RELATIONSHIP OF CURVE RUNNING TO THE ANGLE OF LANES OF A STANDARD RUNNING TRACK: AN INTROSPECTION TO THE INNOVATION

Kamalakanti R Debnath,1 Alka I Karanwal2 1Degree College of Physical Education, Hanuman Vyayam Prasarak Mandal, Amravati, Maharashtra, India; 2Department of Physical Education, Late M.M. College, Amravati, Maharashtra, India

10.1136/bjsm.2010.078725.162

The often heard cliché, ‘It sounds good in theory but won’t work in practice,’ is not as non-sensical as it is assumed. This idea reflects critical limitations of theories in general and learning theories in particular. Since a basic assumption of this paper is that theoretical concepts of track and field techniques are essential tools of our profession, some attempt must be made to clarify these limitations and to show how the ‘theory versus practice’ dichotomy can be brought closer and together.

The problem central to the study of the 200 m is best phrased in this question: ‘What major variables should be evaluated in training for and training and running the 200 meters?’ Answering this question, one must consider the following variables: lane assignment, angle of lane and developing a pace chart which are fit into independent, dependent, control variables. A look at lane-1 versus lane-8 reveals that the geometric design of the standard track suggests the lane-8 has the least severe angle (145.79°) as compare with lane-1 (180°). The physics of the relationship between a moving body in lane-8 as compared with lane-1 suggests that the inertia generated in lane-1 is greater than that of lane-8. Theoretically, this concept suggests that if a runner in lane-8 exerts the same energy as a runner in lane-1, the runner in lane-8 should be ahead based on the theoretical energy created in the outer perimeter of the circle.