Overuse injuries and burnout in youth sports: a position statement from the American Medical Society for Sports Medicine

John P DiFiori,1 Holly J Benjamin,2 Joel S Brenner,3 Andrew Gregory,4 Neeru Jayanthi,5 Greg L Landry,6 Anthony Luke7

Background
Youth sport participation offers many benefits including the development of self-esteem, peer socialisation and general fitness. However, an emphasis on competitive success, often driven by goals of elite-level travel team selection, collegiate scholarships, Olympic and National team membership and even professional contracts, has seemingly become widespread. This has resulted in an increased pressure to begin high-intensity training at young ages. Such an excessive focus on early intensive training and competition at young ages rather than skill development can lead to overuse injury and burnout.

Purpose
To provide a systematic, evidenced-based review that will (1) assist clinicians in recognising young athletes at risk for overuse injuries and burnout; (2) delineate the risk factors and injuries that are unique to the skeletally immature young athlete; (3) describe specific high-risk overuse injuries that present management challenges and/or can lead to long-term health consequences; (4) summarise the risk factors and symptoms associated with burnout in young athletes; (5) provide recommendations on overuse injury prevention.

Methodology
Medical Subject Headings (MeSHs) and text words were searched on 26 March 2012 from MEDLINE, CINAHL and PsychINFO. The search yielded 953 unique articles. Additional articles were found using cross-referencing. The process was repeated on 10 July 2013 to review any new articles since the original search. Screening by the authors yielded a total of 208 relevant sources that were used for this article. Recommendations were classified using the Strength of Recommendation Taxonomy (SORT) grading system.

Definition of overuse injury
Overuse injuries occur due to repetitive submaximal loading of the musculoskeletal system when rest is not adequate to allow for structural adaptation to take place. Injury can involve the muscle-tendon unit, bone, bursa, neurovascular structures and the physis. Overuse injuries unique to young athletes include apophyseal injuries and physeal stress injuries.

Epidemiology
It is estimated that 27 million US youth between 6 and 18 years of age participate in team sports. The National Council of Youth Sports survey found that 60 million children aged 6–18 years participate in some form of organised athletics, with 44 million participating in more than one sport. There is very little research specifically on the incidence and prevalence of overuse injuries in children and adolescents. Overall estimates of overuse injuries versus acute injuries range from 43.9% to 54%. The prevalence of overuse injury varies by the specific sport, ranging from 37% (skiing and handball) to 68% (running). Overuse injuries are underestimated in the literature because most of the epidemiological studies define injury as requiring a time loss from participation.

Risk factors
Prior injury is a strong predictor of future overuse injury. Overuse injuries may be more likely to occur during the adolescent growth spurt. The physes, apophyses and articular surfaces in skeletally immature athletes in a rapid phase of growth are less resistant to tensile, shear and compressive forces than either mature bone or more immature prepubescent bone. A decrease in age-adjusted bone mineral density that occurs before peak height velocity may also play a role. Other factors that may contribute are a relative lack of lean tissue mass, an increase in joint hypermobility and imbalances in growth and strength. Physeal stress injuries appear to be more common during rapid growth, and may be related to a period of vulnerability of metaphyseal perfusion. There is little evidence to support a causal relationship between overuse injury and anatomic malalignment or flexibility. A history of amenorrhoea is a significant risk factor for stress fractures. Higher training volumes have consistently shown to increase the risk of overuse injury in multiple sports. Other factors that may contribute to overuse injury, but lack clinical data include poor fitting equipment, particularly when not adjusted for changes in growth and overscheduling, such as multiple competitive events in the same day or over several consecutive days. This factor may be better considered as a marker for a high ratio of workload to recovery time.

Readiness for sports
Readiness for sports is related to the match between a child’s level of growth, development (motor, sensory, cognitive, social/ emotional) and
the tasks/demands of the competitive sport. Chronological age is not a good indicator on which to base sport developmental models because motor, cognitive and social skills progress at different rates, independent of age. Coaches and parents may lack knowledge about normal development and signs of readiness for certain tasks, physically and psychosocially. This can result in unrealistic expectations that cause children and adolescents to feel as if they are not making progress in their sport. Consequently, children may lose self-esteem and withdraw from the sport.

Sport specialisation

Sport specialisation may be considered as an intensive, year-round training in a single sport at the exclusion of other sports. There is concern that early sport specialisation may increase the rates of overuse injury and sport burnout, but this relationship has yet to be demonstrated. Diversified sports training during early and middle adolescence may be more effective in developing elite-level skills in the primary sport due to skill transfer.

High risk overuse injuries

‘High-risk’ overuse injuries are those that can result in a significant loss of time from sport and/or threaten future sport participation. These include certain stress fractures, physeal stress injuries, osteochondritis dissecans, some apophysal injuries and effort thrombosis. High-risk stress fractures include: the pars interarticularis of the spine, the tension side of the femoral neck, the patella, the anterior tibia (the ‘dreaded black line’), the medial malleolus, the talus, the tarsal navicular, the metaphyseal/diaphyseal junction of the fifth metatarsal (Jones’ fracture) and the sesamoids. A high index of suspicion should be maintained for athletes reporting pain at the sites of potential high-risk bone stress injuries including the central lumbar spine, anterior hip, groin or thigh, anterior knee, anterior leg, medial ankle, dorsal/medial midfoot, lateral foot and plantar aspect of the great toe. Physeal stress injuries can occur at the proximal humerus, distal radius, distal femur and the proximal tibia. Although most of the physeal stress injuries resolve with rest, some may result in growth disturbance and joint deformity. Effort thrombosis in athletes occurs as a consequence of thoracic outlet syndrome. A significant percentage of upper extremity effort thrombosis happens in adolescents as a result of overuse. First rib resection frequently results in a successful return to full activity. All cases should undergo evaluation for an underlying coagulopathy.

Burnout

Burnout is part of a spectrum of conditions that includes over-reaching and overtraining. It has been defined to occur as a result of chronic stress that causes a young athlete to cease participation in a previously enjoyable activity. Sport specialisation may be a factor. Data suggest that athletes who had early specialised training withdrew from their sport due to either an injury or a burnout from the sport. However, not all young athletes who drop out of sports are burned out. Most of the youths who discontinue a sport do so as a result of time conflicts and interest in other activities. Some may re-enter the same sport or participate in a different sport in the future. In children, there appears to be more of a psychological component related to burnout and attrition with adult supervised activities.

Prevention

Limiting weekly and yearly participation time, limits on sport-specific repetitive movements (eg, pitching limits) and scheduled rest periods are recommended. Such modifications need to be individualised based on the sport and the athlete’s age, growth rate, readiness and injury history. Careful monitoring of training workload during the adolescent growth spurt is recommended, as injury risk seems to be greatest during this phase. This apparent increased risk may be related to a number of factors including diminished size-adjusted bone mineral density, asynchronous growth patterns, relative weakness of growth cartilage and physical vascular susceptibility. Preseason conditioning programmes can reduce injury rates in young athletes. Prepractice neuromuscular training can reduce lower extremity injuries. Given the altered biomechanics that may occur with ill-fitting equipment, proper sizing and rezing of equipment is recommended, although date are lacking that demonstrate a link to injury. To reduce the likelihood of burnout, an emphasis should be placed on skill development more than competition and winning.

Summary findings and recommendations

Overuse injuries are under-reported in the current literature because most of the injury definitions have focused on time loss from sport. Preparticipation examinations may identify prior injury patterns and provide an opportunity to assess sport readiness. A history of prior injury is an established risk factor for overuse injuries that should be noted as part of each injury assessment. Adolescent female athletes should be assessed for menstrual dysfunction as a predisposing factor to overuse injury. Parents and coaches should be educated regarding the concept of sport readiness. Variations in cognitive development, as well as motor skills, should be considered when setting goals and expectations. Early sport specialisation may not lead to a long-term success in sports, and may increase the risk for overuse injury and burnout. Clinicians should be familiar with specific high-risk injuries, including stress fractures of the femoral neck, tarsal navicular, anterior tibial cortex and physis and effort thrombosis.

BACKGROUND AND PURPOSE

Participation in youth sports can be an enjoyable experience for children and adolescents with many potential benefits. It offers opportunities for peer socialisation, development of self-esteem and leadership qualities, and also promotes health and fitness. However, the increasing highly competitive nature of youth sports has fueled trends of extensive training, sport specialisation and participation in a large number of competitive events at young ages. Consequently, overuse injuries and burnout have become common. This report will review what is currently known about the epidemiology and risk factors associated with overuse injuries and burnout in young athletes. It will highlight specific overuse injuries that may pose management challenges or lead to long-term consequences. Recommendations for prevention will also be presented.

INTRODUCTION

The number of participants in youth sports is difficult to determine. The National Federation of State High School Associations reported that 7 713 577 student athletes (4 490 854 male, 3 222...
723) participated in 2012–2013. However, this represents only a fraction of all participants at any level. Estimates for younger athletes and/or those in non-scholastic sports may best be projected from data obtained by national sport organisations. One recent survey found that approximately 27 million children and adolescents between the age of 6 and 17 years participate regularly in team sports in the USA. Among specific youth sport organisations, an estimated 2.3 million children play Little League baseball, over 600 000 participate in the America Youth Soccer Organisation and 365 000 play softball. 4 The 2008 National Council of Youth Sports survey found that approximately 60 million children aged 6–18 years participate in some form of organised athletics. Of these, approximately 44 million participated in more than one sport. In addition, although there is a paucity of data describing the extent of youth sport participation, it is clear that a large number of children do not limit their sports to a given ‘season’, and are involved throughout the calendar year in organised athletics. An emphasis on competitive success has become widespread, resulting in an increased pressure to begin high-intensity training at young ages. This may be driven by parental goals of having their child selected for high-level travel teams, collegiate scholarships and even professional contracts. Alternatively, the initiative may originate with the child or be fostered by coaches or peers. In pursuit of athletic success, children and their parents may enlist the services of a personal sport coach and/or fitness instructor, and also register for camps and showcase events. Some parents or coaches may encourage a child to concentrate on a single sport in an attempt to improve his or her chances of selection in the elite team, and therefore exposure to the college recruiting process. Children may also play in more than one team or participate in more than one sport at a given time. It is also important to recognise that children’s sports are a big business. Coaches, personal trainers, club team organisations, sporting goods manufactures, tournament directors and others have a financial stake in youth sports participation.

Given this trend towards early and multifaceted training, frequent competition and single sport specialisation, it is no surprise that overuse injuries and burnout are common. This paper will describe several issues related to the development of overuse injury and burnout. Particular attention will be placed on the unique factors surrounding the growth and development that deserve special consideration in young athletes. By understanding these issues, clinicians will better be able to treat these injuries, educate parents, athletes and coaches, and provide recommendations for injury prevention.

METHODODOLOGY

Data sources

Three electronic databases, MEDLINE, CINAHL and PsycINFO, were searched on 26 March 2012 to identify potentially relevant articles. A combination of Medical Subject Headings (MeSHs) and text words were used in this search (table 1). A total of 933 unique articles were identified. Additional articles and related information were found using cross-referencing and the authors’ personal libraries. The articles were screened by title and by abstract. Those felt to be relevant

Table 1 Search methodology

<table>
<thead>
<tr>
<th>Search terms</th>
<th>PubMed results</th>
<th>CINAHL results</th>
<th>Psychno results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts around sports/athletics ("Athletes" OR "Sports" OR "sport" OR "athletic") AND ("Cumulative Trauma Disorders" OR "Injuries" OR "adverse event") AND ("fatigue" OR "burnout") AND ("adolescent" OR "child") NOT (animals [mh] NOT humans [mh])</td>
<td>130 431</td>
<td>49 948</td>
<td>15 207</td>
</tr>
<tr>
<td>Concepts around injuries/fatigue/burnout ("Cumulative Trauma Disorders" OR "Injuries" OR "adverse event") AND ("fatigue" OR "burnout") AND ("adolescent" OR "child")</td>
<td>2 369 005</td>
<td>598 978</td>
<td>126 326</td>
</tr>
<tr>
<td>Concepts around overuse/cumulative trauma ("overuse" OR "cumulative") AND ("fatigue" OR "over time")</td>
<td>160 436</td>
<td>25 300</td>
<td>38 716</td>
</tr>
<tr>
<td>Limits to children and human studies ("child" [MeSH] OR "adolescent" [MeSH]) AND ("fatigue" OR "overuse") AND ("adolescent" [text word] NOT (animals [mh] NOT humans [mh]))</td>
<td>2 469 004</td>
<td>437 135</td>
<td>Could not be written as single statement, see search strategy below</td>
</tr>
<tr>
<td>Combined UNIQUE CITIONS from search strategy results by database (803 total, but 3 duplicate citations within PubMed)</td>
<td>148 (267 total citations, 119 overlapped with PubMed results)</td>
<td>5 (6 total citations, 1 overlapped with PubMed results)</td>
<td></td>
</tr>
</tbody>
</table>
to this document were reviewed in full by the authors. The process was repeated on 10 July 2013 in order to review any new articles since the initial search was performed. A total of 208 unique references were ultimately chosen for this paper.

Definition of overuse injury

Although there is no clear consensus on the definition of overuse injury, it is generally recognised that overuse injuries occur due to repetitive submaximal loading of the musculoskeletal system when rest is not adequate to allow for structural adaptation to take place. Such injury may involve the muscle-tendon unit, bone, articular cartilage, physis, bursa and/or neurovascular structures. During sport participation, repetitive loading to these structures results in microtrauma. When recovery between loading exposures is sufficient, tissue adaptation occurs to accommodate the imposed stress. However, excessive stress and/or an inadequate recovery period can overwhelm the ability of the tissue to remodel, resulting in a weakened, damaged structure. This imbalance between training loads and recovery is a key factor, perhaps even more so in young athletes with an immature musculoskeletal system.

Owing to the ongoing growth and development, the types of overuse injuries that occur in young athletes differ compared with adults. Specifically, growth-related conditions such as apophysitis and physeal stress injury are unique to young athletes.

Apophysal injuries typically occur in early adolescence. The most common sites involve the tibia tubercle of the knee (Osgood-Schlatter disease), the calcaneal apophysis of the heel (Scheuer’s disease) and the medial epicondylar apophysis of the elbow (often referred to as Little Leaguer’s Elbow). Anterior knee pain is one of the most frequent symptoms in the young athlete. In early adolescence, this is usually due to Osgood-Schlatter disease, while in later adolescence, the tibial tubercle apophysis matures and patellofemoral pain syndrome becomes the more common cause of knee pain.

Overuse injuries of the physis (eg, proximal humerus in throwers, distal radius in gymnasts) occur in early-to-mid adolescence. As skeletal maturity is achieved, overuse injuries to bone begin to follow adult injury patterns (eg, stress reactions and stress fractures).

Epidemiology of overuse injuries

Overall, there is very little research specifically on the incidence and prevalence of overuse injuries in children and adolescents. Furthermore, studies of sports injuries in youth are limited by several issues, including injury reporting methodology, injury classification and standardisation of outcomes. In particular, injury definitions that require time loss from sport underestimate the burden of overuse injuries.

A recent study of 100 US high schools reported that the overall injury rate (acute and overuse) in 20 high school sports was 1.71/1000 athlete exposures during the 2010–2011 school year. This database estimates 3.7 million injuries occurred that resulted in more than 1 day’s time loss from sports. This estimate does not include injuries seen outside of the high school setting. Importantly, this study further underestimates injury rates since it does not account for injuries which did not result in time loss, as is the case in many overuse injuries. Another data source, the National SAFE KIDS Campaign, estimates that more than 3.5 million children are injured annually playing sports or participating in recreational activities.

Estimates of the proportion of all sports injuries that are due to overuse range from 45.9% to 54%. Although evidence is sparse, there is a concern that these injuries are increasing. The frequency and type of overuse injuries in elite young athletes vary by sport and by age. Sport-related training and conditioning are also factors (eg, resistance training as an adjunct to soccer training) causing injury. Overuse and non-contact injuries in American football are 2.6 times more likely to occur at the college level than at the high school level. In a recent 3-year study of 16 sports at one university, 29.3% of injuries were considered overuse injuries. Baxter-Jones et al studied 453 elite young athletes in four sports (231 boys, 22 girls; 8–16 years of age) and found that the prevalence of overuse injuries varied by sport: 63% for swimmers, 33% for gymnasts and tennis players and 15% for soccer players. Other studies report the prevalence of overuse injury among different youth sports to range from 37% (skiing and handball) to 68% (running).

Risk factors for overuse injuries

A variety of factors have been proposed to contribute to overuse injuries. They are often grouped into either intrinsic or extrinsic factors (box 1). Intrinsic factors are defined as individual biological characteristics and psychosocial traits. Extrinsic factors refer to external forces related to the sport type, the biomechanics of the activity and the sporting environment. Commonly cited intrinsic factors include variations in growth and development, anatomic alignment, muscle-tendon imbalance, flexibility, conditioning, biomechanics and a history of prior injury. Extrinsic factors include workload, sport technique, training environment and equipment. The contribution of an intrinsic or an extrinsic factor to injury risk is extremely variable depending on the individual athlete, the sport environment and the interaction that occurs during participation. Furthermore, it is important to recognise that many overuse injuries result from a complex interaction of multiple risk factors in specific settings, coupled with an inciting event. Understanding this concept is necessary for the comprehensive evaluation and treatment of athletes with overuse injuries.

It is also relevant to note that some risk factors are modifiable (eg, strength and neuromuscular function); whereas others are not (eg, age and gender). Finally, in young athletes,
characteristics of the developing musculoskeletal system are especially important to consider.

Although little data exist that identify a causal relationship between proposed risk factors and overuse injury, recognising these potential contributors to injury is important in limiting recurrent injury and in developing injury prevention strategies.15, 37, 40

Intrinsic risk factors

Prior injury

Previous injury is the strongest predictor of future injuries.41–50 Repeated overuse injury may occur as a result of inadequate rehabilitation of the index injury and/or a failure to recognise and correct the factors that contributed to the original injury.

Growth and development

Children undergo growth and development at an individual rate. Biological growth and maturation are primarily genetically regulated; development is more culturally mediated.6, 51 For example, the development of child’s play paradigms can vary depending on the cultural exposure to solitary play, parallel play, associate play and cooperative play situations.2, 52 Physical growth and cognitive development influence successful participation in sports.

Overall body mass and height increase in the preadolescent and adolescent years.53 Girls tend to reach their peak height and body mass at approximately age 15, whereas boys may experience increases beyond age 18. Maturation is a complex process that encompasses skeletal, somatic and sexual maturation. Each component of maturation occurs at an independent, sometimes asynchronous, rate in an individual. Although wide variations in the maturation rates have been suggested to increase injury risk, data demonstrating a definitive link between discordant maturation and injury are lacking.54, 55

Overuse injuries may be more common during the adolescent growth spurt. Laboratory studies demonstrate that the growth cartilage present at the physes, apophyses and articular surfaces in skeletally immature athletes in a rapid phase of growth are less resistant to tensile, shear and compressive forces than either mature bone or more immature prepubescent bone.56–58 Acute distal radius fractures peak during and just before peak height velocity.59, 60 Stress fractures, distal radial physeal stress injuries and low back pain also appear to occur with a greater prevalence during the adolescent growth spurt.61–63 Prospective studies are needed to further evaluate this relationship.

A decrease in age-adjusted bone mineral density that occurs before peak height velocity may also play a role.64 A relationship to acute traumatic fractures has been demonstrated, but its role in overuse injury has not yet been determined. In addition, dissociation is seen between bone matrix formation and the occurrence of bone mineralisation during the growth spurt, resulting in a relatively diminished bone strength.64, 65

Other factors that may contribute are a relative lack of lean tissue mass, an increase in joint hypermobility and imbalances in growth and strength.66–69 Longitudinal growth of extremities results in changes in length, mass and stress forces on bone–tendon junctions, muscle–tendon junctions, growth cartilage and ligaments that frequently occur asynchronously.69 These imbalances in growth and strength, coupled with repetitive loading, appear related to increased injury risk, although the exact relationship is not clearly delineated and is likely multifactorial.

Overuse injuries of the physis may be due to diminished perfusion related to excessive mechanical loading. MRI of physeal stress injuries of the distal radius in young gymnasts shows an appearance similar to experimentally induced injuries in which metaphyseal artery perfusion has been disrupted.55, 70–72 This injury is significantly more likely to occur in gymnasts who are within the expected age range of the adolescent growth spurt.19, 61

Anatomic alignment

Alignment abnormalities such as patellofemoral malalignment, pes planus, pes cavus, elbow hyperextension and excessive lumbar lordosis are some of the more commonly cited risk factors for overuse injuries.21, 73–75 Joint hypermobility has also been associated with injury in some studies.76, 77

Accurate assessment of these factors, including measuring static and dynamic components, is difficult to achieve in the office setting. In addition, defining a cause and effect relationship between these characteristics and injury has been elusive.78, 79 Recent studies have not established consistent predictors. Given the broad diversity of sport-specific demands placed on the body, a considerably more information is needed to formulate models whereby anatomic alignment may predict injury risk.73, 80, 81 Overall, the significance of osseous alignment abnormalities versus soft tissue alignment abnormalities in relation to injury is complex, poorly understood and likely sport-specific.

Alignment can be altered through use of supportive equipment. The use of custom shoe orthotics to alter the alignment, particularly in runners, is controversial, yet widely used. The use of an orthotic can have a short-term and a long-term effect on lower extremity kinematics such as rearfoot evasion angles, velocity, impact peak and loading rate as well as knee kinematics. However, the clinical significance of this with regard to effects on injury rates remains unknown.82 There is also the potential to increase injury risk depending on the effect of the altered kinematics on sport participation.

Flexibility

A causal relationship between flexibility and injury risk has not been documented. Early reviews proposed that inflexibility across the muscle-tendon unit develops during the adolescent growth spurt that may contribute to injury.83 However, several recent studies have not shown any relationship between growth and inflexibility in boys or girls.84–86 Studies investigating the role of pre-exercise stretching on injury risk have shown mixed results.87, 88 Interventions that consider age, gender and specific sports are needed.

Biomechanics

Limb length, body mass and moments of inertia change rapidly during the adolescent growth spurt, and all can affect coordination and movement patterns.53, 66, 67 This is likely due to the need for a greater force generation for extremity movement during a time when strength and coordination are still developing. This may play a role in the increased risk for injury seen during the growth spurt.35, 36, 55–63

Structural or dynamic disturbances in extremity mechanics appear to increase eccentric loads.69, 89 These findings can then serve as the basis for targeted rehabilitation programmes that emphasise improvement in sport-specific biomechanics.89, 90 In some cases, it is not clear whether sport-related changes in joint range of motion play a role in overuse injury, or reflect a positive biomechanical adaptation.91, 92 In overhead athletes, a decrease in dominant arm internal rotation coupled with a greater strength in internal rotators is typically seen relative to the non-dominant arm.91 One laboratory study in Peewee ice
hockey players performing a sprint start displayed ‘at risk’ hip kinematics including internal hip rotation during flexion or ‘push-off’ phase and external rotation during abduction or recovery phase, thus placing the hip in a position to potentially cause femoroacetabular impingement and/or labral stress. These studies suggest sport-specific kinematic profiles deserve further investigation to determine whether such factors predispose to overuse injury.

Strength and conditioning

Benefits of youth fitness include those related to cardiovascular health, bone health and mental health. Among young athletes, general activity and fitness levels vary greatly. Children who have not developed some foundation of general strength, endurance and motor skills may be at increased risk for injury, though little data exist at this time. Some potential risk factors that are modifiable include poor endurance and lack of pre-season preparation.

Menstrual irregularity and low energy availability

A history of amenorrhoea, especially in sports that emphasise leanness, is a risk factor for bone stress injury. One study in collegiate female distance runners found a linear relationship between the number of menses per year and risk of stress fracture, with amenorrhoeics runners having the highest risk.

Several studies have suggested that a history of amenorrhoea is a significant risk factor for stress fractures. The proposed mechanism correlates inadequate caloric intake with hypoestrogenaemia, decreased bone density and subsequent increased fracture risk. The relationship between oral contraceptive use and the likelihood of stress fracture is not well understood. The studies cited generally focused on young women and older adolescents. There is a little data regarding menstrual irregularity, low-energy availability and overuse injury in younger adolescents. It is important that female athletes with bone stress injuries who are found to have menstrual irregularity are also screened for disordered eating and low bone mineral density (ie, the female athlete triad).

Extrinsic risk factors

A variety of extrinsic factors such as sport technique and biomechanics, the volume and intensity of workloads, training environments and equipment have been theorised to affect overuse injury rates. Importantly, these are modifiable risk factors.

Workload

Higher training volumes have consistently been shown to increase the risk of overuse injury in multiple sports. Specifically, training more than 16 h/week was associated with a significantly increased risk of injury requiring medical care. The volume and intensity of training are correlated with overuse injury risk.

In a study of 2721 high school athletes, there was a linear relationship between hours of sport participation and risk of injury. Specifically, training more than 16 h/week was associated with a significantly increased risk of injury requiring medical care.

The volume and intensity of training are correlated with overuse injury risk. In youth baseball, studies have shown that among pitchers, pitch volume has the greatest association with injury rate. In addition, a 10-year prospective analysis of 481 youth baseball pitchers aged 9–14 years found a 3.5 times greater likelihood of suffering an injury, resulting in time loss from sport participation in those players who pitched greater than 100 innings per year. Among young gymnasts, wrist pain was significantly related to training intensity, as measured by skill level and the number of hours of training per week. The recommended workload varies greatly depending on the sport as well as individual characteristics making it a challenge to define sport-specific workload thresholds that are related to increased injury rates.

Scheduling

Scheduling issues have recently received more attention as possible factors that increase injury risk in youth athletes. Concern has been raised for year-round training in a single-sport and simultaneous involvement in multiple teams in the same sport. Tournament scheduling, where several games are often played in a single day, extending over consecutive days, is also a potential factor.

One large cohort study showed that elite soccer players younger than age 14 sustained more acute and overuse injuries in training compared with older players. The frequency was highest early in the season for the younger players, compared with older players who suffered more game-related injuries. This suggests that younger players who reach elite levels may not have achieved optimal fitness levels and/or are experiencing training volumes and intensities that may adversely affect injury risk.

Studies in a variety of sports such as baseball, tennis, cricket, running and soccer have demonstrated that high workloads between bouts of activity are consistently associated with increased injury risk. The studies cited generally focused on young women and older adolescents. There is a little data regarding menstrual irregularity, low-energy availability and overuse injury in younger adolescents. It is important that female athletes with bone stress injuries who are found to have menstrual irregularity are also screened for disordered eating and low bone mineral density (ie, the female athlete triad).

Equipment

Improper sizing and poor maintenance of equipment, as well as failure to use equipment that is appropriate for the sport, may contribute to injury. Common examples of equipment concerns include grip size and string tension in racquet sports, weight and length of bats or other hand-held equipment, bike size, shoe type and fit, use of training aids such as swim paddles and weights or other resistive training devices used during training. However, data are lacking with regard to direct relationships with overuse injuries.

READINESS FOR SPORTS

Readiness for sports can be defined in terms of the match between a child’s level of growth and development (motor, sensory, cognitive, social/emotional) and the tasks/demands of the competitive sport. If a young athlete is expected to learn too many skills that are beyond their ability, there will be little motivation to learn new skills. On the other hand, mastering tasks and developing a feeling of competence may sustain a child’s interest and motivate him or her to learn new skills.

Unfortunately, coaches and parents often lack knowledge about normal development and signs of readiness for certain...
tasks, physically and psychosocially. This can result in unrealistic expectations that cause children and adolescents to feel as if they are not making progress in their sport, especially related to their chronological peers. Consequently, children may lose self-esteem and withdraw from the sport.125

Physical growth and developmental readiness are important in order to learn the skills for sports. For example, a child cannot kick a ball until she or he has the strength and balance to stand on one leg in order to swing the kicking leg.126 However, readiness to learn specific skills cannot be determined by chronological age, body size or biological maturation alone.127 Readiness is assessed by determining what requisite antecedent skills will provide the basis for mastering the new activity.127 For example, children must have a good eye tracking before being able to hit a pitched ball.128

Cognitive development must occur before the young athlete can participate in most of the organised sports. In early childhood, the young athlete may not understand the need to stay in position or be able to remember instructions.126 To enjoy a sport, the youngster needs to understand the fundamental rules and strategy of the sport. He or she must also have the cognitive ability to follow directions and interact with their fellow team members.

As with other child developmental milestones, motor skills develop at different rates among individuals.123 Therefore, there is no chronological age that will guarantee mastery of a certain task. However, for most of the motor skills, the young athlete will follow a predictable and necessary sequence. For example, learning to kick a ball requires four stages: first pushing a ball while standing, then learning to kick a ball with some wind-up, then taking a step or two to kick and, finally, taking several rapid steps with a small leap before the kick.126

It is important for parents and coaches to be mindful of what activities are appropriate for each age group.126 For ages 2–5 (early childhood), children have limited fundamental skills and poor balance. Appropriate activities for this age group include running, swimming, tumbling, throwing and catching. For the children aged 6–9 years (middle childhood) posture and balance become more automatic, reaction times are improved and transitional skills are emerging. Activities can include running, swimming, skating, entry-level soccer, baseball, tennis, gymnastics and martial arts. For the children of 10–12 years of age, most of them can master complex motor skills, but may have a temporary decline in balance skills during the pubertal growth spurt.129 For this age group, entry level for complex skill sports is appropriate in most of the cases. This includes football, basketball, hockey and volleyball.

Thus, there is no simple way to determine whether a child is ready for a particular sport. Four factors should be considered: sport-related skills, knowledge about the sport, motivation and socialisation.130 Chronological age is not a good indicator on which to base developmental models.111 Informal participation with family and friends can be a helpful gauge.130 Fortunately, when given the chance, children will naturally select and modify the activities so that they can participate successfully and have fun.126

SPORT SPECIALISATION

Sport specialisation may be considered as intensive, year-round training in a single sport at the exclusion of other sports.112 Although the degree of specialisation may occur along a spectrum, there is no consensus about what type of specialised training is most appropriate to develop elite-level skills. In addition, there is debate about whether early specialised training and intensive training volumes are necessary to achieve high skill levels in sports, or whether beginning more specialised and intensive training during late adolescence is more advantageous. Furthermore, there is a growing concern regarding the potential negative effects of early sports specialisation, including injury and sport burnout.

Although there are many examples of early specialised sports training, it appears that such training may be necessary in those technical sports that require elite-level competition prior to full maturation such as gymnastics or rhythm gymnastics, figure skating and swimming/diving.133 134 This type of early specialised training typically occurs before the age of 12, and frequently as young as 5 or 6 years of age.

The cumulative amount of training necessary to achieve an elite-level status may be far less than the 10 000 h that some have proposed.133–135 More commonly, specialised, intense training occurs at later ages in many other sports, and seems to be important with sports that require more physical skills or maximal aerobic capacity.135 Diversified sports training during early and middle adolescence may be a more effective strategy in ultimately developing elite-level skills in the primary sport due to a positive transfer of skills.136 Consideration should be given to delaying intensive specialised training until late adolescence, rather than a specific age, to optimise skill development in most of the sports.

There are theoretical and measurable risks associated with intense, specialised training. Injury rates in high school athletes have a direct relationship to exposure by hours/week.110 Other studies have found increased exposure to be an additional risk for injury such as in youth baseball pitchers who pitch> 8 months/year were more likely to have shoulder or elbow surgery.109 Meanwhile, as mentioned earlier, among youth pitchers, those who pitched more than 100 innings/year were 3.5 times more likely to be injured.111 Other risks related to intensive training include increased risk for injury with increased skill level, and increased competition.112 117 137

The relationship between injury and sports specialisation has not been clearly demonstrated. In one study evaluating 519 junior competitive tennis players, those players who reported competing only in tennis were 1.5 times more likely to have reported an injury.138 However, this study did not account for training intensity (eg, weekly training hours). Early data from a clinical study comparing young athletes with sports-related injuries with healthy uninjured athletes presenting for sports physicals suggests that more specialised athletes were more likely to be injured.139

Future research in this area should evaluate the relationship of overuse injury and high-risk injury to specialised training while controlling for training intensity and year-round training. In addition, it would be worthwhile to evaluate multisport athletes longitudinally compared with specialised athletes at various ages and stages of development to compare the effects of sport diversification with specialisation.

HIGH RISK OVERUSE INJURIES

Some overuse injuries may be described as ‘high risk’ in that if they are recognised or inappropriately treated, they can result in significant loss of time from sport and/or threaten future sport participation. High-risk overuse injuries include certain stress fractures, physeal stress injuries, osteochondritis dissecans (OCD), some apophysial injuries and effort thrombosis (table 2).

Stress fractures

Bone stress reactions and stress fractures can occur in children as they do in adults, and risk factors are similar for both age
consensus statement

Table 2 High risk versus low risk overuse injuries

<table>
<thead>
<tr>
<th>Location</th>
<th>High risk</th>
<th>Low risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip/pelvis</td>
<td>Femoral neck (tension-sided)</td>
<td>Femoral shaft stress fracture</td>
</tr>
<tr>
<td>Back (lumbar spine)</td>
<td>Pars interarticularis stress fracture</td>
<td>Congenital spondylolysis, pedicle stress fracture</td>
</tr>
<tr>
<td>Leg</td>
<td>Anterior cortical tibial stress fracture</td>
<td>Medial tibial stress fracture, fibular shaft stress fracture</td>
</tr>
<tr>
<td>Ankle</td>
<td>Medial malleolar stress fracture, talor dome osteochondral defect, Talor neck stress fracture</td>
<td>Distal fibular stress fracture</td>
</tr>
<tr>
<td>Foot</td>
<td>Tarsal navicular stress fracture, 5th metatarsal proximal diaphyseal stress fracture, sesamoid stress fracture</td>
<td>2nd, 3rd, 4th metatarsal stress fractures, cuboid</td>
</tr>
<tr>
<td>Knee</td>
<td>Patellar stress fracture, osteochondritis discecas of femoral condyle or patella</td>
<td>Tibial tubercle and inferior patellar pole apophysis</td>
</tr>
<tr>
<td>Shoulder/arm</td>
<td>Effort thrombosis</td>
<td>Proximal humeral phseal stress fracture</td>
</tr>
<tr>
<td>Elbow</td>
<td>Osteochondral discecas capitellum, apophyseal non-union of medial epicondyle</td>
<td>Medial epicondyle apophysis</td>
</tr>
<tr>
<td>Wrist</td>
<td>Distal radial phseal stress injury</td>
<td></td>
</tr>
</tbody>
</table>

Spine (pars interarticularis)

Stress fractures of the pars interarticularis (spondylolysis) are a relatively common cause of back pain in active children. They are most frequent at the fourth and fifth lumbar vertebrae. Among the young athletes evaluated for back pain, 48.5% of them were found to have occult spondylolysis. Progression to non-union ranges from 14% to 70%, with those who are untreated or had undergone delayed treatment having the highest rates of non-union. In a retrospective analysis of 57 youth soccer players diagnosed with lumbar spondylolysis, those who took at least 3 months off from the sport with or without bracing had the most optimal results. Another series evaluating the outcomes of pars stress fractures in young athletes, the average time needed to return to sport was 5.4 months. The decision regarding rigid anti-lordotic bracing remains controversial, though most of the athletes would agree that a period of rest, with or without bracing, until pain free is necessary. Progression to spondylolisthesis of >20% occurs in only about 4% of cases over 7 years of follow-up. In a 45-year natural history study of paediatric spondylolysis, there was no risk for spondylolisthesis if the injury was unilateral. Surgical pars repair may be indicated for painful spondylolysis with non-union, after 6 months of non-operative treatment and at least 9–12 months of symptoms. Surgical fusion may be indicated for spondylolisthesis >50%, and may be a relative indication for those with persistent radicular or neurological symptoms in the setting of spondylolysis.

Femoral neck

Stress fractures of the femoral neck are not common in children and adolescents but have been reported. If not recognised early and treated, complete fracture may occur, with significant long-term implications. A high index of suspicion should be maintained with any young athlete who presents with anterior hip or groin pain. If X-rays are negative, MRI should be obtained for diagnosis. Although the majority of these are compression-sided fractures, there are case reports of tension-sided fractures in youth. Tension-sided fractures should be referred to an orthopaedic specialist and treated with strict non-weightbearing and/or open reduction with internal fixation just as in adults because of the risk of non-union, progression to a pathological fracture and development of avascular necrosis.

Patella

Case reports of patellar stress fractures in children exist, but the true incidence is unknown. Patellar stress fractures should be treated with a 4–6-week period of immobilisation in a long leg cast, but may heal faster than adults. Any displaced fracture or fracture with non-union should be referred for surgical fixation.

Anterior tibia

Anterior cortical tibial stress fractures are tension-sided injuries that have a high risk of non-union. Radiographs may display a defect of the anterior cortex, often referred to as the ‘dreaded black line.’ If the radiographs are negative, MRI or CT with thin cuts may be helpful in making the diagnosis. In one case series, anterior tibial stress fractures were reported in seven male and four female patients (mean age of 17 years). All patients had failed non-operative treatment for a minimum of 4 months and had experienced symptoms for a mean of 12 months. All were treated with reamed intramedullary nailing. Clinical and radiological union occurred at 3 months. The mean duration for return to sports after surgery was 4 months.

Ankle (medial malleolus)

Stress fractures of the medial malleolus are rare. In one case of a 15-year-old elite gymnast with open physis, the patient was treated initially with rest and then gradually returned to full activity after 12 months of immobilisation in a long leg cast. Br J Sports Med 2014;48:287–288. doi:10.1136/bjsports-2013-093299

8 of 15

activity. Two months later, however, she developed a complete fracture of the medial malleolus. This was treated surgically by open reduction and internal fixation with a cancellous screw with subsequent return to full activity.

Foot
In a retrospective review of three decades of X-rays from a single paediatric orthopaedic clinic, 507 children with tarsal stress fractures were identified. Of the tarsal stress fractures identified, the following specific bones were involved: calcaneus (244), cuboid (188), talus (121), navicular (24) and cuneiforms (23). Many injuries occurred during resumption of weightbearing after cast immobilisation for another injury.

The incidence of tarsal navicular fractures in the paediatric athlete is unknown. There is a case report of a 13-year-old athlete in the literature. The highest incidence appears to involve track and field followed by football or soccer. These fractures often have a delay in diagnosis as symptoms are vague, and the fracture plane may be missed on radiographs. Thus, advanced imaging with CT or MRI is often needed.

Stress fracture of the sesamoids of the great toe were reported in five female athletes with a mean age of 16.8 years (range 13–22 years). When this injury is suspected, bone scan and CT scan are suggested as more reliable in confirming the diagnosis other imaging methods. After failure of conservative treatment measures, surgical excision of the proximal fragment was successful in all the patients. All the patients regained full sports activity within 6 months (range 2.5–6 months).

Although stress fractures of the talus and fifth metatarsal metaphyseal/diaphyseal junction are well described in adults as they account for 60% and 70% of the growth of those respective bones. Stress injury to these physes may result in premature physeal closure. If this occurs prior to closure of the distal radial physis in gymnasts is known to occur, although injury incidence data are limited. Although most physeal stress injuries appear to resolve with conservative treatment measures, surgical excision of the proximal fragment was successful in all the patients. All the patients regained full sports activity within 6 months (range 2.5–6 months).

Clinical clues to high risk stress fractures
A high index of suspicion should be maintained for athletes reporting pain at the sites of potential high-risk bone stress injuries. These sites include the lower lumbar spine, anterior hip, groin or thigh, anterior knee, anterior leg, medial ankle, dorsal/medial midfoot, lateral foot and plantar aspect of the great toe (table 3). As the spine cannot be adequately palpated on examination, history alone is the cause for further imaging. For femoral neck stress fractures, palpation is not helpful. Pain may be reproduced with passive hip internal rotation, but the history may be the only clue that prompts imaging. For the other sites, palpable tenderness over the bone warrants definitive imaging.

Imaging of stress reactions and stress fractures
Imaging for stress reactions/fractures should begin with X-rays. However, bone stress injuries may not be visible on plain radiographs for several weeks following the onset of pain, and some may never become apparent on plain radiographs. MRI is the study of choice for early stress fracture diagnosis in most of the situations. A single photon emission CT bone scan is frequently used for diagnosing spondylosis, though MRI with short TI inversion recovery sequences is being used increasingly in some institutions. Early stress injuries and incomplete fractures to the pars interarticularis and pedicle in the lumbar spine may be missed on traditional MRI, and may need to be sequenced to enhance the ability to diagnose an early spondylosis. The use of triple phase bone scans has fallen out of favour because of the radiation exposure and lack of specificity; however, they can be helpful in diagnosing rib stress injuries, or when the source of the pain cannot be localised on examination.

Treatment of high-risk stress reactions and stress fractures depends on the specific site of the injury. For fractures that fail to heal and cause persistent symptoms, open reduction with internal fixation may be required. Surgical treatment may also be considered as initial treatment for stress fractures of the tension side of the femoral neck, anterioribia, tarsal navicular and at the diaphyseal/metaphyseal junction of the fifth metatarsal.

Prevention of stress fractures
There are no studies specifically on prevention of stress fractures in the paediatric and adolescent population. However, since the risks factors are generally the same as in adults, it is reasonable to employ the same prevention strategies including setting limits on impact activities, optimising vitamin D and calcium intake, screening for the female athlete triad and considering the use of shoe orthotics. Early recognition is the key to optimal treatment.

Physeal stress injury
Physeal stress injuries related to participation in sports are known to occur, although injury incidence data are limited. Although most physeal stress injuries appear to resolve with rest, there is evidence that some may cause growth disturbance and joint deformity.

Stress injury to the physis has been documented to occur at the proximal humerus, distal radius, distal femur and the proximal tibia. Although symptoms may be prolonged, stress injury to the proximal humeral physis does not appear to have long-term consequences. Consequences of early closure of the distal femoral and proximal tibia physes can be significant as they account for 60% and 70% of the growth of those respective bones. Stress injury to theses physes may result in leg length discrepancy or angular or rotational malalignment of the affected leg.

Table 3 Location of pain for high risk stress fractures

<table>
<thead>
<tr>
<th>Pain site</th>
<th>Corresponding stress fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower lumbar spine</td>
<td>Pars interarticularis</td>
</tr>
<tr>
<td>Anterior hip/groin/thigh</td>
<td>Femoral neck</td>
</tr>
<tr>
<td>Anterior knee</td>
<td>Patella</td>
</tr>
<tr>
<td>Anterior lower leg</td>
<td>Anterior tibia</td>
</tr>
<tr>
<td>Medial ankle</td>
<td>Medial malleolus</td>
</tr>
<tr>
<td>Dorsal/medial foot</td>
<td>Tarsal navicular</td>
</tr>
<tr>
<td>Lateral foot</td>
<td>5th metatarsal (Jones)</td>
</tr>
<tr>
<td>Plantar great toe</td>
<td>Sesamoids</td>
</tr>
</tbody>
</table>

Perhaps, the most studied physeal stress injury involves the distal radius in young gymnasts. A potential consequence of repetitive stress injury to the distal radial physis in gymnasts is premature physeal closure. If this occurs prior to closure of the distal ulnar physis, positive ulnar variance may ensue which can lead to impingement of the triangular fibrocartilage complex, degenerative joint disease and chronic ulnar-sided wrist pain. In a systematic review of the literature, radiographical abnormalities consistent with distal radius physeal-stress reaction were described in 10–85% of gymnasts. Two studies indicated ‘abnormal’ positive ulnar radial length discrepancy in 8–20% of the gymnasts. Four studies showed significant correlations between training intensity and ulnar radial length discrepancy, suggesting a dose–response relation. Radiographical
evidence of distal radial physeal arrest involving skeletally immature female gymnasts was reported in four studies. The results support the plausibility that stress-related distal radius physeal arrest may occur and lead to the subsequent development of positive ulnar variance, but are not conclusive.13 19

Physeal injury of the knee has been described in the distal femur and proximal tibia of young athletes with knee pain.163–166 This abnormality may be visible on X-ray or T2-weighted MRI. In a retrospective review of the largest case series of six athletes, five were treated with 3–5 weeks rest and immobilisation and had resolution of their pain and physeal widening at 1–3 months. One athlete continued intense training despite medical advice and developed bilateral genu varum deformities over the following 2 years.165 Furthermore, boys who play load-bearing sports (track and field, basketball, volleyball, field hockey, tennis, badminton and squash) show a significantly increased amount of genu varum from 13 to 15 years or older compared with sedentary boys.169 Growth plate widening has also been described in the distal tibia and fibula in young athletes.170

Osteochondritis dissecans
The injury to the subchondral bone and articular cartilage of joints may develop in young athletes from overuse or acute trauma. Recent data suggest that OCD lesions occur due to injury affecting endochondral ossification from the secondary physis.171 The most common OCD sites are the femoral condyles, capitellum and the talar dome. OCD typically occurs in the adolescent age group. Joint pain, swelling, limited motion and mechanical symptoms are common. Radiographs may confirm the diagnosis. MRI may be needed for diagnosis if X-rays are not confirmatory. MRI is recommended for staging of OCD lesions with unstable lesions defined as articular fluid tracking behind the lesion.172 Stable lesions are initially treated non-operatively and are more likely to heal if the physis are still open. Surgery is indicated for unstable lesions and for stable lesions that do not respond to non-operative management.173

Recalcitrant or complicated apophyseal injuries
Most of the cases of apophysitis resolve when the physis closes. However, a small number of these apophyses never fuse, and may result in an oscicle that causes persistent pain. This can occur at the tibial tubercle, medial epicondyle, ischial tuberosity, olecranon apophysis and the base of the fifth metatarsal. The incidence of apophysal non-union is unknown. In addition to non-union, persistent pain may occur as a result of hypertrophy that results in a bony prominence that may be painful with trauma or overuse. This has been observed at the tibial tubercle, anterior inferior iliac spine and ischial tuberosity. If the pain continues after skeletal maturity, oscicle resection and/or tubercleplasty have been shown to be beneficial.174 175

Effort thrombosis
Effort thrombosis of the upper extremity typically occurs in athletes as a consequence of thoracic outlet syndrome (TOS). This venous form of TOS affecting the subclavian vein is sometimes referred to as Paget-Schroetter syndrome. The common presenting symptoms are unilateral arm swelling and discolouration. Case reports of effort thrombosis in adolescent athletes have been published.176–177 In one series of 32 cases of effort thrombosis in athletes (age range 16–26 years), 31% occurred in adolescents.178 The most extensive report of venous TOS in adolescents was recently published.179 This study described 17 adolescents with subclavian vein thrombosis (age range 10–18 years). Ten of these 17 cases were associated with athletic activities or overuse in other activities. All patients in this study underwent first rib resection and postoperative venography, with 13 requiring a period of anticoagulation postprocedure. In both of these recent studies, patients with effort thrombosis treated with first rib resection regained full use of the affected extremity.179 180 The median time for return to full activity was 3.5 months.178 As the contralateral extremity may be affected, diagnostic testing should be considered even if that extremity is asymptomatic. In addition, all patients with effort thrombosis should undergo evaluation for an underlying coagulopathy.179

BURNOUT
Burnout may be thought of as part of a spectrum of conditions that includes over-reaching and overtraining. Over-reaching may be functional or non-functional. Non-functional over-reaching is defined as intense training that leads to a longer period of decreased performance than functional over-reaching, but both result in full recovery after a rest period. Non-functional over-reaching is further accompanied by increased psychological and/or neuroendocrinological symptoms.180 Overtraining syndrome is defined as an extreme non-functional over-reaching, with a longer performance decrement (>2 months), more severe symptomatology and maladaptive physiology, and an additional stressor not explained by other disease.181 It has also been defined as a “series of psychological, physiological and hormonal changes that result in decreased sports performance.”182 183

Burnout has been defined by Smith184 as a “response to ‘chronic stress’ in which a young athlete ceases to participate in a previously enjoyable activity.” The young athlete withdraws from the sport because they perceive that it is not possible to meet the physical and psychological demands of the sport.185 Four stages of burnout were described by Smith in 1986: (1) the young athlete is placed in a situation that involves varying demands; (2) the demands are perceived as excessive; (3) the young athlete experiences varying physiological responses and (4) varying burnout consequences develop (ie, withdrawal).184 In addition, Coakley states that the development of unidimensional self-conceptualisation and lack of control lead to stress and ultimately burnout.185 The more fun and satisfaction the child perceives, the less anxiety they experience.185 Low self-esteem, low personal performance expectation, worrying more about failure and adult expectations and increased parental pressure to participate are associated with increased anxiety.185 Excessive athletic stress can lead to loss of sleep and appetite, decreased fun and satisfaction, physical injury, lower performance and subsequent withdrawal from the sport.186 Although stress in appropriate levels may be beneficial by learning stress-coping skills to use later in life, this has not been studied.187

Attrition occurs when athletes drop out of their sport either permanently or temporarily. However, it is important to recognise that not all young athletes who drop out are burned out. In fact, most of the young athletes discontinue a sport due to time conflicts and interest in other activities, not because of excessive stress or burnout.188 Studies have shown that “youth sport attrition is a complex phenomenon influenced by a variety of personal and situational variables.”122 The most common variable is time conflicts with other activities. Others include interest in other activities, lack of playing time, lack of success, little skill improvement, lack of fun, boredom and injury.123 It has also been shown that young athletes who discontinue participation may re-enter the same sport or participate in a different sport in the future.122

It is difficult to determine the extent of overtraining/burnout in children and adolescents, in part due to the lack of standard
Box 2 Factors related to burnout in young athletes

Environmental factors
- Extremely high training volumes
- Extremely high time demands
- Demanding performance expectations (imposed by self or significant other)
- Frequent intense competition
- Inconsistent coaching practices
- Little personal control in sport decision making
- Negative performance evaluations (critical instead of supportive)

Personal characteristics
- Perfectionism
- Need to please others
- Non-assertiveness
- Unidimensional self-conceptualisation (focusing only on one’s athletic involvement)
- Low self-esteem
- High perception of stress (high anxiety)

There are multiple risk factors for young athletes developing overtraining/burnout. Box 2 lists the environmental factors and personal characteristics. Among young athletes, there is a higher incidence in females, athletes in individual sports and those competing at the highest level of their sport. It is not clear whether age is a risk factor.

Single sport, intensive training is another potential risk factor. Several studies have suggested that athletes who had early specialisation training withdrew from their sport due to either an injury or a burnout from the sport. Swimmers who specialised early spent less time on the national team and retired from swimming earlier than athletes who specialised later. Early specialisation also seems to be correlated with reports of decreased general health and psychological well-being.

The diagnosis of overtraining syndrome/burnout can only be made by taking a thorough history and requires the recognition of non-specific and varied symptomatology in athletes (table 4). Box 3 outlines important historical features. Laboratory studies and other tests should only be performed if indicated by the history.

Treatment of overtraining syndrome/burnout depends on the aetiology for the specific young athlete. Any diagnosed organic disease should be treated appropriately. Rest or relative rest is an important component of the treatment plan. Prevention of attrition is possible by changing adult-controlled factors. Efforts should also be made to develop realistic, but positive, perceptions of competence in young athletes. One difference in children compared with adults is that there appears to be more of a psychological component to burnout and attrition with adult-supervised activities. Consultation with a mental health expert (ie, sport psychologist) should be considered due to this aspect in young athletes. Treatment of depression, anxiety and sleep disturbances should initially be addressed with non-pharmacological methods. Pharmacological agents may be implemented with appropriate consultant guidance.

Box 3 Diagnosis of overtraining syndrome/burnout

History
- Decreased performance persisting despite weeks to months of recovery
- Disturbances in mood
- Lack of signs/symptoms or diagnosis of other possible causes of underperformance
- Lack of enjoyment participating in sport
- Inadequate nutritional and hydration intake

Presence of potential triggers:
(a) increased training load with adequate recovery, (b) monotony of training, (c) excessive number of competitions, (d) sleep disturbance, (e) stressors in family life (parental pressure), (f) stressors in sporting life (coaching pressure and travel demands), (g) previous illness.

Testing
- (if indicated by history)
 - Consider laboratory studies: complete blood count, comprehensive metabolic panel, erythrocyte sedimentation rate, C reactive protein, iron studies, creatine kinase, thyroid studies, cytomegalovirus and Epstein-Barr virus titres.

Profile of Mood States (POMS): a psychometric tool for a global measure of mood, tension, depression, anger, vigour, fatigue and confusion.

CONSIDERATIONS FOR OVERUSE INJURY PREVENTION

Studies demonstrating successful overuse injury prevention methods are limited. Given the prior discussion, this section (and the summary that follows) will summarise recommendations based on the available data using the Strength of Recommendation Taxonomy (SORT) grading system (table 5).

Training workload

As discussed above, overuse injury in youth has been shown to be related to higher workloads, including training volume and intensity.

- Limiting weekly and yearly participation time, limits on sport-specific repetitive movements (eg, pitch count limits) and scheduled rest periods are recommended (B).
- Such modifications need to be individualised based on the sport and the athlete’s age, growth rate, readiness and injury history (C).
- Careful monitoring of training workload during the adolescent growth spurt is recommended, as injury risk seems to be greater during this phase (B). The apparent increased risk may be related to a number of factors including diminished
Table 5 Strength of Recommendation Taxonomy (SORT)192

<table>
<thead>
<tr>
<th>Strength of recommendation</th>
<th>Basis for recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Consistent, good-quality patient-oriented evidence</td>
</tr>
<tr>
<td>B</td>
<td>Inconsistent or limited-quality patient-oriented Evidence</td>
</tr>
<tr>
<td>C</td>
<td>Consensus, disease-oriented evidence, usual practice, expert opinion, or case series for studies of diagnosis, treatment, prevention or screening</td>
</tr>
</tbody>
</table>

size-adjusted bone mineral density, asynchronous growth patterns, relative weakness of growth cartilage and physiologic vascular susceptibility.

Strength and conditioning
Strength gains, injury prevention, injury rehabilitation, enhanced long-term health and improved sport performance are all potential benefits of youth strength training.189 193–196

- Preseason conditioning programmes can reduce injury rates in young athletes (B).197–200
- In addition, prepractice neuromuscular training can reduce lower extremity injuries (B).201–203

Regular participation in a resistance training programme can improve bone health, body composition and potentially reduce sport-related injuries.195 204–206 It is now well established that, with proper supervision and planning, such training programmes can be performed safely in the paediatric population.194–196

Equipment
During the periods of rapid growth and development, equipment size and fit can change dramatically and necessitate frequent evaluation.

- Although data are lacking that link such issues to overuse injury, given the altered biomechanics that may occur with ill-fitting equipment, proper sizing and resizing of equipment is recommended (C).

Burnout
Measures to prevent burnout from sports should include avoidance of overscheduling and excessive time commitment to sport.

- To reduce the likelihood of burnout in youth sports, an emphasis should be placed on skill development over competition and winning (C).

SUMMARY AND RECOMMENDATIONS
Overuse injuries are common in children and adolescents participating in sports, particularly for those participating on a nearly continuous yearly schedule. In young athletes, these injuries are the result of a complex interaction of multiple factors, including growth-related factors that are unique to this population. Although often thought to be self-limited injuries, recovery time can be lengthy, often more so than acute injuries. In addition, some overuse injuries have the potential to negatively affect future participation, and may result in long-term health consequences. Furthermore, in the setting of competitive youth sports, the specter of burnout is also a concern. It is thus essential that healthcare providers provide comprehensive evaluation and treatment of young athletes with overuse injuries and/or those who exhibit features of burnout.

In addition to the recommendations regarding prevention, the following summary statements are made:
1. Overuse injuries are under-reported in the current literature because most of the injury definitions have focused on time loss from sport (B).
2. Preparticipation examinations may identify prior injury patterns and provide an opportunity to assess sport readiness (C).
3. A history of prior injury is an established risk factor for overuse injuries and should be noted as part of each injury assessment (A).
4. Adolescent female athletes should be assessed for menstrual dysfunction as a potential predisposing factor to overuse injury (B).
5. Parents and coaches should be educated regarding the concept of sport readiness (C). Variations in cognitive development, as well as motor skills, should be considered when setting goals and expectations.
6. Early sport specialisation may not lead to long-term success in sports, and may increase risk for overuse injury and burnout. With the exception of early entry sports such as gymnastics, figure skating and swimming/diving, sport diversification should be encouraged at younger ages (C).
7. When an overuse injury is diagnosed, it is essential to address the underlying cause(s) (C). The athlete, parents and coaches should be involved in reviewing all risk factors and developing a strategy to attempt to avoid recurrent injury.
8. All overuse injuries are not inherently benign (A). Clinicians should be familiar with specific high-risk injuries, including stress fractures of the femoral neck, tarsal navicular, anterior tibial cortex and physis and effort thrombosis.

Acknowledgements The authors wish to thank the following individuals for their valuable review of this document: Michael F Bergeron, PhD, University of South Dakota; David T Bernhardt, MD, University of Wisconsin; Cynthia R LaBella, MD, Northwestern University. Special thanks to Rikke S Ogawa of the UCLA Biomedical Library for her assistance with the literature search methodology.

Contributors All the authors listed contributed and serve as guarantors of the paper. They accept full responsibility for the work and the conduct of the study, had access to the data, and controlled the decision to publish. The authors of the manuscript contributed to this work as follows: JPD provided overall conception and design of the article, search methodology, data acquisition, data analysis and interpretation, content synthesis, critical revision and submitted the study. HJB, JB, AG, NJ, GLL and AL all substantially contributed to the study design, specific content development, data analysis and interpretation, and critical review and revision. All the authors were involved in final approval of the version to be published.

Competing interests None.

Provenance and peer review Not commissioned; internally peer reviewed.

REFERENCES

Consensus statement

