Intramuscular haemangioma of the thigh in a basketball player

R A Brown, K Crichton, G M Malouf

Haemangiomas are common benign soft tissue tumours, comprising 7–10% of all soft tissue tumours. Cutaneous haemangiomas, the most common, are usually found in childhood. Intramuscular haemangiomas may present later in life as a cause of persistent symptoms and may present as a perceived sporting injury. Diagnostic ultrasound is an appropriate initial imaging modality for suspected haemangioma, although magnetic resonance imaging is the investigation of choice. Intramuscular haemangioma should be considered in the differential diagnosis of unexplained pain and swelling in a muscle.

In a 570 case series by Geschickter and Keasbey referred to by McNeill and Ray, 370 were cutaneous or mucosal and 10 were intramuscular. Intramuscular haemangiomas make up 0.8% of all haemangiomas. The natural history of haemangiomas is to enlarge slowly. Their growth may be accelerated with a growth spurt or trauma. They can spontaneously regress. Malignant transformation is rare. They are usually detected early. Despite intramuscular lesions being concealed, 94% present before the age of 30. Some reports suggest that both sexes are equally affected although others indicate that the incidence is higher in women and girls. Intramuscular haemangiomas are more common in the lower limbs (42–45%). The thigh is the most common intramuscular site (17–19%).

Wild et al found the quadriceps to be affected in five out of 11 cases of intramuscular haemangioma. Some 72% were found to involve one muscle with an average diameter of 5.5 cm. Watson et al found that 16% of all haemangiomas had more than one site.

Clinically, intramuscular haemangiomas usually present with pain and swelling, with symptoms usually lasting one to five years (range 0–70 years). Haemangiomas may have a purpuric discolouration overlying (from cutaneous extension) the lesion. Superficial dilated veins may also be seen with cutaneous extension. A mass is found in 98% of cases. The mass may be pulsatile or have a bruit. Contraction of the muscle may increase the size of the lesion. The mass is usually moveable transversely but not in the line of the fibres. A history of trauma is uncommon, with tenderness and functional impairment found in about 25%. Over 90% are misdiagnosed before surgery (this was noted in 1957; advances in investigative techniques may have altered this figure). Complications may include a mass...
Intramuscular haemangioma of the thigh

Intramuscular haemangioma of the thigh as decreasing the risk of perivascular or unintentional intra-

allowing visualisation of sclerosant placement closer to another advantage of being detectable by ultrasound, efficacious solution, the sclerosant concentration and there-

ethelium, which causes more intimal damage. With a more concentration, and longer contact time with the endo-

results than liquid sclerosant. Foamed sclerosant displaces with air or carbon dioxide) is thought to produce better efficacy. Sclerotherapy is aimed at obliterating the lumen, ethanol and polidocanol in gastric varices indicate a similar saline, and sodium morrhuate. Studies comparing STS with

treatment of intramuscular haemangioma. Agents that have

differentiate haemangioma from an invasive malignant process. Angiography is helpful in delineating whether there may be a vascular feeder that can be embolised. A group of patients investigated with computed tomography revealed that nine out of 12 lesions were more extensive when explored at surgery.

A review by McNeill et al in 1974 of intramuscular haemangioma revealed:

- better outcome if lesion localised
- good results with complete excision
- partial excision resulted in continued symptoms
- limited success if treated non-operatively
- amputation is a last resort

Partial excision is associated with an 18% recurrence rate because of the infiltrative growth pattern. None meta-

stasised. Some have stated that radiation treatment may be associated with malignant transformation.

Compression sclerotherapy is another option in the treatment of intramuscular haemangioma. Agents that have been used include STS, ethanol, polidocanol, hypertonic saline, and sodium morrhuate. Studies comparing STS with ethanol and polidocanol in gastric varices indicate a similar efficacy. Sclerotherapy is aimed at obliterating the lumen, with replacement of the patent vessel by fibrosis. Success of the treatment depends on many variables including extent of mural damage, thickness of vessel wall, amount of blood in the vein, duration of compression after treatment, sclerosing agent, and technique used. In a review of 40 patients with craniofacial venous malformations, sclerotherapy resulted in clear improvement or cure in 75% and no or slight change in 25%. Winter et al treated 157 patients with haemangioma or vascular malformation with sclerotherapy (one to three injections in 86% of cases); 100% subjective satisfaction was reported. Potential complications include skin necrosis (blistering or ulceration), allergic reaction, bruising, hyperpigmentation, thrombosis of normal veins, neurolysis, and intra-arterial injection. Most complications are the result of extravasation of the sclerosant. Most complications are minor with a rate of less than 10%. It is possible for the vessels to re-form channels.

Foamed sclerosant (formed by mixing liquid sclerosant 1:4 with air or carbon dioxide) is thought to produce better results than liquid sclerosant. Foamed sclerosant displaces blood from the vein, allowing a larger contact area, higher concentration, and longer contact time with the endo-

thelium, which causes more intimal damage. With a more efficacious solution, the sclerosant concentration and therefore complications can be reduced. Foamed sclerosant has another advantage of being detectable by ultrasound, allowing visualisation of sclerosant placement closer to venous junctions. Using ultrasound guidance, the clinician can assess the extent of sclerosis (treatment success) as well as decreasing the risk of perivascular or unintentional intra-

arterial injection.

Sclerotherapy may be used when:

- excision is not possible—for example, lesion is too large or where excision will destroy important tissue
- patient does not want surgery
- there is a need to debulk the tumour before surgery or cosmesis

STS exerts its effects by destroying the endothelium and exposing the highly thrombogenic factor VIII rich sub-
endothelium to the circulation. It may also produce a hypercoagulable state by decreasing protein C and inducing platelets to aggregate. STS generally requires one to three injections usually more than two weeks apart. Unlike ethanol, STS injection causes only minor pain and does not need a general anaesthetic.

OUTCOME

In our patient, compression sclerotherapy (with STS under ultrasound guidance) was performed to both the symptomatic suprapatellar haemangioma and the lateral thigh haemangioma. Four injections were necessary. Currently he can participate in heavy training and competition without pain. The suprapatellar swelling and lateral thigh discoloura-

tion persists. The sclerosant therapy revealed that the two lesions actually communicated. There is an option for repeated injections.

Take home message

- Differential diagnosis of pain and swelling in a muscle includes intramuscular haemangioma
- Ultrasound can diagnose the lesion but may not be able to delineate its extent
- The treatment of choice is total excision
- Sclerotherapy has a role in the management of intramuscular haemangioma when excision is not possible

REFERENCES


www.bjsportmed.com

Accepted 28 April 2003


