Cardiovascular fitness modifies the associations between physical activity and abdominal adiposity in children and adolescents: the European Youth Heart Study

F B Ortega,1,2 J R Ruiz,1,2 A Hurtig-Wennlöf,3 G Vicente-Rodríguez,1,4 N S Rizzo,1 M J Castillo,2 M Sjöström1

ABSTRACT

Objective To examine the associations between physical activity (PA) and abdominal adiposity, as measured by waist circumference, in children and adolescents, and to test whether cardiovascular fitness (CVF) modifies these associations.

Methods PA components were measured by accelerometry in 1075 individuals aged 9 or 15 years old. CVF was measured by a maximal cycling test. Self-reported maternal educational level, body mass index, children’s birth weight and television viewing were used as confounders.

Results Linear regression did not show any association between the PA variables and waist circumference, after controlling for sex, age and height. When stratifying by CVF level (low/high), time spent at vigorous PA was inversely associated with waist circumference (p < 0.05) in the low CVF group. Unexpectedly, in the high CVF group, the PA variables were positively associated with waist circumference (p < 0.05). In both groups, the results were unchanged after controlling for the confounders. CVF was inversely associated with waist circumference, after controlling for all PA variables (p < 0.01) and confounders (p < 0.01).

Conclusion CVF is inversely associated with abdominal adiposity and seems to modify the associations between PA and abdominal adiposity. In low-fit children and adolescents, time spent in vigorous PA seems to be the key component linked to abdominal adiposity. This finding should be considered in further development of lifestyle intervention strategies. The results found in the high-fit group need to be confirmed.

Methods

Study population

A total of 557 children aged 9.5 (0.3) years and 518 adolescents aged 15.6 (0.4) years from the Swedish part of the European Youth Heart Study10 had valid data for waist circumference. Of these subjects, 96% had complete and valid data for sexual maturation status, 88% for maternal educational level, 90% for birth weight, 94% television (TV) viewing, 71% for objectively measured PA and 75% for CVF (ml/min/kg0.75). Study design, sampling procedures, participation rates and study protocol have been reported elsewhere.11 The study was approved by the Research Ethics Committees of Örebro County Council and Huddinge University Hospital. Written informed consent was obtained from the parents of the children and from both the parents of the adolescents and also from the adolescents themselves.

Physical examination

BMI was calculated as weight/height squared (kg/m²) and used to define overweight (including obesity).12
Waist circumference (cm) was measured with a metal anthropometric tape midway between the lower rib margin and the iliac crest, at the end of gentle expiration. The individuals were classified as having a high or low metabolic risk (hereinafter called high-risk/low-risk waist circumference), according to sex and age-specific waist circumference cutoff values.15

Skinfold thicknesses were measured with a Harpenden caliper (Baty International, Burgess Hill, UK), according to the criteria described by Lohman et al.14 Slaughter’s equations were used to calculate the percentage of body fat.15 16 Being above the sex-specific and age-specific 85th percentile of body fat percentage was used as a cutoff value for defining individuals with an excess of total adiposity.17 Fat-free mass (FFM) was derived by subtracting fat mass from total body weight.

Pubertal stage was assessed by a trained researcher of the same sex as the child, using brief observation, according to Tanner and Whitehouse.18 Breast development in girls and genital development in boys were used for pubertal classification.

Objectively measured PA
PA was measured over four consecutive days (at least two weekdays and at least one weekend day) with an activity monitor (MTI model WAM 7164, Manufacturing Technology, Fort Walton Beach, Florida) worn at the right hip. At least 3 days of recording, with a minimum of 10 h registration per day was set as an inclusion criterion. The epoch duration was set at 1 min.5 19

Total PA was expressed as the total counts recorded, divided by the total daily registered time (counts/min). The time engaged in moderate and vigorous PA was calculated and presented as the average time per day during the complete registration (min/day). Moderate PA (3–6 metabolic equivalents (METs)) and vigorous PA (>6 METs) intensities were based upon cutoff limits published elsewhere.20 Also, the time spent in at least moderate intensity PA (>3 METs) was calculated (min/day, MVPA).

The accelerometer (CSA/MTI/Actigraph) and the cutoff limits used in this study have shown to be valid for estimating time spent in moderate and vigorous PA in children and adolescents.21 22

Cardiovascular fitness
CVF was determined by a maximal cycle ergometer test.23 The work rate was preprogrammed on a computerised cycle ergometer (Monark 829E Ergomedic, Vansbro, Sweden), to increase every third minute until exhaustion, as follows: (1) In children (boys and girls) with a body weight of 30 kg or more, the initial work rate was set at 25 W increasing by 25 W every third minute, whereas in those children with a body weight lower than 30 kg, the initial work rate was set at 20 W increasing by 20 W every third minute. (2) In adolescent boys, the initial work rate was set at 50 W, increasing by 50 W every third minute, while in adolescent girls, the initial work rate was set at 40 W, increasing by 40 W every third minute.

Heart rate was registered continuously by telemetry (Polar Sport Tester, Kempele, Finland). The criteria for exhaustion were a heart rate >185 beats per minute and a subjective judgment by the test leader that the adolescent could no longer keep up, even after vocal encouragement. The power output \(\text{Watts} = W\) was calculated as \(W = W_1t(W_2t/150)\), where \(W_1\) is a work rate at the last fully completed stage, \(W_2\) is the work rate increment at final incomplete stage, and \(t\) is time in seconds at final incomplete stage. The Hansen formula for calculating \(V_{O2\max}\) (ml/min) was \(12 \times \text{calculated power output +5x body weight (in kg)}\).21 For the analysis, CVF normalised by FFM (ml/min/kgFFM) was used.24 25

Confounders
The time spent in TV viewing was self-reported by means of the question “How many hours of TV do you usually watch?” The answer was classed as either ≤2 h/day or >2 h/day.26 Parents reported their children’s birth weights, and subjects were classed as ≤2500 g, between 2500 and 4000 g or >4000 g.27 Maternal height and weight were self-reported, and BMI was calculated. The validity of BMI based on self-reported weight and height in adults has been documented elsewhere.28 The socioeconomic status was defined by the maternal educational level as below university education and university education.29 30

Statistical analysis
The differences between sex and age groups on continuous variables were assessed by two-way ANOVA (with sex and age as fixed factors). After square root transformation of the vigorous PA and total PA, all the residuals showed a satisfactory pattern. Nominal variables were analysed by \(\chi^2\) tests.

Multiple regression analyses were used to study the associations of PA variables and CVF with waist circumference. Interaction factors (ie, sex×main exposures and age×main exposures) were considered to evaluate whether age and sex modified the associations of PA variables and CVF with waist circumference. Since no interaction was found, all sex and age groups were analysed together. Height influences the observation of fat accumulation and/or distribution, and it should be accounted for when analysing the associations between any factor and waist circumference.31 32 Multicollinearity among the exposures was not found in any of the models (variance inflation factor was <10 and averaged variance inflation factor ~1.32 The PA variables were analysed one by one in all the models to avoid multicollinearity. The statistical analysis performed for this study was split into three steps.

1. The basic model was composed of sex, age group and height. The PA variables or CVF were added to the basic model in separate models to analyse the associations between the exposures and waist circumference, controlling for sex, age and height.

2. The PA variables were consecutively entered into the models together with CVF to examine whether the associations of PA and CVF with waist circumference were independent of each other. Additionally, interaction factors between the main exposure variables (ie, PA variables ×CVF) with waist circumference were also analysed.

3. Finally, the associations between PA variables and waist circumference were separately analysed by CVF levels (low/high), and those associations in which interactions found were graphically shown. CVF level was dichotomised (low/high) when being below/above the sex- and age-specific median. All the data were analysed in their continuous form, although data were stratified by quartiles of PA (sex- and age-specific) only for illustrative purposes. In the final model, the analyses were additionally controlled for other potential confounders, such as maternal educational, maternal BMI, birth weight and TV viewing.

All calculations were performed using SPSS V.15.0 software for Windows. For all analyses, the significance level was 5%.
RESULTS

The descriptive characteristics of the participants are shown in table 1. Boys were more physically active and had a higher CVF level than girls. Compared with girls, boys spent 46% more time in vigorous PA and 14% more time in moderate PA.

Standardised regression statistics reporting the associations of either PA variables or CVF with waist circumference, after controlling for sex, age and height, are shown in table 2. No significant association was found between any of the PA variables and waist circumference. CVF was negatively associated with waist circumference, but significant interactions were found for these variables (p = 0.005 and p = 0.031, respectively). Neither vigorous PA nor total PA were associated with waist circumference, but significant interactions with CVF were found for these variables (p = 0.005 and p = 0.022, vigorous PA and total PA, respectively). The associations between these two variables and waist circumference by levels of CVF are shown in fig 1. CVF remained negatively associated with waist circumference, after controlling for all PA variables (p values ranging from 0.005 to 0.014).

Table 4 shows the association between PA variables and waist circumference when stratifying by CVF levels. In individuals with a low CVF level, vigorous PA was inversely associated with waist circumference (p = 0.044), while total PA showed a borderline inverse association (p = 0.080). In individuals with a high CVF level, all the PA variables studied were positively associated with waist circumference (p values ranging from 0.025 to <0.001). The results did not substantially change when the analyses were controlled for maternal educational level, birth weight or TV viewing. Likewise, CVF remained inversely associated with waist circumference after controlling for these confounders (all p < 0.01). All the results remained unaffected after controlling for maternal BMI (data not shown).

The prevalence of being overweight (IOTF cutoff values), having an excess of total fatness (>85th percentile of body fat) and having a high-risk waist circumference (the Bogalusa study cutoff values) were significantly lower in the high CVF group than in the low CVF group (all p < 0.05; data not shown).

DISCUSSION

Young people with low fitness and high fatness levels have an increased risk for metabolic disease33–37 and require special attention. In this study, the prevalence of being overweight, having an excess of total fat and having a high-risk waist circumference was greater in the low CVF group than in the high CVF group. The group classed as low CVF was actually a low-fit/high-fat group. In this specific group of individuals, high levels of vigorous PA were associated with a lower abdominal adiposity, independently of sex, age and height. This association

<table>
<thead>
<tr>
<th>Table 1 Descriptive characteristics of the participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(n = 269)</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Sexual maturation status (%),†</td>
</tr>
<tr>
<td>Stage I</td>
</tr>
<tr>
<td>Stage II</td>
</tr>
<tr>
<td>Stage III</td>
</tr>
<tr>
<td>Stage IV</td>
</tr>
<tr>
<td>Stage V</td>
</tr>
<tr>
<td>Weight (kg),†</td>
</tr>
<tr>
<td>Height (cm),†</td>
</tr>
<tr>
<td>Body mass index (kg/m²)†</td>
</tr>
<tr>
<td>Prevalence of overweight (including obesity) (%)†</td>
</tr>
<tr>
<td>Waist circumference (cm),†</td>
</tr>
<tr>
<td>High-risk waist circumference (%)†</td>
</tr>
<tr>
<td>Body fat (%)†</td>
</tr>
<tr>
<td>Fat-free mass (kg),†</td>
</tr>
<tr>
<td>Total PA level (counts/min),††‡§</td>
</tr>
<tr>
<td>Moderate PA (min/day),†</td>
</tr>
<tr>
<td>Vigorous PA (min/day),†</td>
</tr>
<tr>
<td>Moderate–vigorous PA (min/day),†</td>
</tr>
<tr>
<td>VO₂max (l/min),†</td>
</tr>
<tr>
<td>VO₂max (ml/min/kg)*,†</td>
</tr>
<tr>
<td>VO₂max (ml/kgṅ²/min)*,†</td>
</tr>
</tbody>
</table>

FFM, fat-free mass; PA, physical activity; VO₂max, maximal oxygen consumption.

Values are mean (SD), unless otherwise stated.

Sex differences were analysed by two-way ANOVA.

Age group differences were analysed by two-way ANOVA.

Squared-root transformed data were used in the analysis, but raw data are presented.

REFERENCES

1. {Sex differences were analysed by two-way ANOVA.

2. Age group differences were analysed by two-way ANOVA.

3. Squared-root transformed data were used in the analysis, but raw data are presented.
was not affected by other confounders, such as maternal educational level, birth weight or TV viewing. Maternal adiposity is a more important determinant factor predisposing for abdominal fatness than paternal adiposity at childhood and adolescence. After additional controlling for maternal BMI, similar trends were observed. The fact that vigorous PA might benefit the abdominal adiposity status in those children and adolescents at a higher metabolic risk may have implications for the development and testing of lifestyle intervention models.

Follow-up data support that, in obese children and adolescents, exercise is an effective way to promote favourable changes in body composition (ie, decreases in percentage body fat). High levels of vigorous PA, rather than light/moderate PA, have been shown to be associated with a lower total adiposity, estimated from skinfold thicknesses in children and adolescents. Collectively, the available information suggests that PA of high intensity could play a key role in the associations between PA and adiposity, both total and abdominal, in young people.

The interactions between CVF and PA in relation to abdominal adiposity found in this study suggest that CVF modifies the associations between PA and abdominal adiposity. This is the first study examining how CVF can influence the associations between objectively measured PA and abdominal adiposity in young people. The high CVF level group showed a lower prevalence of being overweight/obese, having an excess of total fat and having a high-risk waist circumference. Our hypothesis was that in this group of people that already had higher fitness and lower fatness, a weak or even no association between PA and abdominal adiposity would be observed. However, the results paradoxically showed that, in these individuals with high CVF levels, all PA variables were positively associated with abdominal adiposity. We checked whether this result could be due to the influence of some potential confounders, such as maternal educational level, maternal BMI, birth weight and TV viewing, but the associations were not affected by any of these factors. Other studies involving objective measurements of PA may confirm or disprove these findings. From an energy balance point of view, this finding would be unexplainable in the case that all the factors that actually influence abdominal adiposity were accounted for (something almost impossible to achieve in practical terms). Unmeasured confounding factors, such as genetic variation and energy intake or dietary patterns, could explain these observations. Only randomisation within a trial can deal with issues of unmeasured confounding.

There is evidence indicating that CVF may interact in the associations between adiposity and metabolic risk. The findings also indicate that CVF is inversely associated with abdominal adiposity reported elsewhere is not supported by our results. The fact that no interaction by sex or age was found suggests that the associations observed in this study are consistent for children and adolescents, and for boys and girls. The sex differences in the association between PA and abdominal adiposity reported elsewhere is not supported by our results. Methodological differences, such as the different accelerometers used in both studies (uniaxial vs triaxial), might explain the discrepancies. The findings also indicate that CVF is inversely associated with abdominal adiposity, independently of sex, age, height and all the PA variables. We observed similar results in Spanish adolescents from the AVENA study, yet in that case, PA was self-reported. The fact that CVF is associated with abdominal adiposity in children and adolescents, independently of their

Table 2: Associations of objectively measured physical activity (PA) variables and cardiovascular fitness (CVF) with waist circumference in children and adolescents

<table>
<thead>
<tr>
<th>Models/exposures</th>
<th>β</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic model (BMI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (0 = girls, 1 = boys)</td>
<td>0.018</td>
<td>0.411</td>
</tr>
<tr>
<td>Age (0 = children, 1 = adolescents)</td>
<td>0.014</td>
<td>0.787</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>0.706</td>
<td><0.001</td>
</tr>
<tr>
<td>BM+main exposures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate PA (min)</td>
<td>0.073</td>
<td>0.103</td>
</tr>
<tr>
<td>Vigorous PA (min)*</td>
<td>−0.033</td>
<td>0.263</td>
</tr>
<tr>
<td>MVPA (min)</td>
<td>0.040</td>
<td>0.340</td>
</tr>
<tr>
<td>Total PA (counts/min)*</td>
<td>−0.009</td>
<td>0.771</td>
</tr>
<tr>
<td>CVF (ml/min/kgFFM)</td>
<td>−0.092</td>
<td>0.002</td>
</tr>
</tbody>
</table>

* Standardised linear regression coefficients. MVPA, moderate to vigorous PA. FFM, fat-free mass. Squared root transformed.

![Figure 1: Associations of vigorous physical activity (PA) and total PA, with waist circumference in children and adolescents stratified by cardiovascular fitness level (high/low). The quartiles were sex- and age-specifically calculated. Waist circumference was adjusted for sex, age and height.](http://bjsm.bmj.com/)

Techniques, including dual energy x-ray absorptiometry and MRI. Therefore, the use of waist circumference as a surrogate for abdominal fat accumulation and visceral adiposity in young people, respectively, and as a powerful index method or anthropometry, the physical fitness testing (running or biking tests) and the physical fitness components used (CVF, muscular fitness or speed/agility). This study contributes to the previous literature by reporting that these associations seem also to be independent of total PA and different intensity levels of PA, as measured by objective methods.

Waist circumference has shown to be an accurate marker of abdominal fat accumulation and visceral adiposity in young people. Likewise, confounders such as maternal educational level, maternal BMI, birth weight or TV viewing did not substantially affect the associations. The inverse association between physical fitness and abdominal adiposity in young people has been consistently reported. It seems to be independent of the abdominal adiposity measurement method used (high technology methods or anthropometry), the physical fitness testing (running or biking tests) and the physical fitness components used (CVF, muscular fitness or speed/agility). This study contributes to the previous literature by reporting that these associations seem also to be independent of total PA and different intensity levels of PA, as measured by objective methods.

<table>
<thead>
<tr>
<th>Basic model - CVF</th>
<th>Main exposures</th>
<th>β</th>
<th>p (β coefficient)</th>
<th>p Value (interaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate PA</td>
<td>CVF (ml/min/kg FFM)</td>
<td>−0.102</td>
<td>0.005</td>
<td>0.428</td>
</tr>
<tr>
<td></td>
<td>Moderate PA (min)</td>
<td>0.129</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>Vigorous PA</td>
<td>CVF (ml/min/kg FFM)</td>
<td>−0.091</td>
<td>0.014</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Vigorous PA (min)*</td>
<td>0.011</td>
<td>0.731</td>
<td></td>
</tr>
<tr>
<td>MVPA</td>
<td>CVF (ml/min/kg FFM)</td>
<td>−0.102</td>
<td>0.005</td>
<td>0.257</td>
</tr>
<tr>
<td></td>
<td>MVPA (min)</td>
<td>0.101</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>Total PA</td>
<td>CVF (ml/min/kg FFM)</td>
<td>−0.095</td>
<td>0.011</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>Total PA (counts/min)*</td>
<td>0.027</td>
<td>0.425</td>
<td></td>
</tr>
</tbody>
</table>

MVPA, moderate to vigorous PA.

Table 3 Independent associations of objectively measured physical activity (PA) variables and cardiovascular fitness (CVF) with waist circumference in children and adolescents

Practical implications

The present study shows that vigorous PA is associated with lower abdominal adiposity in low-fit children and adolescents. Previous studies have demonstrated that meeting the current PA recommendations, that is, 60 min/day of MVPA, is associated with a healthier CVF level but not a lower risk of having high levels of total and central adiposity. However, additional analyses support the hypothesis that 60 min or more of daily PA could be enough to achieve a healthier fitness and adiposity status, if enough vigorous PA is accumulated during that period.

New PA recommendations adapted to young people, and taking into account the evidence-based importance of vigorous PA, are needed. In this context, sex-specific and age-specific cutoff values for vigorous PA associated with a lower risk of being overweight and having a high-risk waist circumference have been reported by Ortega et al., >40 and >25 min/day for children for boys and girls, respectively, and >20 and >15 min/day for adolescent boys and girls, respectively.

Also, regular participation in at least 3 h/week of sports activities and competitions is associated with increased physical fitness, lower whole body and trunkal fat mass in prepubertal boys, compared to those individuals not involved in sport/competition activities. These associations are supported by longitudinal data.

Finally, data from epidemiological studies using objective methods for assessing PA and findings from randomised controlled trials support the idea that high-intensity PA is associated with higher physical fitness and also that physical fitness and abdominal adiposity in young people have been consistently reported. It seems to be independent of the abdominal adiposity measurement method used (high technology methods or anthropometry), the physical fitness testing (running or biking tests) and the physical fitness components used (CVF, muscular fitness or speed/agility). This study contributes to the previous literature by reporting that these associations seem also to be independent of total PA and different intensity levels of PA, as measured by objective methods.

Waist circumference has shown to be an accurate marker of abdominal fat accumulation and visceral adiposity in young people. Likewise, confounders such as maternal educational level, maternal BMI, birth weight or TV viewing did not substantially affect the associations. The inverse association between physical fitness and abdominal adiposity in young people has been consistently reported. It seems to be independent of the abdominal adiposity measurement method used (high technology methods or anthropometry), the physical fitness testing (running or biking tests) and the physical fitness components used (CVF, muscular fitness or speed/agility). This study contributes to the previous literature by reporting that these associations seem also to be independent of total PA and different intensity levels of PA, as measured by objective methods.

<table>
<thead>
<tr>
<th>Basic model - CVF+</th>
<th>Main exposures</th>
<th>β</th>
<th>p (β coefficient)</th>
<th>p Value (interaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate PA</td>
<td>CVF (ml/min/kg FFM)</td>
<td>−0.102</td>
<td>0.005</td>
<td>0.428</td>
</tr>
<tr>
<td></td>
<td>Moderate PA (min)</td>
<td>0.129</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>Vigorous PA</td>
<td>CVF (ml/min/kg FFM)</td>
<td>−0.091</td>
<td>0.014</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Vigorous PA (min)*</td>
<td>0.011</td>
<td>0.731</td>
<td></td>
</tr>
<tr>
<td>MVPA</td>
<td>CVF (ml/min/kg FFM)</td>
<td>−0.102</td>
<td>0.005</td>
<td>0.257</td>
</tr>
<tr>
<td></td>
<td>MVPA (min)</td>
<td>0.101</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>Total PA</td>
<td>CVF (ml/min/kg FFM)</td>
<td>−0.095</td>
<td>0.011</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>Total PA (counts/min)*</td>
<td>0.027</td>
<td>0.425</td>
<td></td>
</tr>
</tbody>
</table>

MVPA, moderate to vigorous PA.

β Standardised linear regression coefficients. Basic model is composed of sex, age group and height.

*Squared root transformed.

Table 4 Associations between objectively measured physical activity (PA) variables and waist circumference in children and adolescents, stratifying by cardiovascular fitness (CVF) level

<table>
<thead>
<tr>
<th>Basic model</th>
<th>+Maternal education</th>
<th>+Birth weight</th>
<th>+Television viewing</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>p Value</td>
<td>β</td>
<td>p Value</td>
</tr>
</tbody>
</table>

Low CVF

Moderate PA (min)	−0.016	0.824	−0.031	0.675	0.027	0.714	−0.002	0.997
Vigorous PA (min)*	−0.097	0.044	−0.116	0.019	−0.102	0.039	−0.084	0.060
MVPA (min)	−0.046	0.498	−0.063	0.360	−0.056	0.417	−0.095	0.301
Total PA (counts/min)*	−0.084	0.080	−0.113	0.023	−0.090	0.070	−0.076	0.127

High CVF

Moderate PA (min)	0.258	<0.001	0.270	<0.001	0.260	<0.001	0.268	<0.001
Vigorous PA (min)*	0.101	0.027	0.101	0.032	0.102	0.030	0.094	0.040
MVPA (min)	0.224	0.001	0.231	0.001	0.229	0.001	0.225	0.001
Total PA (counts/min)*	0.111	0.015	0.110	0.018	0.105	0.026	0.111	0.016

MVPA, moderate to vigorous PA.

Basic model is composed of sex, age group and height. Maternal education, birth weight and television viewing were one by one sequentially added to the basic model.

β Standardised linear regression coefficients.

*Squared root transformed.
spent in vigorous PA seems to be the key PA component linked to abdominal adiposity. This finding may have important implications for further development of lifestyle intervention strategies, since our data suggest that the individuals with a low CVF are actually a high-risk group. Further research examining genetic and dietary factors, in addition to objectively measured PA and CVF, is still needed for a better understanding of the associations between PA and adiposity in young people. Also, the results found in the high-fit group need to be confirmed or disproved in future studies. Finally, our results show that CVF is inversely and consistently associated with abdominal adiposity, independently of the time spent at different intensities of PA and total PA levels.

Acknowledgements The authors wish to thank Dr Laura Barrios, for her assistance with the statistical analysis of the data, and Dr Luis Moreno, for his valuable comments and scientific support.

Funding The study was supported by grants from the Stockholm County Council and grants from the Spanish Ministry of Education (EX-2007-1124; EX-2008-0641; DE2007-29933-E), grants from Swedish Council for Working Life and Social Research, and the ALPHA study (Ref: 2006120).

Competing interests None.

REFERENCES