Anatomical location of athletic injuries during training: a prospective two year study in 2701 athletes

In a review of risk factors for lower extremity injury, it was said that alignment of the hip, knee, and ankle has received substantial interest as a potential risk factor. We aimed to quantify the anatomical location of athletic injuries produced during training in order to confirm whether lower extremity injuries are the most common. A second aim was to detect if the knee was the most commonly injured anatomical site in the lower extremity.

We recorded the anatomical location of the training injuries of 2701 athletes in a prospective study (from January 2003 to January 2005). Written informed consent was obtained from the subjects. We studied athletes who trained a minimum of 10 hours a week. The mean (SD) age of the subjects was 39.62 (12.98) years (range 14–63).

We recorded the anatomical location of the injuries suffered exclusively while training; these numbered 781. The injuries were most often found in the lower extremities (n = 660; 84.5%), followed by the vertebral column (n = 58; 7.4%), the upper extremities (n = 44; 5.6%), the trunk (n = 14; 1.8%), and the hand (n = 5; 0.6%).

In the lower extremities, the injuries were most often found in the knee (n = 234; 35.4%), followed by the ankle (n = 169; 25.6%), the foot (n = 124; 18.8%), the thigh (n = 70; 10.6%), the iliac region (n = 40; 6.1%), and the leg (n = 23; 3.5%). The injuries in the vertebral column were most often found in the lumbar region (n = 30; 51.7%), followed by the thoracic (n = 17; 29.3%) and cervical (n = 11; 19.0%) regions. In the upper extremities, the injuries were most often found in the shoulder (n = 19; 43.2%), followed by the forearm (n = 17; 38.6%), the arm (n = 13; 29.5%), and the hand (n = 4; 9.1%).

Therefore this study confirms that the knee is the most commonly injured anatomical site during athletic training.

J A Sanchis-Gimeno, E Casas-Roman, C Garcia-Campero, R Hurtado-Fernandez, L Aparicio-Bellver
University of Valencia, Valencia, Spain

Correspondence to: Professor Sanchis-Gimeno, Depto Anatomia y Embriologia Humana, Facultad de Medicina, Apartado correo 15038, Valencia 46080, Spain; juan.sanchis@uv.es
doi: 10.1136/bjsm.2005.019125

Competing interests: none declared

Reference

Joint motion: clinical measurement and evaluation


Over the past five years more than a dozen books have appeared on how to measure joint range of motion. One of the least expensive but most enjoyable of these is Roger Soames’ handy guide to measuring joint motion aimed at the student, clinician, therapist, trainer, or anyone interested in measuring range of joint motion. Introductory chapters cover joint structure and function, joint flexibility and motion, and the principles of measurement. The main chapters describe how to measure the range of motion of the temporomandibular articulation and the joints of the pectoral girdle, vertebral column, and upper and lower extremities, including the hand and foot.

I enjoyed the many helpful line drawings and photographs that illustrate this small book and found them helpful. The drawings are usually self explanatory and make their points well. I admit, however, that even after 30 years of biomechanics research, I did occasionally have to puzzle over an occasional view until I spotted the salient anatomical clues. There are a few graphical inconsistencies. Cartilage surfaces are often, but not always, shown diagrammatically in colour. Likewise, joint motion is usually depicted by self explanatory arrows, but sometimes by an unexplained dash-dot line. The composition and quality of the many photographs are excellent. Indeed, some seem to burn themselves into one’s visual memory, which should be helpful for students trying to remember the joint points. Joint range of motion is, of course, measured clinically using a goniometer. Instead of cluttering his photographs with this unsightly device, the author wisely chose to describe how the goniometer is used to make the measurement in the accompanying text. As a practical point, I wondered how many different sizes of goniometer he feels he needs to measure motion accurately in joints varying in size from the distal interphalangeal joint to the hip joint.

I found the descriptions of the anatomical structures resisting movement of a joint in its end range useful, as were the tables showing the ranges of joint motion needed for different activities of daily living. A weakness, easily remedied, was the incomplete literature review describing how age affects joint motion in the elderly. A minor quibble involves the omission of age units throughout the text. An example is the section that first reports the knee range of motion in newborn children and then informs us that “by age 2 full extension is possible”—I had to guess whether that meant two weeks, months, or years. In summary, the strengths far outweigh any weaknesses, and this book should prove especially popular with students and those who measure joint range of motion on a daily basis.
no mention of associated seronegative arthropathy in cases of bilateral plantar fasciitis. The final section of the book includes about 10 clinical algorithms for evaluation of musculoskeletal problems, based on different body parts. These are then subdivided into acute and chronic. There are accompanying clinical photographs and in some cases radiographs with line diagrams to help on-cut the inexperienced user to the underlying bony anatomy. The algorithms are generally well done, but the clinical photographs would be easier to correlate with pathology if they had arrows to specific painful body sites with common diagnostic entities, rather than the coding that is used.

The principal strength of this book is its consistent format, with subdivisions that make for easy searching of critical information. The two pages per topic are easy to photocopy as patient information sheets. Its shortcomings relate to its heavy North American bias (but then this is its principal market), and the absence of some important clinical entities—for example, I could not find any reference to triangular fibrocartilage tears of the wrist. Also, the list of differential diagnoses is often quite long, without any further indication as to their importance. In this respect, the tables in Brukner and Kahan’s textbook indicating “common”, “less common”, and “not to be missed” pathologies are very helpful. README codes would be worth adding to the ICD codes.

Who could benefit from reading it? Doctors sitting diploma or fellowship exams will find some value in not missing the key basic points on various clinical entities. However, they will need to look further for a full perspective on various problems. The material is useful as patient handouts, and is a good alternative to their trawling the internet. Senior clinicians wanting a snappy update on a problem they may not have seen recently may also find it of benefit.

Overall, this is an excellent idea that has been competently brought to print. Future editions have the task of providing a more comprehensive world view, plus updating entries based on the continued advances in clinical knowledge.

Rating
- Presentation 17/20
- Comprehensiveness 17/20
- Readability 18/20
- Relevance 18/20
- Evidence basis 17/20
- Total 87/100

C Milne

CALENDAR OF EVENTS

Osteosynthese International 2005
15 – 17 September 2005, Curioshaus, Hamburg
Congress-Chairman: Johannes M Rueger, Professor and Chair
Topics: Innovations in intramedullary osteosynthesis

New frontiers in osteoporosis and fracture treatment
Current trauma research
Special topic: Recent development in pelvic and acetabular fractures

Abstract submission deadline: 31 March 2005
Further details: INTERCONGRESS GmbH, Martin Berndt, Düsseldorfer Str. 101, 40545 Düsseldorf-Germany. Tel: +49 211 585897-80; Fax: +49 211 585897-99; Email: martin.berndt@intercongress.de; Website: www.osteoint2005.de

4th European Sports Medicine Congress
13 – 15 October 2005, Lemesos, Cyprus
Further details: Email: pyrgos.com@cytanet.com.cy

8th International Congress of the Society for Tennis Medicine and Science
14 – 15 January 2006, Melbourne, Australia
Further details: Email: stms2006@meetingplanners.com.au; Website: www.stms2006.com.au

BASEM Conference 2005
10 – 12 November 2005, Edinburgh, Scotland
Further details: Email: BASEMinfo@aol.com; Website: www.basem.co.uk

BASEM Conference 2006
5 – 7 October 2006, Oxford, UK
Further details: Email: BASEMinfo@aol.com; Website: www.basem.co.uk

bmjupdates+

bmjupdates+ is a unique and free alerting service, designed to keep you up to date with the medical literature that is truly important to your practice.

bmjupdates+ will alert you to important new research and will provide you with the best new evidence concerning important advances in health care, tailored to your medical interests and time demands.

Where does the information come from?

bmjupdates+ applies an expert critical appraisal filter to over 100 top medical journals
A panel of over 2000 physicians find the few ‘must read’ studies for each area of clinical interest

Sign up to receive your tailored email alerts, searching access and more…

www.bmjupdates.com