Mutations in the hereditary haemochromatosis gene HFE in professional endurance athletes

J L Chicharro, J Hoyos, F Gómez-Gallego, J G Villa, F Bandrés, P Celaya, F Jiménez, J M Alonso, A Córdova, A Lucia

Background: Hereditary haemochromatosis, a disease that affects iron metabolism, progresses with a greater or lesser tendency to induce iron overload, possibly leading to severe organ dysfunction. Most elite endurance athletes take iron supplements during their active sporting life, which could aggravate this condition.

Objective: To determine the prevalence and discuss potential clinical implications of mutations of HFE (the gene responsible for hereditary haemochromatosis) in endurance athletes.

Methods: Basal concentrations of iron, ferritin, and transferrin and transferrin saturation were determined in the period before competition in 65 highly trained athletes. Possible mutations in the HFE gene were evaluated in each subject by extracting genomic DNA from peripheral blood. The restriction enzymes SnaBl and BclI were used to detect the mutations 845G→A (C282Y) and 187C→G (H63D).

Results: Our findings indicate a high prevalence of HFE gene mutations in this population (49.2%) compared with sedentary controls (33.5%). No association was detected in the athletes between mutations and blood iron markers.

Conclusions: The findings support the need to assess regularly iron stores in elite endurance athletes.

MATERIALS AND METHODS

Subjects
Sixty five elite, male athletes (50 professional road cyclists and 15 Olympic class endurance runners) from Spain were enrolled in the study. Written consent was obtained from each subject according to the guidelines of the Universidad Complutense, Madrid.

The mean (SD) age, height, mass, and maximum oxygen consumption (V\textsubscript{O}\textsubscript{2,max}) of the athletes were: 26 (3) years, 178 (5) cm, 66.7 (6.1) kg, and 71.8 (7) ml/kg/min respectively. The subjects were previously confirmed to be healthy by a medical examination including electrocardiography and cardiac ultrasonography. No subject had a familial or personal history of endocrine or metabolic disease. No exogenous substances had ever been detected in anti-doping checks performed in the subjects by the corresponding official organisations. Most (90%) of the athletes took iron supplements (not including the C282Y/H63D heterozygous subject (see the Results section)) at a mean dose of 105 mg Fe on alternate days for at least six months of the year. Doses and treatment regimens were similar in each subject.

A control group (n = 134) composed of random sedentary men from Spain also entered the study.

Measurement of blood iron markers in the athletes
Fasting blood samples were collected from all the athletes after at least three rest days during the period before competition. When available, serum ferritin concentrations
Haemochromatosis and endurance athletes

One minute, 55 °C for 45 seconds, 72 °C for one minute, and a phoresis on 2% agarose gels stained with ethidium bromide

Results

The digested fragments were visualised by electrodenaturation at 95 °C for five minutes; 35 cycles at 95 °C for conditions for both mutations were as follows: initial

\[845G^{+}\text{Sna BI} \]

\[187C^{+}\text{Bcl I} \]

The samples applied were: lane L, molecular mass markers (ladder 100); lane 1, H63D (−/−); lane 2, H63D (+/−); lane 3, H63D (+/+); lane 4, C282Y (−/−); lane 5, C282Y (+/+).

Statistical analysis

All variables were tested for normality. We compared the distribution of HFE genotypes in both athlete and control groups with the Fisher exact test. Ferritin data for athletes were log transformed to normalise the distribution before analysis. Differences between genotypes in the athlete group were identified by one way analysis of variance. In this group, the paired \(t \) test was used to compare the variables according to the presence or lack of mutations. Correlation between paired quantitative data was assessed by the Spearman test. All statistical analyses were performed using SPSS 9.0 software for Windows. The level of significance was set at 0.05.

RESULTS

Table 1 shows the prevalence of the different HFE gene mutations in the two groups. The proportion of subjects without a HFE gene mutation was significantly higher in the control group than in the athlete group (66.5% vs 50.8%; \(p = 0.03 \)). H63D heterozygosity occurred in 41.5% of the athletes and 24.6% of the controls (\(p = 0.01 \)). No other significant difference was found between groups. No homozygote for the C282Y mutation was detected in athletes or controls.

Table 2 shows biometric variables, maximum aerobic capacity, and blood iron markers in subgroups of athletes established according to the type of HFE mutation carried. No significant differences in any of the variables (\(p > 0.05 \)) were detected among subgroups.

The different variables were also compared in the athlete group in terms of the presence or absence of mutations (table 3). No differences were observed among the subgroups.

DISCUSSION

The most important finding of our study was the high proportion of endurance athletes with a mutation in the HFE gene (49.2%), 29 (44.6%) of whom carried an H63D mutation and three (4.6%) a C282Y mutation. The prevalence of H63D heterozygosity was significantly higher (\(p = 0.01 \)) than in controls (41.5% vs 24.6%). Our results are in agreement with those of previous research showing that in the general population of Spain the prevalence of the H63D mutation ranges from 16% to 30.4%, and C282Y mutations occur in 2% to 4.4% depending in both cases on the geographical region.

Thus, the prevalence observed here (especially for H63D) is much higher than that previously reported in non-athletic subjects, yet is similar to rates recently observed by Deugnier et al., who also warned of a higher prevalence of H63D mutations in French cyclists compared with healthy controls.

It remains to be seen if these mutations afford any metabolic advantage to these athletes during exertion. We detected no significant differences in \(\text{VO}_2\text{MAX} \) between subjects with or without the mutation, thus we cannot confirm this hypothesis.

Although there appeared to be no relation in the athlete group between the presence and absence of mutation with respect to the blood iron markers, it is observed that 61.1% of

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Athletes [n = 65]</th>
<th>Controls [n = 134]</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt/wt</td>
<td>50.8</td>
<td>66.5</td>
<td>0.03</td>
</tr>
<tr>
<td>C282Y/wt</td>
<td>3.1</td>
<td>4.5</td>
<td>NS</td>
</tr>
<tr>
<td>H63D/wt</td>
<td>41.5</td>
<td>24.6</td>
<td>0.01</td>
</tr>
<tr>
<td>C282Y/H63D</td>
<td>1.5</td>
<td>0.7</td>
<td>NS</td>
</tr>
<tr>
<td>H63D/H63D</td>
<td>3.1</td>
<td>3.7</td>
<td>NS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Number of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt/wt</td>
<td>WLTI types; C282Y/wt, heterozygates for the C282Y mutation; H63D/wt, heterozygotes for the H63D mutation; C282Y/H63D, compound heterozygotes; H63D/H63D, homozygotes for the H63D mutation; NS, not significant.</td>
</tr>
</tbody>
</table>
Table 2 Biometric variables, maximum aerobic capacity, and blood iron markers in athletes (n = 65) grouped by HFE genotypes

<table>
<thead>
<tr>
<th></th>
<th>wt/wt</th>
<th>C282Y/wt</th>
<th>H63D/wt</th>
<th>C282Y/H63D</th>
<th>H63D/H63D</th>
<th>Normal ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>33</td>
<td>2</td>
<td>27</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>26 (3)</td>
<td>28 (2)</td>
<td>26 (4)</td>
<td>27</td>
<td>27 (1)</td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>178 (6)</td>
<td>175 (2)</td>
<td>176 (6)</td>
<td>183</td>
<td>172 (3)</td>
<td></td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>67.4 (5.2)</td>
<td>61.0 (0.5)</td>
<td>67.1 (6.6)</td>
<td>70</td>
<td>55.5 (2.1)</td>
<td></td>
</tr>
<tr>
<td>VO2MAX (ml/kg/min)</td>
<td>70.8 (6.8)</td>
<td>75.6 (0.9)</td>
<td>72.3 (6.6)</td>
<td>81.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe (µmol/l)</td>
<td>19.3 (5.7)</td>
<td>14.1 (0.3)</td>
<td>19.0 (6.4)</td>
<td>22.2</td>
<td>19.9 (9.9)</td>
<td>13–32</td>
</tr>
<tr>
<td>Transferrin (g/l)</td>
<td>224.7 (153.2)</td>
<td>210.0 (14.4)</td>
<td>252.4 (148.9)</td>
<td>374</td>
<td>471.0 (80.6)</td>
<td>20–300</td>
</tr>
<tr>
<td>TSI (%)</td>
<td>35.8 (8.0)</td>
<td>35.1</td>
<td>35.1 (12.1)</td>
<td>55.9</td>
<td></td>
<td>24–45</td>
</tr>
</tbody>
</table>

Values are mean (SD). No significant differences in any of the variables (p>0.05) were detected among the athlete subgroups.

Table 3 Comparison of variables according to the presence or absence of HFE gene mutations

<table>
<thead>
<tr>
<th></th>
<th>HFE mutation</th>
<th>No HFE mutation</th>
<th>Normal ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>26 (3)</td>
<td>26 (3)</td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>178 (6)</td>
<td>178 (6)</td>
<td></td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>66.1 (6.9)</td>
<td>67.4 (5.2)</td>
<td></td>
</tr>
<tr>
<td>VO2MAX (ml/kg/min)</td>
<td>72.8 (6.5)</td>
<td>70.8 (6.8)</td>
<td></td>
</tr>
<tr>
<td>Fe (µmol/l)</td>
<td>18.8 (6.3)</td>
<td>19.3 (5.7)</td>
<td></td>
</tr>
<tr>
<td>Ferritin (µg/l)</td>
<td>267.2 (151.3)</td>
<td>224.7 (153.2)</td>
<td></td>
</tr>
<tr>
<td>Transferrin (g/l)</td>
<td>218.8 (27.6)</td>
<td>224.4 (23.8)</td>
<td></td>
</tr>
<tr>
<td>TSI (%)</td>
<td>36.2 (12.4)</td>
<td>36.1 (10.8)</td>
<td></td>
</tr>
</tbody>
</table>

Values are mean (SD). No significant differences in any of the variables (p>0.05) were detected among the athlete subgroups.

Take home message

The prevalence of mutations in the HFE gene (responsible for hereditary haemochromatosis, a disease in which the body’s iron stores are increased) seems to be high among elite endurance athletes (about 49%). As most elite endurance athletes take iron supplements, regular assessment of their iron reserves is recommended to prevent iatrogenic iron overload.

REFERENCES

ACKNOWLEDGEMENTS

We thank Ana Burton for translation of the manuscript.

Authors’ affiliations

J L Chicharro, Departamento de Enfermería, Universidad Complutense, Madrid, Spain
J Hoyos, Asociación Deportiva Banesto, Madrid
F Gómez-Gallego, F Bandrés, Laboratorio de Biopatología, Departamento de Toxicología y Legislación Sanitaria, Universidad Complutense
J G Villa, INEF de Castilla y León, Universidad de León, León, Spain
P Celaya, Grupo Deportivo ONCE, Spain
F Jiménez, Universidad de Castilla-La Mancha, Spain
J M Alonso, Servicios Médicos RFEA, Madrid
A Córdova, Departamento de Fisiología, Universidad de Valladolid, Spain
A Luca, Department of Physiology, Universidad Europea de Madrid, Madrid
Cardiovascular stress on an elite basketball referee during neonatal competition

A S Leicht

This case report examined the cardiovascular stress imposed on an experienced elite basketball referee during national competition. The average heart rate was similar for all matches, approximated 73% of maximum heart rate, and was experienced for most (>63%) of the match. Similar relative exercise intensity was demonstrated regardless of match play (men’s v women’s) and officiating type (two v three-referee). Further study is needed to document the physiological characteristics of elite basketball referees for greater performance.

(Br J Sports Med 2004;38:e10) http://bjsm.bmjournals.com/cgi/content/full/38/4/e10

An unusual presentation of immersion foot

D M Macgregor

We report a case of “green foot” in a child with a plaster cast applied for a fractured metatarsal who subsequently represented with circulatory compromise. The foot was green and smelly and profuse Pseudomonas aeruginosa was cultured. The infection cleared with simple exposure to air. Perhaps this diagnosis should be considered in patients presenting with circulatory compromise in a cast as severe infection can result in amputation.

(Br J Sports Med 2004;38:e11) http://bjsm.bmjournals.com/cgi/content/full/38/4/e11
Sodium ingestion and the prevention of hyponatraemia during exercise

The study of Twerenbold et al is important for a number of reasons, not all of which may have been emphasised sufficiently by the authors. Firstly, it confirms that a rate of fluid intake of 1000 ml/h is too high for a group of female runners running at ~10 km/h and who would therefore complete a 42 km marathon in about 4.25 hours. As the athletes drank 4 litres and gained 2 kg during the trial, their average rate of weight loss (as opposed to sweat rate) was about 500 ml/h. As not all of the weight lost during exercise is sweat and as much as 1–3 kg of this weight loss may result from fuel and water losses that do not contribute to dehydration, the absolute maximum rate at which these athletes should have ingested fluid during exercise was probably even less than 500 ml/h. This is substantially less than the drinking guidelines of the American College of Sports Medicine and the Gatorade Sports Science Institute and the currently established “best practice”.

The sodium requirements of athletes who are specifically advised not to overdrink during exercise to ensure sodium chloride is ingested are less. However, they do not develop hyponatraemic encephalopathy which is an entirely different question, which cannot be answered with the study design chosen by these authors.

For example, the presence of a control group who drank according to the dictates of thirst (“ad libitum”) and not according to the guidelines of influential sports medical and commercial organisations, so that they may be less prone to overdrink and so to gain weight during exercise, would have established that athletes who lose more than 1–3 kg during exercise do not develop symptomatic hyponatraemic encephalopathy even though they are both dehydrated and sodium deficient. Rather, they are more likely to finish such races with raised serum sodium concentrations.

I would rather argue that a fundamental feature of all prospective trials that aim to evaluate a novel intervention such as the role of sodium ingestion in the prevention of hyponatraemia during exercise should be to compare the new intervention with the currently established “best practice”.

As the currently established best practice is not to ingest fluid at such high rates that weight is gained during exercise, because this practice can produce a fatal outcome, so this study design should, in retrospect, not have been sanctioned. Rather, the control group in the study should have ingested fluid according to guidelines based on the strongest body of current information. It is, for obvious reasons, my biased opinion that the guidelines that come closest to a defendable evidence base are those that have been recently accepted by the United States Track and Field and the International Marathon Medical Interest Group.

Fortunately the data of Twerenbold et al do allow some calculations to estimate the likely value of the extra sodium that was ingested by two of their groups. Thus, the athletes in their study who ingested 2.8 litres of 54 kg. According to the formula of Montain et al, their predicted extracellular fluid (ECF) volume would be about 14.5 litres (25% of body weight). As the starting serum (and ECF) sodium concentration ([Na⁺]) in the three groups of runners was ~137 mmol/l (table 3 of their article), the average total ECF Na⁺ content of the three experimental groups was 1989–1993 mmol at the start of the race. As weights increased by 1.8–2.1 kg in the three groups during exercise (table 3 of their article), the increases in ECF volume would have been 450–525 ml in the respective groups, assuming that the ECF increased in proportion to the increase in total body water (TBW). Multiplying this new ECF volume by the serum [Na⁺] after the race gives the new total ECF Na⁺ content after the race. As shown in table 1, the total ECF Na⁺ content increased by 34 mmol/l in the group that ingested the high salt drink (H) during the race, but fell by 23 mmol/l in the group drinking water (W). As all groups ran for about four hours, according to these calculations based on the above assumptions, the hourly rates of Na⁺ loss would have varied from 6 to 21 mmol/h, giving a sweat [Na⁺] of 12–42 mmol/l in the W and H groups respectively (as their total sweat losses were ~2 litres in each group).

The clear paradox identified by the calculations in table 1 is that (a) the total Na⁺ loss apparently increases with increased Na⁺ intake and (b) the estimated Na⁺ loss in the group who ingested only water during the race (W) is less than one third of that in the group who ingested the most Na⁺ (H) during the race.

As these calculations are based on two real measurements (body weight changes and changes in plasma [Na⁺]), this apparently ludicrous conclusion can only be explained if (a) Na⁺ ingestion during exercise increases whole body Na⁺ losses in sweat and urine or (b) the estimated ECF volume in the W group after exercise is less than the value calculated. That is, specifically in the W group, the ECF volume contracted despite an increase in TBW of 1.9 litres. Indeed, this response is to be expected. There is consistent evidence that the response of the ECF and the intracellular fluid (ICF) volumes to fluid ingestion during prolonged exercise are influenced by the Na⁺ content of the ingested fluid, so that the ECF volume is likely to rise if the ingested fluid is ingested, to fall less if either water or a dilute Na⁺ drink is ingested, or to expand if a concentrated (50–100 mmol/l) Na⁺ drink is ingested at the same rate that body weight is lost during exercise. In the latter case, any reduction in the TBW appears to come from a reduction in the ICF.

For example, if each group did indeed lose 84 mmol Na⁺ as did group H (table 1), a value that seems eminently reasonable as it equates to a quite reasonable sweat [Na⁺] of ~40 mmol/l, then the true ECF volume in the W group after the race would have been 14.5 litres—that is, it is unchanged from the starting value. This value (equation 2) is calculated as: (pre-race ECF Na⁺ content − 84) in mmol divided by post-race serum [Na⁺] in mmol/l.

Indeed, if subjects in the W group did lose 84 mmol Na⁺ during the race but also had a post-race ECF volume expanded to 14.95 litres, then their post-race [Na⁺] would have been even lower (128 mmol/l) than that actually measured after the race (132 mmol/l; table 1). It is water loss that explains these findings and, indeed, even if the Na⁺ content were to rise (e.g. Na⁺ deficiency in the H group), they would not have exhibited the early symptoms of hyponatraemic encephalopathy. That they did not have such low serum [Na⁺] indicates the importance of small changes in ECF volume (in this case only 450 ml or ~3% of the total ECF volume) in determining the extent to which the serum [Na⁺] changes during prolonged exercise in which subjects both sweat and ingest fluid to excess.

Unfortunately, the vital importance of these small changes in ECF volume in determining whether hyponatraemic encephalopathy will develop in those who overdrink during exercise is completely ignored by those who argue incorrectly that it is the Na⁺ deficit that determines the extent to which the serum [Na⁺] falls in those who develop hyponatraemia during exercise. This calculation elegantly shows why small changes in ECF volume determine whether or not hyponatraemic

LETTER

If you have a burning desire to respond to a paper published in *Br J Sports Med*, why not make use of our “rapid response” option? Log on to our website (www.bjpsm.com), find the paper that interests you, click on “Full text” and send your response by email by clicking on “’eLetters’ submit a response.” Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “Read eLetters” on our homepage.
encephalopathy will develop in those who overdrink, regardless of whether or not they also incur a Na⁺ deficit either during exercise¹⁷⁻²¹ or at rest.⁸⁻¹⁰ A recent paper¹¹ confirms these predictions by showing that mathematical modelling supports the argument that changes in TBW exert a much greater effect on serum [Na⁺] than does whole body Na⁺ content in those who overdrink and hence gain weight during exercise. Perhaps the point of these calculations is to show that it is not possible to calculate the state of Na⁺ balance in athletes during exercise and so to determine whether or not athletes have developed a Na⁺ deficit, if one simply by measuring serum [Na⁺]. This is because the ECF volume will not be the same before, during, and after exercise and will change depending on the nature of the fluid ingested and the extent of any fluid deficit or excess that develops during exercise.¹¹⁻¹² But more importantly, these calculations clearly show why the regulation of the TBW and the ECF volume will have a much greater influence on serum [Na⁺] than will either the expected Na⁺ losses in sweat or the amount of Na⁺ ingested from sodium-containing sports drinks.¹³⁻¹⁴

For example, a 1 litre (7%) reduction in the ECF volume would "release" 140 mmol Na⁺ into the contracted ECF volume. This means that it is possible to lose 140 mmol Na⁺ in sweat and urine without any change in serum [Na⁺] provided that the ECF volume were to contract by only 7%. If sweat [Na⁺] is about 40 mmol/l, as appears to have been the case in this study of Twerenbold et al., then this 140 mmol is the equivalent of the Na⁺ content of about 3.5 litres of sweat.

As athletes in this study sweated at a maximum rate of only 500 ml/h when running at 10 km/h, this means that simply by reducing their ECF volume by 1 litre, those athletes could have maintained their pre-race serum [Na⁺] while running for seven hours and drinking just sufficient water to allow for a 1 litre reduction in ECF volume and without requiring any Na⁺ replacement whatsoever. This simple calculation explains why those endurance athletes who, before about 1969, were advised either not to drink at all, or only sparingly during exercise, always finished the races with raised serum [Na⁺] despite having incurred what might have been quite sizeable Na⁺ deficits.

In contrast, athletes in this study who believed the incorrect advice that ingesting Na⁺ at high rates is essential to maintain a normal serum [Na⁺] during exercise,¹³⁻¹⁴ or ate,¹²⁻¹⁰ so they overdrank sufficiently to increase their ECF volume by 1 litre, would need to ingest and retain at least an additional 140 mmol Na⁺ in addition to the ~80 mmol lost in sweat (table 1). This is equivalent to the Na⁺ content of 1.2 litres of the low and 7.5 litres of the high sodium drinks respectively in this trial. To maintain fluid balance in this four hour trial when drinking at those high rates and sweating at about 500 ml/h, they would then need to urinate at rates of 1375–2600 ml/h. Both of these rates exceed the maximum at which human kidneys are able to produce urine at rest,¹¹ let alone during and after prolonged exercise.¹¹⁻¹² Drunking at such rates would therefore only lead to progressive fluid accumulation and ultimately death from hypotonic encephalopathy.¹¹

In summary, these calculations explain why contraction of the ECF in athletes who lose body weight during exercise will maintain the serum [Na⁺] even in the face of quite large and unreplaceable Na⁺ loss in sweat, and why the ingestion of sodium-containing sports drinks in the vain hope of matching the rates of Na⁺ loss in sweat can only lead to fluid retention and progressive hyponatraemia, as elegantly shown by this study.¹¹ Indeed if this inappropriate behaviour is not corrected, then the result will be death from hypotonic encephalopathy,¹¹ which, as these calculations and this study again show, cannot occur without the presence of distinct fluid overload.¹¹⁻¹²

Finally, it is important to note that, even though Na⁺ ingestion marginally increased serum [Na⁺] in the group that ingested the most concentrated Na⁺ drink, this practice was without benefit as running performances were unaltered by Na⁺ ingestion, and the incidence of symptoms was no different between the groups as no athletes reportedly developed symptoms. However, the symptoms of mild hyponatraemic encephalopathy are mild and may not have been sought with sufficient diligence. For example, all subjects, myself included, in our study in which mild hyponatraemia was induced by fluid overload at rest,¹¹ developed quite disabling symptoms at serum [Na⁺] of ~136 mmol/l or lower. Indeed it would have been most interesting to determine whether the presence of subtle mental symptoms was different in the three groups in this study, as all had similar degrees of fluid overload despite different serum [Na⁺]. If the symptoms in this condition are due purely to fluid overload, then the incidence of symptoms should have been the same in all groups despite different serum [Na⁺]. Alternatively, if the symptoms are related to the degree of hyponatraemia, then they should have been most obvious in the W group, who finished with the lowest post-race serum [Na⁺]. My bias would be to expect that the extent of any symptoms are more likely related to the degree of fluid overload, and hence the increase in the ECF, than to the level to which the serum [Na⁺] has been reduced.

T Noakes

Correspondence to: University of Cape Town, Research Unit for Exercise Science and Sports Medicine, Sports Science of South Africa, PO Box 115, Newlands 7725, South Africa; tnoakes@ sports.uct.ac.za
doi: 10.1136/bjsm.2004.014191
Conflict of interest: none declared

References

<p>| Table 1 Sodium balance calculations for three groups of runners running at ~10 km/h for four hours while ingesting solutions with different Na⁺ |</p>
<table>
<thead>
<tr>
<th>Pre-race (mmol/l) (A)</th>
<th>Pre-race ECF volume (litres) (B)</th>
<th>Pre-race Na⁺ content (mmol) (A)</th>
<th>Post-race Na⁺ content (mmol) (B)</th>
<th>Post-race ECF volume (litres) (D)</th>
<th>Post-race Na⁺ content (mmol) (D)</th>
<th>Post-race Na⁺ balance (mmol) (E)</th>
<th>Amount of Na⁺ ingested (mmol) (F)</th>
<th>Apparent amount (mmol) lost due to fluid losses during exercise (mmol/h) (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>137.3</td>
<td>14.50*</td>
<td>1991</td>
<td>134.8</td>
<td>15.02</td>
<td>2025</td>
<td>+34</td>
<td>118+</td>
</tr>
<tr>
<td>L</td>
<td>137.2</td>
<td>14.50</td>
<td>1989</td>
<td>132.8</td>
<td>14.95</td>
<td>1985</td>
<td>-4</td>
<td>71</td>
</tr>
<tr>
<td>W</td>
<td>137.5</td>
<td>14.50</td>
<td>1993</td>
<td>131.8</td>
<td>14.95</td>
<td>1970</td>
<td>-23</td>
<td>0</td>
</tr>
</tbody>
</table>

H: High sodium intake; L: low sodium intake; W: water during exercise. *Based on 25% of mean body weight of 57.7 kg for the total group of runners. **Ratios of different fluid intakes were unaltered by Na⁺ ingestion and the extent of any fluid deficit or excess that develops during exercise.**

| *Table 2 of Twerenbold et al.* to convert mg sodium (table 2) into mmol sodium, divide the molecular weight of sodium (22.99).

Wescott MR. Exercise-associated hyponatraemia: sensitivity of plasma Na+ concentration to total body water, change in total body water mass and sum of exchangeable Na+ and K. Sports Med 2004; in press.

BOOK REVIEWS

Tennis

It is widely recognised that each sport has its own unique demands and injuries. Therefore the IOC, IFF, ATP, WTA, and Society for Tennis Medicine and Science should be congratulated on producing, in this publication, a comprehensive overview of tennis sports medicine. Together they have assembled an impressive array of experts in this field to write succinct and relevant chapters.

Every aspect of tennis is covered to cater for a broad range of readers, including players themselves. Some areas are covered in a high level of technical detail to please the biomechanists, in particular. However, some of the sports medicine is basic in concept and lacking significant evidence based validation.

Nevertheless, I would highly recommend this book to any health professional who treats a large number of tennis players. Most chapters provide a link between common sports medicine problems and their occurrence in tennis, including conditions that are unique to this sport. At times, some authors are somewhat optimistic with their view of recovery time from surgery—for example, three weeks for arthroscopic debri-dement of the infrapatellar fat pad.

Overall it is well presented with relevant and useful photographs and diagrams to aid the reader, and each chapter gives a list of further recommended reading. Unfortunately the book does not provide an answer to where 14 million tennis balls go, imported each year into Australia, as discussed by the editor recently!

Dying to win

Dying to win gives an eye opening account of the extent to which drugs play a major role in sport. Doping is not new and has been used in sport since ancient Olympic times; it is just that drug use in modern times is at such a level of sophistication, it is now an industry in its own right. The book describes the privileged position sport holds in society, having appeal for both the participant and the spectator. This has led to the massive media interest, commercialism, professional-ism, and governmental regulation and manipulation. Economic pressure in the industrialised world and governmental propaganda in the former East Germany, and more recently China, have fuelled an increasing pharmaceutical intervention in sport. With the fall of the GDR, the world saw for the first time what it had long suspected, the extent of systematic doping on a State run basis, and the most interesting fact is that the East Germans had broken world records! Further, the book takes a look at the next big issue surrounding drugs in sport—genetic engineering.

Dying to win does not just describe the evolution of doping. It explains the complex relation between anti-doping policy, implementation of those policies, and the role of governments, the IOC, and international and national sporting organisations. With the ever increasing involvement of the legal profession, a vicious circle occurs: it becomes too costly for sporting organisations to fight court battles, with their reliance on Government funding depending on results and punishments set in accordance with what will stand up in courts. This all leads to the relative inertia of the governing bodies to be pro-active in the anti-dugs campaign. The inception of the World Anti-Doping Agency (WADA) after the 1998 Winter Olympics das fiasco provided a way forward to standardise and implement anti-doping policy across the world by an independent body.

Problems and solutions to anti-doping policy are addressed. The major problem is inadequate definition of doping—to quote Arthur Gold “The definition lies not in words but in integrity of character.”. It is interesting to note that those behind the athlete, namely coach, administrators, medical profession, and scientists, all seem to lose perspective along with their ethics and “integrity of character” when the race for “gold” is on.

Dying to win suggests that these people should be held just as accountable as the athletes themselves. Another unfortunate aspect of anti-doping policy is the difficulty in detecting some abused drugs and the fact that these strategies often lay behind the ability of the pharmaceutical industry to develop new drugs, often for genuine medical reasons but with the unfortunate ability to enhance performance. Education is proposed as a key aspect to anti-doping policy, and parallels with its success in the use of recreational drugs are made. Governments also play a role in limiting supply, decreasing demand for drugs, and the implementation of independent bodies to carry out testing. The success of anti-doping policy is also hard to measure. Fewer positive tests may simply reflect a move to less detectable methods rather than a decrease in use, and success may be better measured in terms of fewer world records.

Dying to win gives an accurate account of the problem of doping in sport and the difficulties and complexities in finding solutions to the problems. It makes interesting and provocative reading for all concerned in sport, from the athlete and coach to the sport administrator, the medical profession, and governments.
1st World Congress on Sports Injury Prevention
23–25 June 2005, Oslo, Norway
This congress will provide the world’s leading sports medicine experts with an opportunity to present their work to an international audience made up of physi-cians, therapists, scientists, and coaches. The congress will present scientific information on sports injury epidemiology, risk factors, injury mechanisms and injury prevention methods with a multidisciplinary perspective. Panel discussions will conclude symposia in key areas providing recommendations to address the prevention issue in relation to particular injuries and sports.
Further details: Oslo Sports Trauma Research Centre and Department of Sports Medicine, University of Sport and Physical Education, Sognsvien 220, 0806 Oslo, Norway. Email: 2005congress@nih.no; website: www.ostrc.no

Osteosynthese International 2005
15–17 September 2005, Curiohaus, Hamburg
Congress-Chairman: Johannes M. Rueger, M.D., Professor and Chair Topics:
- Innovations in intramedullary osteosynthesis
- New frontiers in osteoporosis and fracture treatment
- Current trauma research
- Special topic: Recent development in pelvic and acetabular fractures
Abstract submission deadline: 31 March 2005
Further details: INTERCONGRESS GmbH, Martin Berndt, Düsseldorfer Str. 101, 40545 Düsseldorf-Germany. Tel: +49 211 585897-80; fax: +49 211 585897-99; email: martin.berndt@intercongress.de; website: www.ostroint2005.de

4th European Sports Medicine Congress
13–15 October 2005, Lemesos, Cyprus
Further details: Email: pyrgos.com@cytanet.com.cy

BASEM Conference 2006
5–7 October 2006, Oxford, UK
Further details: Email: basemoffice@compuserve.com

CORRECTIONS
doi: 10.1136/bjsm.2004.003921corr1
doi: 10.1136/bjsm.2004.000044corr1
Dadebo B, White J, George K P. A survey of flexibility training protocols and hamstring strains in professional football clubs in England (Br J Sports Med 2004;38:388–94). The multiple regression equation within the Abstract section of this paper was published incorrectly. The correct equation is: 19 HSR = 37.79−(0.33SHT+10.05SSP+2.24STE) ± 2.34.
We apologise for this error.
doi: 10.1136/bjsm.2004.010876corr1
Sran M M. To treat or not to treat: new evidence for the effectiveness of manual therapy (Br J Sports Med 2004;38:521–5). The volume number for reference 23 (Sran et al) was incorrectly published as 24; the correct volume number is 29.
In Table 2 the results for Giles and Muller should read: Greater short term benefit for back pain with manipulation, but not for neck pain. Acupuncture more effective for neck pain.
In the section “Definitions and search strategy” in the first line of paragraph 2 should read: I searched Medline, Cinahl, and Embase databases for randomised clinical trials comparing manual therapy, including spinal joint mobilisation (with or without manipulation) or manipulation only with other conservative treatments for back or neck pain.
We apologise for these errors.