures of cross sectional area and anatomical measurement.\(^\text{25} \text{ 26}\) Muscles assessed were the multifidus, erector spinæ muscle group at the L4–5 and L5–S1 level, and the iliopsoas at the L4–5 level.

Statistical analysis

The statistical analysis was performed using the statistical package Stata, version 6 (Stata Corporation, College Station, Texas, USA) on a personal computer. A two way analysis of variance was used to investigate if any differences existed between the three population groups. A series of covariates were considered in the analysis of variance in terms of their influence on cross sectional area, including effects of age, stroke side, and side of the body. The statistical threshold was set at \(p<0.05\). Orthogonal contrasts and multiple regression analysis were then used to locate where any differences noted by the analysis of variance lay.

RESULTS

The imaging protocol resulted in clear images of the lumbar spine muscles, including the erector spinæ, multifidus, and iliopsoas (fig 1), from which measures of cross sectional area could be obtained.

Table 1 summarises the measurements of cross sectional area obtained on both the left and right sides of the spine.

Statistical analysis revealed significant differences with respect to cross sectional area between the three study populations. In terms of the multifidus muscle, rowers with back pain (both current and previous) were noted to have significantly larger muscles than those without back pain, this being most prominent in those with a previous history of low back pain (\(p<0.0001\)) (fig 2). Significant differences were also observed between subjects with a current history and those with a previous history of low back pain (\(p<0.001\)).

As with the multifidus muscle, significant differences were observed between the three groups when the cross sectional area of the erector spinæ muscle was considered. At the L4–5 level, subjects with low back pain (both current and previous) had significantly larger muscles than those with no history of low back pain (\(p<0.001\)) (fig 3). No differences were observed between subjects with current and those with previous low back pain. However, at the L5–S1 level, these differences were reversed, with a slight tendency for those with no history of low back pain to have larger muscles. This trend was significant when subjects with no history of low back pain were compared with those with a previous history of low back pain (\(p<0.05\)).

When the iliopsoas muscle was considered, a similar trend was observed, with subjects with a history of low back pain (both current and previous) having larger cross sectional areas

Table 1: Measures of cross sectional area (mm\(^2\)) in each of the muscle groups considered

<table>
<thead>
<tr>
<th>Muscle Group</th>
<th>No LBP</th>
<th>Current LBP</th>
<th>Previous LBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multifidus L4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>226.3</td>
<td>352.4</td>
<td>422.2</td>
</tr>
<tr>
<td>Right</td>
<td>235.5</td>
<td>371.0</td>
<td>426.3</td>
</tr>
<tr>
<td>Multifidus L5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>271.8</td>
<td>371.4</td>
<td>425.7</td>
</tr>
<tr>
<td>Right</td>
<td>277.5</td>
<td>362.4</td>
<td>428.0</td>
</tr>
<tr>
<td>Erector spinae L4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>745.0</td>
<td>899.4</td>
<td>931.6</td>
</tr>
<tr>
<td>Right</td>
<td>751.3</td>
<td>915.4</td>
<td>889.2</td>
</tr>
<tr>
<td>Erector spinae L5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>507.5</td>
<td>500.6</td>
<td>484.7</td>
</tr>
<tr>
<td>Right</td>
<td>545.0</td>
<td>515.8</td>
<td>440.1</td>
</tr>
<tr>
<td>Iliopsoas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>993.3</td>
<td>1347.8</td>
<td>1343.9</td>
</tr>
<tr>
<td>Right</td>
<td>916.3</td>
<td>1348.8</td>
<td>1398.0</td>
</tr>
</tbody>
</table>

All measurements are mean (SD). LBP, Low back pain.
Low back pain in elite oarsmen does not appear to be the result of weakness or asymmetry of the multifidus or erector spinae muscle group.

REPRESENTATIVE REFERENCES

Addendum

CONTEMPORARY CLASSIFICATIONS OF CONCUSSION SEVERITY AND SHORT TERM NEUROPSYCHOLOGICAL OUTCOME

A D Hinton-Bayre1, G M Geffen2. 1 School of Applied Psychology, Griffith University, Gold Coast and 2Cognitive Psychophysiology Laboratory, University of Queensland, Brisbane, Queensland, Australia

Objective: To contrast concussion severity classifications in terms of subsequent impairment and recovery as shown by standard neuropsychological tests.

Setting: Prospective referral based neuropsychological assessment.

Patients: 21 professional rugby league players with a clinical diagnosis of concussion. Another 21 non-head injured players matched on key variables acted as controls to adjust for repeated assessment.

Method: All players were assessed before the season. After concussion, players were rested within 48 hours and then again at 10 days. Controls were also assessed on this schedule. For each concussed player, a grade of severity was assigned according to the Cantu (1986), Colorado Medical Society (1991), and American Academy of Neurology (1997) guidelines.

Main outcome measures: Neuropsychological outcome was indexed through subjective reports of concussion related symptoms, and performance on measures of information processing speed, including the Digit Symbol, Symbol Digit, and Speed of Comprehension tests.

Main results: Irrespective of the classification system used, concussion severity was not related to subsequent neuropsychological outcome. Several concussed players with grade 1 injuries had impaired cognitive function at 10 days, whereas those with more severe grade 3 concussions showed full recovery at the same time after trauma. Subjective reports of symptoms were clear before cognitive status in most cases. Even when concussed players had returned to the levels determined before the season, they were still relatively impaired compared with uninjured controls.

Conclusions: Contemporary classifications of concussion severity did not predict short term cognitive status. Individualised objective assessment of players is recommended to assist return to play decisions. It is important to control for practice effects, as failure to do so may underestimate the effects of the injury.

This abstract was omitted from the published abstracts of the International Symposium on Concussion in Sport (Br J Sports Med 2001;35:367–77).

