Appendix Does leisure time physical activity protect against low back pain? Systematic review and meta-analysis of 36 prospective cohort studies R Shiri, ¹ K Falah-Hassani ² ¹ Finnish Institute of Occupational Health, Helsinki, Finland ² Western University, London, Canada ## **Supplementary Table S1:** PubMed search strategy made in July, 2016 | Search | Query | No of items found | |--------|---|-------------------| | #1 | Exercise[Mesh] OR exercise[Text Word] OR sports[Mesh] OR sports[Text Word] OR leisure activities[Mesh] OR leisure activities[Text Word] OR walking[Mesh] OR walking[Text Word] OR running[Mesh] OR running[Text Word] OR jogging[Mesh] OR jogging[Text Word] OR football[Mesh] OR football[Text Word] OR baseball[Mesh] OR baseball[Mesh] OR baseball[Mesh] OR baseball[Mesh] OR baseball[Mesh] OR swimming[Mesh] OR swimming[Text Word] OR volleyball[Mesh] OR volleyball[Text Word] OR soccer[Mesh] OR soccer[Text Word] OR wrestling[Mesh] OR wrestling[Text Word] OR weight lifting[Mesh] OR weight lifting[Mesh] OR skiing[Mesh] OR skiing[Text Word] OR skating[Mesh] OR skating[Text Word] OR skating[Mesh] OR skating[Text Word] OR skating[Text Word] OR skating[Text Word] OR skating[Text Word] OR boxey[Mesh] OR hockey[Text Word] OR gymnastics[Mesh] OR gymnastics[Text Word] OR boxing[Mesh] OR tennis[Mesh] OR physical fitness[Mesh] OR physical fitness[Text Word] OR athletic performance[Text Word] | 510,589 | | #2 | Spinal diseases[Mesh] OR spinal diseases[Text Word] OR spinal pain[Text Word] OR back pain[Mesh] OR back pain[Text Word] OR back disorders[Text Word] OR sciatica[Mesh] OR sciatica[Text Word] OR lumbar radicular pain[Text Word] OR sciatic pain[Text Word] | 146,039 | | Final | #1 AND #2 | 8,135 | Table S2: Quality assessment | Type of bias | Criteria definition | Classification (potential for bias) | |------------------|---|--| | Selection bias | Sampling method of the study population, representativeness (response rate, difference between responders and non-responders, investigate and control of variables in case of difference between responders and non-responders) | Low: Target population defined as representative of the general population or subgroup of the general population (specific age group, women, men, specific geographic area, and specific occupational group) and response rate is 80% or more. Moderate: Target population defined as somewhat representative of the general population, a restricted subgroup of the general population, response rate 60%-79%. High: Target population defined as "self-referred"/volunteers, response rate less than 60%. | | Performance bias | Valid and reliable assessment of exposure Assessors blinded for outcome status | Low: Physical activity assessed using physical activity index or Metabolic Equivalent Task (MET), or frequency of participation in sports and other leisure-time physical exercise assessed. Moderate: Participation in some types of sports assessed. Other activities not considered. High: A "yes" or "no" question used. Frequency and duration of physical activity not assessed. | | Confounding | Matching two groups
Stratification
Statistical analysis | Low: Controlled for most potential confounding factors including age and sex. Moderate: Controlled for few potential confounding factors, including both age and sex. High: Not controlled for both age and sex, or controlled for less than two confounding factors. | | Attrition bias | Withdrawals and drop-out rates
Size of missing data | Low: Follow up participation rate of 80% or higher or missing data on less than 20%. Moderate: Follow up participation rate of 60%-79%, or missing data on 20%-40%. High: Follow up participation rate of less than 60%, or missing data on more than 40%. | Table S3: Studies included in the meta-analysis | First author | Country | Follow- | Study | Low back | Age | Sex | Sample | Physical | Low back pain | | Quality assessme | ent: Risk of bias ' | k | Results | Adjustment for | |-------------------------------|----------------|--------------|--|--|---------------------------|-------------------------------------|--|---|---|-----------|------------------|---------------------|-----------|--|--| | and year of publication | | up time | population | pain at
baseline | range at
baseline | | size (in
analysis) | activity | at follow-up | Selection | Performance | Confounding | Attrition | -
 | other covariates | | Low back pa | in in the past | month | | | | | | | | | | | | | | | Hübscher
2015 ¹ | Denmark | 2 years | A representati ve sample of twins. Longitudina 1 Study of Aging Danish Twins (LSADT) | Without
back pain
during the
month
before
baseline
interview | 70 or older | Both,
55%
were
femal
es | 2333 for light and 2073 for strenuous activity | Current engagement in light leisure time physical activity (e.g., light gardening, easy gymnastics, short (less than 0.5 hours) walks, or bike rides (yes/no)) and in strenuous leisure time physical activity (e.g., heavy gardening, long (more than half an hour) walks or bike rides, sports, or dancing) | Low back pain in the past month | Moderate | Moderate | Moderate | Low | Adjusted OR 0.81 (CI 0.63-1.04) for light physical activity and 1.04 (CI 0.82-1.31) for strenuous physical activity. Estimated adjusted RR 0.83 (CI 0.67-1.03) for light activity and 1.03 (CI 0.84-1.25) for strenuous activity. Estimated RR 0.93 (CI 0.73-1.19) for light or strenuous activity vs. no activity. In the co-twin control analysis, OR 0.70 (CI 0.33-1.48) for light activity and 0.89 (CI 0.53-1.51) for strenuous activity | Sex and depression | | Lunde 2015 ² | Norway | 6.5
years | Students of
13 technical
schools | With or
without
low back
pain | Mean age
17.5 ±
1.2 | Both,
64%
were
wome
n | 420 (153
men and
267
women) | Frequency of leisure time physical activity leading to increased heart rate or shortness of breath (9 repeated measures). It | Low back pain
in the past
month (9
repeated
measures) | Moderate | Moderate | Low | High | OR 0.939 (CI 0.583-1.513) for men, 0.713 (CI 0.522-0.974) for women and 0.776 (CI 0.600-1.004) for both sexes. Estimated RR 0.96 (CI 0.67-1.31) for men, 0.81 (CI 0.66-0.99) for women and 0.85 (CI 0.71-1.00) for both sexes | Age, sex,
education/profe
ssion, ethnicity,
socioeconomic
status, smoking,
body mass
index, physical
work demands,
and follow-up
time | | | | | | | | | | was classified into two groups: Low (once a week or less), moderate or high (2 times a week or more) | | | | | | | | |----------------------------------|---------|---------|--------------------|----------------------|-------------------------------------|-------------------------------------|------|---|---|----------|----------
----------|------|--|--| | George
2012 ³ | USA | 2 years | Soldiers | Without
back pain | 18-35,
mean age
22.3 ±
4.5 | Both,
30%
were
femal
es | 1230 | Exercising
routinely
prior to
military
service vs.
not routinely | First episode
of low back
pain in the past
month during
the follow-up | High | Moderate | Low | Low | OR 1.074 (CI 0.834-1.382).
Estimated RR 1.04 (CI 0.90-1.19) | Age, sex, race, education, income, active duty status, smoking, body mass index, time in army, previous injury, depression, anxiety, fear of pain questionnaire, and exercise and education groups | | Wedderkop
p 2009 ⁴ | Denmark | 3 years | Schoolchild
ren | Without
back pain | 8-10 | Both,
53%
were
femal
es | 265 | Physical activity was assessed using acceleromete r, and classified into average physical activity (counts per minute) and minutes per day spent on high physical activity (each grouped into low, moderate, or high) | Low back pain
in the past
month | Moderate | Low | Moderate | High | OR 2.5 (CI 1.0-6.2) for counts per minute and 4.6 (CI 1.9-11.2) for high physical activity, comparing the lowest tertile with the highest tertile. Estimated OR 0.40 (CI 0.16-0.996)) for average physical activity and 0.22 (CI 0.09-0.53) for high physical activity, comparing the highest tertile with the lowest tertile. Estimated RR 0.44 (CI 0.18-0.997) for average physical activity (counts per minute) and 0.25 (CI 0.10-0.57) for high physical activity, comparing the | Sex, and puberty | | | | | | | | | | | | | | | | highest tertile with the lowest tertile | | |------------------------------|-----------------|----------|-----------------------|--|---|-------------------------------------|--|--|---|------|----------|----------|----------|--|--| | Jones 2003
5 | UK | 1 year | Schoolchild
ren | Without
low back
pain | 11-14 | Both | 903 | Number of
sports
activities
more than 20
minutes per
week | Low back pain
lasted for one
day or longer
in the past
month | Low | Moderate | Moderate | Low | RR 1.121 (CI 0.779-1.614) for 6-11 times (moderate activity), 1.551 (CI 1.122-2.146) for 12 or more (high activity) and 1.344 (CI 1.055-1.712) for 6 or more (moderate or high) | Age and sex | | Harreby
1997 ⁶ | Denmark | 25 years | Schoolchild
ren | With or
without
low back
pain | 14 at
baseline
and 38 at
follow-
up | Both,
54%
were
femal
es | 474 | Number of
hours of
leisure time
physical
activity per
week (e.g.,
sports or
gardening) | Low back pain
in the past
month, past
week, and
current low
back pain | Low | Low | High | Moderate | For leisure time physical activity for at least 3 hours/week vs. no activity, estimated RR was 0.52 (CI 0.26-1.04) for current low back pain, 0.66 (CI 0.41-1.05) for low back pain in the past week, and 0.55 (CI 0.40-0.77) for low back pain in the past month. | Unadjusted | | | | | | | | | | | | | | | | Estimated RR 0.97 (CI 0.78-1.19) for mildly to moderately active vs. inactive, 0.55 (CI 0.40-0.77) for highly active vs. inactive and 0.85 (CI 0.69-1.04) for active vs. inactive for low back pain in the past month | | | Low back pa | iin in the past | 6 months | | | | | | | | | | | | | | | Hussain
2016 ⁷ | Australia | 12 years | General
population | With or
without
low back
pain | 25 or
older at
baseline | Both | 4974
(2197
men and
2777
women) | Hours spent in walking, or other moderate or vigorous activities. Inactive vs. active defined as physical activity <2.5 h/week vs. ≥2.5 h/week | Pain intensity in the past 6 months. Low pain intensity (<50) and high pain intensity (≥50) | High | Moderate | Low | High | For men OR 1.01 (CI 0.79-1.28) for low pain intensity and 1.21 (CI 0.89-1.65) for high pain intensity for inactive vs. active. For women OR 0.91 (CI 0.73-1.12) for low pain intensity and 0.90 (CI 0.68-1.18) for high pain intensity for inactive vs. active. | Age, education,
smoking, body
mass index,
dietary
guideline index
score, television
viewing time,
and mental
component
score of SF-36 | | OR for low back pain 1.08 | |-----------------------------| | (CI 0.89-1.31) for men, 0.9 | | (CI 0.76-1.07) for women | | and 0.98 (CI 0.86-1.12) for | | both sexes combined for | | inactive vs. active. | OR for low back pain 0.93 (CI 0.76-1.13) for men, 1.10 (CI 0.92-1.31) for women and 1.02 (CI 0.89-1.17) for both sexes combined for active vs. inactive. RR for low back pain 0.99 (CI 0.94-1.03) for men, 1.02 (CI 0.98-1.05) for women and 1.01 (CI 0.98-1.04) for both sexes combined for active vs. inactive HR 0.7 (CI 0.4-1.2) for 1-2 times per week and 1.0 (CI 0.6-1.6) for at least 3 times per week vs. no physical activity. Estimated HR 0.85 (CI 0.59-1.23) for active vs. inactive At 6 months, 13.5% of level, school degree level, father's occupation, company, smoking, and baseline medical conditions (sports injury, earlier musculoskeletal symptoms, regular medication use, chronic impairment or disability due to musculoskeletal disorders, orthopedic surgery) Age, educational Unadjusted 7 | Taanila
2012 ⁸ | Finland | 6
months | Conscripts | Without
low back
pain
during the
past
month | 18-28,
median
age 19 | Men | 982 | Frequency of
sweating
exercise
(brisk sport
activity
during
leisure time) | Consultation
for low back
pain in the past
6 months | Low | Moderate | Low | Low | |------------------------------|---------|-------------|------------|--|----------------------------|-----|-----|---|--|-----|----------|-----|-----| | | | | | | | | | | | | | | | Feldman Canada 1 year Schoolchild Without Mean Both, 377 for Hours spent Low back pain Moderate Moderate High Moderate | 2001 9 | | ren.
Students
from two
public and
one private
schools | low back
pain
during the
past 6
months | 13.8 ± 1.2 | 47%
were
femal
e | first 6 months and 357 for the second 6 months | in different sports activities over the past 6 months. 91% were active at least in one extracurricul ar activity | at least once a week during the past six months | | | | | participants with LBP (n =48) and 5.4% of those without LBP (n =329) were highly active. At 12 months 9.3% of participants with LBP (n = 32) and 6.1% of those without LBP (n = 357) were highly active. Estimated RR 2.28 (CI 0.95-5.47) for the first 6 months and 1.52 (0.48-4.81) for the second 6 months. Estimated RR 1.97 (CI 0.62-6.18) for high level of activity vs. moderate or low level of activity for 1-year follow-up | | |---|--|---|--|---|-------------------------------------|--|--|---|----------|----------|----------|----------|--|---| | Low back pain in the pass
Brady 2016 Australia | | A random
sample
national
health
insurance
population
(Medicare) | With or
without
back pain | Mean age
49.5 ±
1.5 | Wom
en | 11,478 | Participation
in vigorous
physical
activity such
as vigorous
aerobics,
competitive
sport, or
vigorous
cycling or
running |
Having
sometimes or
often back
pain in the past
12 months | Moderate | Moderate | Low | Moderate | Adjusted OR 0.91 (CI 0.87-0.95). Estimated RR 0.955 (CI 0.93-0.98) | Age, height,
weight,
depression,
employment
status, smoking,
and menopause
status | | Kapellusch USA
2014 ¹¹ | Median
1.2 and
mean
1.4 ±
1.0
years | Occupation
al
population
from 30
diverse
production
facilities | Without
low back
pain for at
least 3
months,
sciatica
and low
back
surgeries | 18.5-
65.2,
mean age
37.1 ± 12 | Both,
33%
were
femal
es | 258 | Frequency of
leisure time
physical
activity;
none, 1-3
times, and 4
times or
more per
week | Self-reported
use of over-
the-counter or
prescription
medication for
low back pain
during the
follow-up | High | Low | Moderate | Low | HR 1.56 (CI 0.95-2.57) for moderate, 1.42 (CI 0.86-2.35) for high and 1.49 (CI 0.97-2.28) for moderate or high activity vs. inactivity. HR 1.41 (CI 0.87-2.28) for moderate, 1.37 (CI 0.83-2.26) for high and 1.39 (CI 0.92-2.10) for moderate or | Age, sex and BMI. Peak lifting index, history of low back pain, | | | | | | | | | | | | | | | | mgn activity vs. mactivity | anxiety (Tense-
Edge-Nervous
scale) | |-------------------------------|---------|----------------------|--|--|----------------------|---|------------------------------------|--|--|----------|----------|----------|----------|---|--| | Shiri 2013
12 | Finland | 6 years | General
population | Without
low back
pain
longer
than 7
days
during the
preceding
12
months | 24-39 | Both | 1224
(581 men and
643 women) | MET consisting of frequency, intensity and duration of leisure time physical activity. Average leisure-time physical activity during baseline and follow-up period | Low back pain
(with or
without
radiation)
longer than 7
days in the
past 12 months | Moderate | Low | Moderate | Moderate | RR 1.05 (CI 0.77-1.43) for moderate, 1.05 (CI 0.77-1.44) for high and 1.05 (0.80-1.38) for moderate/high compared with low activity in men. RR 1.01 (CI 0.74-1.38) for moderate, 1.19 (CI 0.90-1.58) for high and 1.11 (0.86-1.43) for moderate/high compared with low activity in women. RR 1.00 (CI 0.80-1.24) for moderate, 1.11 (CI 0.90-1.36) for high and 1.05 (0.87-1.27) for moderate/high compared with low activity in men and women combined | Age, sex,
educational
status,
occupational
status, and
smoking | | Thiese 2011 ¹³ | USA | Mean
1.4
years | Occupation
al
population | Without
chronic
low back
pain | Mean age 38.2 ± 11.3 | Both,
26.5
%
were
wome
n | 68 | Physical activity measured by acceleromete r. Tertile distribution was used to define low, moderate, and high activity | New onset of
low back pain
during the
follow-up
period | Moderate | Low | Moderate | Low | HR 1.29 (0.48-3.47) for moderately active vs. inactive. HR 2.65 (CI 0.80-8.79) for highly active vs. inactive. HR 1.61 (CI 0.65-3.96) for active vs. inactive | Age, BMI, sex,
smoking, back
compressive
force, feeling
depressed, and
seeing a health
care provider
for low back
pain | | Bovenzi
2010 ¹⁴ | Italy | 1 year | Professiona
1 drivers of
several
industries | Without
low back
pain
during the
past 12
months | Mean age 40.8 ± 9.2 | Men | 202 | Frequency of
leisure time
physical
activity per
week | Low back pain
for one day or
longer in the
past 12 months | Moderate | Moderate | Low | High | OR 1.01 (CI 0.57-1.78) for
at least one time per week
vs. never/almost never.
Estimated RR 1.01 (CI
0.68-1.37) | Age, body mass
index, smoking,
physical work
load factors,
and
psychosocial or
psychosomatic
factors | high activity vs. inactivity housework and | Miranda 2008 ¹⁵ | Finland | 1 year | Workers of forest industry | Without back pain | 16.4-65.0 | Both,
26%
were
wome
n | 2237 | Exercise (e.g., bicycling or swimming) for at least 20 minutes per session: None, once a week, and 2 times or more per week | Low back pain longer than 7 days in the past 12 months | Moderate | Moderate | Low | Moderate | |----------------------------|---------|--------|----------------------------|-------------------|-----------|-----------------------------------|------|---|--|----------|----------|-----|----------| Estimated unadjusted RR a week vs. inactive, 0.78 or more vs. inactive and Estimated unadjusted RR 1.35 (CI 0.86-2.11) for once a week vs. inactive, 1.16 (CI 0.79-1.72) for 2 times or more vs. inactive and 1.21 (CI 0.82-1.77) for active vs. inactive in subjects 40-49 years. Estimated unadjusted RR 1.08 (CI 0.68-1.71) for once a week vs. inactive, 0.82 (CI 0.54-1.22) for 2 times or more vs. inactive and 0.88 (CI 0.59-1.29) for active vs. inactive in subjects 50 years or older. Estimated unadjusted RR 0.995 (CI 0.76-1.30) for once a week vs. inactive, 0.90 (CI 0.72-1.13) for 2 times or more vs. inactive and 0.92 (CI 0.74-1.14) for active vs. inactive in all 0.75 (CI 0.52-1.08) for active vs. inactive in subjects younger than 40 years. subjects. years. Estimated adjusted RR 0.8 (CI 0.52-1.24) for moderate, 1.0 (CI 0.68-1.47) for high and 0.91 (CI 0.68-1.21) for active vs. inactive in subjects younger than 40 Estimated adjusted RR 1.22 (CI 0.81-1.85) for moderate, 1.11 (CI 0.70-1.76) for high (CI 0.54-1.13) for 2 times 0.66 (CI 0.41-1.05) for once | and 1.17 (CI 0.86-1.59) for | |-----------------------------| | active vs. inactive in | | subjects 40-49 years. | | , | Estimated adjusted RR 0.79 (CI 0.50-1.23) for moderate, 0.71 (CI 0.46-1.09) for high and 0.75 (CI 0.54-1.02) for active vs. inactive in subjects 50 years or older. Estimated adjusted RR 0.93 (CI 0.72-1.19) for moderate, 0.92 (CI 0.72-1.18) for high and 0.93 (CI 0.78-1.11) for active vs. inactive in all subjects | Strøyer
2008 ¹⁶ | Denmark | 2.5 years | Healthcare
workers at
institutions
for
physically
and
mentally
disabled
persons | Without
clinically
significan
t low back
pain | 11%
younger
than 36
years,
28% 36-
45, 41%
46-55,
and 20%
older
than 55
years | Both,
83%
were
wome
n | 327 | Leisure time physical activity more than 4 hours per week vs. 4 hours per week or less, using modified Saltin & Grimby questionnair e | Low back in
the past 12
months | High | High | Moderate | Moderate | OR 1.08 (CI 0.35-3.32) for
high vs. low or moderate.
Estimated RR 1.07 (CI
0.38-2.60) | Age and sex | |--------------------------------|---------|-----------|---|---|---|-----------------------------------|------|--|---|----------|------|----------|----------|--|--| | Andersen
2007 ¹⁷ | Denmark | 2 years | Occupation
al
population | Without
musculos
keletal
pain | 18-67 | Both | 1492 | Low or moderate activity (4 hours or less per week), and high activity (light activity 4 hours or more per week, or strenuous physical activity for 2 hours or | Low back pain
in the last 12
months | Moderate | High | Moderate | Low | HR 1.0 (0.7-1.3) for high vs. low or moderate activity | Age, sex,
occupational
group, and
intervention
group | more per week) | Hartvigsen 2007 ¹⁸ | Denmark | 2 years | A representati ve sample of twins. Longitudina 1 Study of Aging Danish Twins (LSADT) | Without back pain during the month before baseline interview | 70 or older | Both,
52%
were
femal
es | 1387
(671
men and
716
women) | Current engagement in light leisure time physical activity (e.g., light gardening, easy gymnastics, short (less than 0.5 hours) walks, or bike rides (yes/no)) and in strenuous leisure time physical activity (e.g., heavy gardening, long (more than half an hour) walks or bike rides, sports, or dancing) | Low back pain for at least one day in the past 12 months | Moderate | Moderate | High | Low | OR 0.69 (CI 0.34-1.39) for men, 1.26 (CI 0.65-2.47)
for women and 0.95 (CI 0.59-1.54) for both sexes combined for light activity. OR 0.60 (CI 0.36-1.00) for men, 0.59 (CI 0.37-0.95) for women and 0.59 (CI 0.42-0.83) for both sexes combined for strenuous activity. Estimated OR 0.630 (CI 0.416-0.952) for men, 0.760 (CI 0.517-1.116) for women and 0.692 (CI 0.524-0.914) for both sexes for active vs. inactive. Estimated RR for men, 0.72 (CI 0.37-1.32) for light, 0.63 (CI 0.39-1.00) for strenuous and 0.66 (CI 0.45-0.96) for active vs. inactive. Estimated RR for women, 1.21 (CI 0.69-2.00) for light, 0.63 (CI 0.41-0.96) for strenuous and 0.79 (CI 0.56-1.10) for active vs. inactive. Estimated RR for both sexes, 0.96 (CI 0.63-1.43) for light, 0.63 (CI 0.46-0.85) for strenuous and 0.72 (CI 0.56-0.93) for active vs. inactive. | Unadjusted | |-------------------------------|---------|---------|--|--|-------------|-------------------------------------|--|---|--|----------|----------|------|-----|--|------------| |-------------------------------|---------|---------|--|--|-------------|-------------------------------------|--|---|--|----------|----------|------|-----|--|------------| | Jacob 2006
19 | Israel | 1 year | Population-
based | Without
low back
pain in
the past
month | 22-70,
mean age
45.5 | Both,
54.5
%
were
femal
es | 211 | Sport
activity
index. tertile
distribution | Low back pain
for at least one
day in the past
12 months | High | Low | High | Low | OR 1.33 (CI 0.41-2.51) for moderate vs. low and 0.57 (CI 0.13-2.05) for high vs. low. Estimated OR 1.03 (CI 0.48-2.20) for active vs. inactive. Estimated RR 1.25 (CI 0.46-1.97) for moderate, 0.62 (CI 0.15-1.72) for high and 1.02 (CI 0.53-1.80) for moderate or high | Unadjusted | |-----------------------------------|--------------|----------|--------------------------------------|---|----------------------------|---|--------------------------------------|---|---|------|----------|----------|----------|---|---------------------------------| | Leino-Arjas
2006 ²⁰ | Finland | 28 years | Metal
industry
employees | With or
without
low back
pain | 18–64 | Both,
35%
were
femal
es | 544 (353
men and
191
women) | Number of hours multiply by intensity of different activities (sports, exercise, housework and commuting to work) | Often or
frequent local
low back pain
in the past 12
months | Low | Moderate | Moderate | Moderate | OR 0.67 (CI 0.37-1.22) for moderate and 0.78 (CI 0.45-1.35) for high activity in men and 0.87 (CI 0.40-1.86) for moderate and 0.61 (CI 0.28-1.33) for high activity in women. Estimated RR 0.786 (CI 0.515-1.111) for moderate and 0.865 (CI 0.597-1.168) for high activity in men and 0.930 (CI 0.571-1.301) for moderate and 0.758 (CI 0.438-1.142) for high activity in women. Estimated RR 0.83 (CI 0.64-1.07) in men and 0.85 (CI 0.62-1.17) in women for moderate/high activity. Estimated RR 0.85 (CI 0.64-1.13) for moderate, 0.83 (CI 0.63-1.09) for high and 0.84 (CI 0.69-1.02) for moderate/high activity in men and in men combined | Age, sex and occupational class | | Yip 2004 ²¹ | Hong
Kong | 1 year | A convenienc e sample of nurses from | Without
low back
pain | Mean age 31.1 | Both,
85%
were
wome | 144 | 1) Low
activity (no
sports or
other | Low back pain
in the past 12
months | High | Moderate | High | Moderate | RR 1.38 (CI 0.88-2.17) for
moderate, 1.28 (CI 0.65-
2.50) for high, and 1.36 (CI
0.88-2.11) for moderate or | Unadjusted | 6 district hospitals n physical activities that caused sweating or breathlessnes s); 2)moderate activity (3 or more times/week at least for 20 minutes causing some sweating or breathlessnes s (e.g., walking, gardening or practicing Tai Chi); and 3) high activity (3 or more times/week at least for 20 minutes, of jogging/runn ing, hiking, biking or swimming, causing moderate to high sweating or breathlessnes s, or 5 or more times/week at least for 30 minutes, of any physical activity causing some high compared with low activity during leisure-time | sweating or | |---------------| | breathlessnes | | s) | | | | | | | | | | breathlessnes
s) | | | | | | | | |----------------------------|-----------------|----------------|-------------------------------------|--|-------|-----------------------------------|------|---|---|----------|----------|----------|------|--|---| | Picavet 2003 ²² | Netherlan
ds | 1 to 4
yrs. | Population
based | With or
without
low back
pain | 20–59 | Both | 3759 | Lack of moderate leisure-time activity defined as less than 0.5 hour per day or per week spent on activities of at least 4 METs (e.g., gardening, cycling, or sports) | Low back pain
in the past 12
months | High | Moderate | Moderate | High | OR 1.11 (CI 0.94-1.32) for <0.5 hour per week and 1.04 (CI 0.90-1.21) for <0.5 hour activity per day. Estimated OR 0.90 (CI 0.76-1.07) for 0.5 hour or more vs. <0.5 hour per week and 0.96 (CI 0.83-1.12) for 0.5 hour or more vs. <0.5 hour per day. Estimated RR 0.94 (CI 0.84-1.04) for 0.5 hour or more vs. <0.5 hour per day. Estimated RR 0.94 (CI 0.84-1.04) for 0.5 hour or more vs. <0.5 hour per week and 0.98 (CI 0.89-1.07) for 0.5 hour or more vs. <0.5 hour per day | Adjusted for age, sex,
and low back pain at baseline. The results did not differ in working/non-working, or educational level subgroups | | Power 2001
23 | UK | 10 years | The 1958
British birth
cohort | Excluded from analysis: those with back pain at 23 years, those with back pain at 23 years who recovered, persistent back pain at 23 and 33 years, and those with incident back pain between 23 and 32 years | 23 | Both,
51%
were
wome
n | 4906 | Inactivity at
age 23 years
defined as
watching
more than 5
episodes of
television
and no sports
activity per
week | Low back pain lasted for more than one day in the past 12 months (at 32 to 33 years of age) | Moderate | High | High | High | OR 1.04 (CI 0.87-1.25) for inactive vs. active. Estimated OR 0.962 (CI 0.802-1.153) for active vs. inactive Estimated RR 0.966 (CI 0.818-1.136) for active vs. inactive | Unadjusted | | Croft 1999
²⁴ | UK | 1 year | Two
registered
general
practice
populations | Without
low back
pain in
the
previous
month | 18-75 | Both,
56%
were
wome
n | 1649
(722
men and
927
women) | Participation
in a regular
sport activity
(yes/no),
walking > 30
minutes vs.
< 30 minutes
each day | Consultation due to back pain in the past 12 months identified via computer recording system, or self-reported low back pain in the past 12 months without consultation | High | Moderate | Moderate | High | RR 1.0 (CI 0.8-1.3) in men and 1.34 (CI 1.1-1.7) in women for sport activity. RR 1.0 (CI 0.8-1.3) in men and 1.1 (CI 0.9-1.4) in women for walking. RR 1.176 (CI 1.00-1.383) for sport activity and 1.054 (CI 0.895-1.241) for walking in both sexes. RR 1.0 (CI 0.8-1.3) in men, 1.22 (CI 0.94-1.57) in women and 1.11 (CI 0.92-1.35) in both sexes for sport activity or walking | Age and sex. Estimate for regular sport in women was controlled for age, General Health Questionnaire score, self-rated health, weight, and do-it-yourself activities | |-------------------------------|---------|----------|---|--|---|-------------------------------------|--|--|---|----------|----------|----------|----------|---|--| | Eriksen
1999 ²⁵ | Norway | 4 years | Population-
based | Without
back pain | 20-62 | Both,
47%
were
wome
n | 523 | Number of
leisure time
physical
activity
sessions (for
at least 20
minutes to
the level of
sweating or
breathlessnes
s) per week | Low back pain
in the past 12
months | Moderate | Low | Low | Moderate | Estimated unadjusted RR 0.86 (CI 0.66-1.11) for 1-2 sessions vs. none, 0.74 (CI 0.52-1.04) for 3 or more sessions vs. none, and 0.82 (CI 0.65-1.03) for one or more vs. none. Adjusted OR 1.55 (CI 1.03-2.33) for inactive vs. active (1 session or more/week). Estimated OR for active vs. inactive 0.645 (CI 0.43-0.97). Estimated RR for active vs. inactive 0.75 (CI 0.56-0.98). | Age, sex,
marital status,
smoking, heavy
physical work,
emotional
symptoms,
musculoskeletal
pain other than
low back pain,
and
monotonous
movements in
the job | | Harreby
1997 ⁶ | Denmark | 25 years | Schoolchild
ren | With or
without
low back
pain | 14 at
baseline
and 38 at
follow-
up | Both,
54%
were
femal
es | 474 | Number of
hours of
leisure time
physical
activity per
week (e.g.,
sports or
gardening) | Low back pain
in the past 12
months | Low | Low | High | Moderate | Estimated RR 0.75 (CI 0.59-0.94) for leisure time physical activity for at least 3 hours/week vs. no activity | Unadjusted | | Burdorf
1996 ²⁶ | Netherlan
ds | 1 year | Novice
golfers | With or
without
back pain | 22-60 | Men | 196 | Participation
in other
sports
(tennis,
squash,
jogging,
field hockey,
soccer, judo) | Low back pain
in the past 12
months | Moderate | High | Moderate | Low | RR 1.88 (CI 0.89-3.92) for active athletes compared with men who played golf only. Participation in other sports, frequency of playing golf, and number of golf lessons were not associated with first-time back pain in men without a history of back pain at baseline (quantitative results not reported) | Age and
previous back
pain more than
once | |----------------------------------|-----------------|----------|--------------------------|--|-------|-------------------------------------|--|---|---|----------|----------|----------|----------|--|---| | Frequent low | back pain | | | | | | | | | | | | | | | | Jacobs
2006 ²⁷ | Israel | 7 years | An elderly
population | With or
without
back pain | 70 | Both,
51%
were
wome
n | 277 | Active vs. inactive. Active defined as going for a walk ≥ 4 times a week or performing sports ≥ 2 times a week | Back pain on a
frequent basis
at age 77 | Moderate | Moderate | High | Moderate | 15% of subjects without
back pain and 25% of those
with back pain were
inactive. Prevalence of back
pain was 55% in 220 active
subjects and 70% in 57
inactive subjects.
Estimated RR 0.784 (CI
0.637-0.964) for active vs.
inactive | Unadjusted | | Mikkelsson
2006 ²⁸ | Finland | 25 years | Schoolchild
ren | With or
without
low back
pain | 12-17 | Both,
54%
were
femal
es | 1106
(508
males
and 598
females) | Frequency of
childhood
physical
activity
outside
school hours
for at least
30 minutes
per session | Having ever
low back pain
longer than
one day for at
least 10 times | Moderate | Moderate | Low | Moderate | OR 0.62 (CI 0.39-0.98) for males and 0.80 (CI 0.48-1.32) for females for active (at least 2 times per week) vs. inactive (less than 2 times). Estimated RR 0.70 (CI 0.47-0.99) for males, 0.83 (CI 0.53-1.25) for females and 0.75 (CI 0.57-1.00) for both sexes combined | Age, body mass
index at follow-
up, endurance
strength,
flexibility, and
physical activity
at follow-up | | Chronic low | back pain | | | | | | | | | | | | | | | | Sihawong | Thailand | 1 year | Full-time | Without | 15-55 | Both, | 615 | Frequency of | Chronic low | High | Moderate | Low | Low | Adjusted OR 0.82 (CI 0.27- | Age, sex, body | | | | | | | | | | | | | | | | | 17 | | 2015 29 | | | office
workers | spinal
pain
during
previous
3 months | | 75%
were
femal
es | | regular
exercise or
sport
activities in
the past 12
months
(never,
occasionally,
regularly) | back pain (low
back pain with
pain intensity
of >30 mm on
100-mm VAS
that lasted 3
consecutive
months or
longer in any
6-month of the
1-year follow-
up) | | | | | 2.56) for occasionally and 0.42 (CI 0.06-2.93) for regularly compared with never. Estimated adjusted RR 0.83 (CI 0.28-2.31) for occasionally, 0.44 (CI 0.06-2.59) for regularly and 0.71 (CI 0.28-1.79) for occasionally or regularly compared with never | mass index,
psychological
job demands,
history of low
back pain,
frequent rest
breaks, pain
intensity at
baseline, and
disability at
baseline | |------------------------------|--------|-------------------------|---|---|----------------|-----------------------------------|--|---|---|----------|----------|----------|-----|--
---| | Herin 2014
30 | France | 5 years | Occupation
al
population | Without
musculos
keletal
pain | 37-52 | Both,
36%
were
wome
n | 6793
(4246
men and
2447
women) | Participation
in sports
activities
(yes/no) | Chronic low
back pain (low
back pain
lasted at least
6 months
(duration of
current
episode or
intermittent
symptoms
over the last 6
months) | Low | Moderate | Moderate | Low | HR 0.88 (CI 0.77-1.01) for men, and 0.99 (CI 0.82-1.19) for women. Estimated HR 0.92 (CI 0.82-1.03) for both sexes | Age, sex, body
mass index and
social class | | Makris
2014 ³¹ | USA | 9 years
(median
) | Community
-living
elderly
people | Without
back pain | 70 or
older | Both,
65%
were
wome
n | 731 | Low activity
(score <64
for men and
<52 for
women) vs.
moderate or
high physical
activity
using
Physical
Activity
Scale for the
Elderly | One episode of back pain restricting activity lasting 2 months (persistent), or 2 episodes of any duration (recurrent) in the past 18 months | Moderate | Low | High | Low | HR of persistent or recurrent back pain 1.44 (CI not reported, P value 0.001) for low activity. Estimated HR 0.695 (CI 0.55-0.88) for active vs. inactive | Unadjusted | | Nilsen
2011 ³² | Norway | 11 years | Population
based. The
Nord-
Trøndelag
Health
Study
(HUNT).
HUNT1 | Without
musculos
keletal
pain or
physical
impairme
nt | 20 or
older | Both,
52%
were
wome
n | 32,417
(15,465 men and
16,952 women) | Number of
hours of
leisure time
physical
activity (e.g.,
walking,
skiing or
swimming) | Chronic low
back pain (low
back pain
lasted 3
consecutive
months or
longer during
the past 12 | Low | Low | Moderate | Low | RR 0.91 (CI 0.80-1.03) for
<1 hour, 0.88 (CI 0.77-
1.00) for 1-1.9 hours, and
0.75 (CI 0.64-0.88) for 2
hours or more in men.
RR 0.90 (CI 0.81-1.01) for
<1 hour, 0.84 (CI 0.74- | Age, sex, body
mass index,
smoking, and
occupation | | | | | HUNT2 | | | | | frequency
and duration
of physical
activity | ionally | | | | | 0.92 (CI 0.79-1.07) for 2 hours or more in women. Estimated RR 0.86 (CI 0.79-0.94) for 1-1.9 hours, and 0.84 (CI 0.75-0.93) for 2 hours or more in men and women combined. | | |--------------------------------------|-----------------|----------|--|--|---------------------------------|-------------------------------------|--|--|---|----------|----------|------|----------|--|---| | | | | | | | | | | | | | | | Estimated RR for one hour or more vs. inactive 0.83 (CI 0.75-0.91) for men and 0.87 (CI 0.79-0.96) for women and 0.85 (CI 0.79-0.91) for men and women combined | | | van
Oostrom
2011 ³³ | Netherlan
ds | 10 years | Population
based | Without
low back
pain
longer
than 12
weeks
during the
past 12
months | 26-65,
mean age
45.9 ± 10 | Both,
53%
were
wome
n | 3830 | Physically
active
defined as
3.5 hours per
week spent
on at least
moderately
intensive
physical
activity | Chronic low
back pain (low
back pain
lasted at least
30 days during
the past 12
months) | Moderate | Moderate | Low | Moderate | OR 0.86 (CI 0.68-1.08). Estimated RR 0.87 (CI 0.70-1.07) | Age, sex,
educational
level, smoking,
body mass
index, work
status | | Hartvigsen
2007 ¹⁸ | Denmark | 2 years | A representati ve sample of twins. Longitudina 1 Study of Aging Danish Twins (LSADT) | Without
back pain
during the
month
before
baseline
interview | 70 or
older | Both,
52%
were
femal
es | 1387
(671
men and
716
women) | Current engagement in light leisure time physical activity (e.g., light gardening, easy gymnastics, short (less than 0.5 hours) walks, or bike rides (yes/no)) and in strenuous leisure time | Chronic low
back pain (low
back pain
longer than 30
days during
the past 12
months) | Moderate | Moderate | High | Low | OR 0.66 (CI 0.27-1.65) for men, 1.04 (CI 0.44-2.48) for women and 0.85 (CI 0.46-1.60) for both sexes combined for light activity. OR 0.45 (CI 0.22-0.93) for men, 0.57 (CI 0.30-1.10) for women and 0.51 (CI 0.32-0.83) for both sexes combined for strenuous activity. Estimated OR 0.522 (CI 0.297-0.918) for men, 0.708 (CI 0.421-1.190) for women and 0.616 (CI 0.422-0.899) for both sexes for active vs. | Unadjusted | months) based on and 0.95) for 1-1.9 hours, and | physical | |-----------------| | activity (e.g., | | heavy | | gardening, | | long (more | | than half an | | hour) walks | | or bike rides, | | sports, or | | dancing) | #### inactive. Estimated RR for men, 0.67 (CI 0.28-1.59) for light, 0.47 (CI 0.23-0.94) for strenuous and 0.54 (CI 0.31-0.92) for active vs. inactive. Estimated RR for women, 1.04 (CI 0.46-2.22) for light, 0.59 (CI 0.32-1.09) for strenuous and 0.73 (CI 0.44-1.17) for active vs. inactive. Estimated RR for both sexes, 0.86 (CI 0.48-1.54) for light, 0.53 (CI 0.34-0.84) for strenuous and 0.63 (CI 0.44-0.91) for active vs. inactive. In the co-twin control analysis, OR 0.08 (CI 0.03-0.18) for strenuous activity | Picavet 2003 ²² | Netherlan
ds | 1 to 4 yrs. | Population
based | With or
without
low back
pain | 20–59 | Both | 3759 | |----------------------------|-----------------|-------------|---------------------|--|-------|------|------| | | | | | | | | | | Lack of | |---------------| | moderate | | leisure-time | | activity | | defined as | | less than 0.5 | | hour per day | | or per week | | spent on | | activities of | | at least 4 | | METs (e.g., | | gardening, | | cycling, or | | sports) | | _ | Chronic low High Moderate Moderate back pain (> 3 months) Moderate Moderat OR 0.91 (CI 0.72-1.15) for <0.5 hour per week and 0.99 (CI 0.80-1.21) for <0.5 hour activity per day. High Estimated OR 1.10 (CI 0.87-1.39) for 0.5 hour or more vs. <0.5 hour per week and 1.01 (CI 0.82-1.24) for 0.5 hour or more vs. <0.5 hour per day. Estimated RR 1.09 (CI 0.88-1.32) for 0.5 hour or more vs. <0.5 hour per week and 1.01 (CI 0.84-1.20) for 0.5 hour or more vs. <0.5 hour per day Adjusted for age, sex, and low back pain at baseline. The results did not differ in working/non-working, or educational level subgroups | Hospitalization due to low bac | |--------------------------------| |--------------------------------| | Hospitalizati | on due to lov | v back pain | | | | | | | | | | | | | | |--------------------------------|---------------|---|-------------|---------------------------------|---|------|---|--|--|----------|----------|----------|----------|---|--| | Rivinoja
2011 ³⁴ | Finland | 28 years | Adolescents | With or
without
back pain | 14 at
baseline
42 at the
end of
follow-
up | Both | 9016
(4535
males
and 4481
females) | Frequency of participation in sports, participation in different types of sports, and membership in a sport club outside of school hours | Hospitalization
for
conservative
care for low
back pain or
sciatica | Low | Moderate | Low | Moderate | HR 0.9 (CI 0.6-1.3) for males, 1.4 (CI 0.8-2.3) for females and 1.05 (CI 0.77-1.44) for males and females combined for participation in sports for at least every other day vs. 2 times or less. HR 0.9 (CI 0.6-1.3) for males, 0.9 (CI 0.5-1.6) for females and 0.90 (CI 0.65-1.24) for males and females combined for membership in a sport club. HR 0.8 (CI 0.6-1.2) for males, 0.7 (CI 0.4-1.1) for females and 0.77 (CI 0.57-1.02) for males and females combined for sports with risk of injury vs. other types of sports | Sex, smoking, overweight, participation in
sports, participation in sports with risk of injury, and membership in a sport club | | Mattila 2008 ³⁵ | Finland | Mean
11.1
years.
Range 0
to 23
years | Adolescents | With or
without
back pain | 14-18 | Both | 57,408
(26688
males
and
30719
females) | Frequency of participation in sports clubs and other physical activity | Hospitalization
due to low
back pain | Moderate | Moderate | Moderate | Low | For participation in sports clubs, HR was 1.19 (1.02-1.41) for 1-3 times/week, 1.06 (CI 0.80-1.41) for 4 times or more/week, and 1.16 (CI 1.01-1.34) for 1 time or more/week compared with never in males and females combined. For participation in sports clubs, HR was 1.10 (0.90-1.30) for 1-3 times/week, 1.00 (CI 0.70-1.30) for 4 times or more/week, and 1.07 (CI 0.91-1.26) for 1 time or more/week compared with never in males. For participation in sports clubs, HR was 1.60 (1.10-2.20) for 1-3 times/week, | Age and sex | 1.50 (CI 0.70-3.20) for 4 times or more/week, and 1.58 (CI 1.15-2.17) for 1 time or more/week compared with never in females. For participation in other physical exercise, HR was 0.70 (0.50-1.20) for 1-3 times/week, 0.80 (CI 0.50-1.40) for 4 times or more/week, and 0.74 (CI 0.53-1.04) for 1 time or more/week compared with never in males and females combined. For participation in sports clubs or other physical exercise, HR was 1.12 (CI 0.86-1.45) for 1-3 times/week, 0.99 (CI 0.65 (CI 0.65-1.51) for 4 times or more/week, and 1.09 (CI 0.87-1.36) for 1 time or more/week compared with never in males and females combined. #### Sick leave due to low back pain | Hemingwa
y 1999 ³⁶ | UK | Mean 4
years | Non-
industrial
civil
servants
working in
the London
offices of
20
departments | With or
without
back pain | 35-55 | Both,
33%
were
femal
es | 4886
(3506
men and
1380
women) | Vigorous
leisure time
activity (e.g.,
running or
digging): one
hour or more
vigorous
activity.
Moderate
activity (e.g.,
scrubbing or
polishing | Sickness
absence due to
back pain
during the
follow-up | Moderate | Mod | |----------------------------------|----|-----------------|--|---------------------------------|-------|-------------------------------------|--|---|--|----------|-----| | | | | | | | | | car): less | | | | than one hour | Sickness
absence due to
back pain
during the | Moderate | Moderate | Moderate | Low | |---|----------|----------|----------|-----| | follow-up | | | | | For 7 days or less sickness absence, RR 0.96 (CI 0.8-1.2) for moderate and 0.85 (CI 0.6-1.2) for low vs. high activity in men. For longer than 7 days, RR 0.75 (CI 0.5-1.2) for moderate and 1.17 (CI 0.6-2.2) for low vs. high For 7 days or less sickness absence, RR 1.61 (CI 1.0-2.6) for moderate and 1.76 activity in men. Age, BMI, grade and pain employment baseline back vigorous activity and one hour or more moderately energetic activity (CI 1.1-2.9) for low vs. high activity in women. For longer than 7 days, RR 0.68 (CI 0.3-1.4) for moderate and 1.01 (CI 0.5-2.2) for low vs. high activity in women. For 7 days or less sickness absence, estimated RR 1.13 (CI 0.92-1.38) for moderate and 1.18 (CI 0.83-1.66) for high activity compared with low activity in men. For longer than 7 days, estimated RR 0.64 (CI 0.41-0.99) for moderate and 0.85 (CI 0.45-1.64) for high activity compared with low activity in men. For 7 days or less sickness absence, estimated RR 0.91 (CI 0.57-1.48) for moderate and 0.57 (CI 0.35-0.92) for high activity compared with low activity in women. For longer than 7 days, estimated RR 0.67 (CI 0.31-1.45) for moderate and 0.99 (CI 0.47-2.08) for high activity compared with low activity in women. For one day or longer sickness absence, estimated RR 1.02 (CI 0.75-1.40) for moderate and 1.10 (CI 0.66-1.83) for high, and 1.04 (CI 0.80-1.36) for moderate or high activity compared with low activity in men. For one day or longer sickness absence, estimated | | | | | | | | | | | | | | | 0.76-1.21) for moderate or high activity compared with low activity in both sexes | | |------------------------------|---------|----------|--|-----------------------------|--------------------|----------------------------------|-----|---------------------------------------|--|-----|----------|------|----------|---|------------| | Müller
1999 ³⁷ | Denmark | 15 years | Three age cohorts of one municipalit y | Without
low back
pain | 30, 40,
50 yrs. | Both,
53% were
femal
es | 220 | Time spent
on sports
activities | Self-reported sickness absence due to low back pain during the previous 7 years, or in the past 12 months before follow-up | Low | Moderate | High | Moderate | OR 0.68 (CI 0.17-2.61) for physical activity < 3h vs. 3 hours or more for sick leave in the past 12 months in 201 subjects. OR 0.52 (CI 0.22-1.20) for physical activity < 3h vs. 3 hours or more for sick leave in the past 7 years in 220 subjects. Estimated OR 1.47 (CI 0.37-5.76) for physical activity 3 hours or more vs. less than 3 hours for sick leave in the past 12 months. Estimated OR 1.92 (CI 0.82-4.49) for physical activity 3 hours or more vs. less than 3 hours for sick leave in the past 7 years. Estimated RR 1.42 (CI 0.39-4.32) for physical activity 3 hours or more vs. less than 3 hours for sick leave in the past 7 years. Estimated RR 1.42 (CI 0.39-4.32) for physical activity 3 hours or more vs. less than 3 hours for sick leave in the past 12 months. Estimated RR 1.68 (CI 0.84-2.89) for physical | Unadjusted | | | | | | | | | | | | | | | | | | RR 0.84 (CI 0.43-1.64) for moderate and 0.67 (CI 0.34-1.32) for high, and 0.75 (CI 0.47-1.21) for moderate or high activity compared with low activity in women. For one day or longer sickness absence, estimated RR 0.99 (CI 0.74-1.31) for moderate and 0.92 (CI 0.61-1.38) for high, and 0.96 (CI activity 3 hours or more vs. less than 3 hours for sick leave in the past 7 years * Low means low risk of bias and high means high of bias Figure S1: Flow chart of the search strategy and selection of studies **Figure S2:** A funnel plot of 20 studies on low back pain in the past 1-12 months for active vs. inactive. Dark orange line indicates the fitted regression line (P for Egger test = 0.78) **Figure S3:** A filled funnel plot showing 12 observed studies (solid black circles) on low back pain in the past 1-12 months for moderate vs. low physical activity and three studies imputed (solid maroon triangles) by the trim and fill method **Figure S4:** A funnel plot of nine studies on frequent or chronic low back pain for active vs. inactive. Dark orange line indicates the fitted regression line (P for Egger test = 0.38) **Figure S5:** A filled funnel plot showing nine observed studies (solid black circles) on frequent or chronic low back pain for active vs. inactive and three studies imputed (solid maroon triangles) by the trim and fill method ### References - Hübscher M, Hartvigsen J, Fernandez M, Christensen K, Ferreira P. Does physical activity moderate the relationship between depression symptomatology and low back pain? Cohort and co-twin control analyses nested in the longitudinal study of aging Danish twins (LSADT). *Eur Spine J* 2015. - Lunde LK, Koch M, Hanvold TN, Waersted M, Veiersted KB. Low back pain and physical activity A 6.5 year follow-up among young adults in their transition from school to working life. BMC Public Health 2015;15:1115. - George SZ, Childs JD, Teyhen DS, et al. Predictors of occurrence and severity of first time low back pain episodes: findings from a military inception cohort. *PLoS One* 2012;7:e30597. - Wedderkopp N, Kjaer P, Hestbaek L, Korsholm L, Leboeuf-Yde C. High-level physical activity in childhood seems to protect against low back pain in early adolescence. *Spine J* 2009;9:134-41. - Jones GT, Watson KD, Silman AJ, Symmons DP, Macfarlane GJ. Predictors of low back pain in British schoolchildren: a population-based prospective cohort study. *Pediatrics* 2003;111:822-8. - Harreby M, Hesselsoe G, Kjer J, Neergaard K. Low back pain and physical exercise in leisure time in 38-year-old men and women: a 25-year prospective cohort study of 640 school children. *Eur Spine J* 1997;6:181-6. - Hussain SM, Urquhart DM, Wang Y, et al. Associations between television viewing and physical activity and low back pain in community-based adults: A cohort study. *Medicine (Baltimore)* 2016;95:e3963. - 8 Taanila HP, Suni JH, Pihlajamäki HK, et al. Predictors of low back pain in physically
active conscripts with special emphasis on muscular fitness. *Spine J* 2012;12:737-48. - 9 Feldman DE, Shrier I, Rossignol M, Abenhaim L. Risk factors for the development of low back pain in adolescence. *Am J Epidemiol* 2001;154:30-6. - Brady SR, Hussain SM, Brown WJ, et al. Predictors of Back Pain in Middle Aged Women: Data from the Australian Longitudinal Study on Women's Health. *Arthritis Care Res (Hoboken)* 2016. - 11 Kapellusch JM, Garg A, Boda S, et al. Association between lifting and use of medication for low back pain: results from the Backworks Prospective Cohort Study. *J Occup Environ Med* 2014;56:867-77. - Shiri R, Solovieva S, Husgafvel-Pursiainen K, et al. The role of obesity and physical activity in non-specific and radiating low back pain: The Young Finns study. *Semin Arthritis Rheum* 2013;42:640-50. - Thiese MS, Hegmann KT, Garg A, Porucznik C, Behrens T. The predictive relationship of physical activity on the incidence of low back pain in an occupational cohort. *J Occup Environ Med* 2011;53:364-71. - Bovenzi M. A longitudinal study of low back pain and daily vibration exposure in professional drivers. *Ind Health* 2010;48:584-95. - Miranda H, Viikari-Juntura E, Punnett L, Riihimäki H. Occupational loading, health behavior and sleep disturbance as predictors of low-back pain. *Scand J Work Environ Health* 2008;34:411-9. - Strøyer J, Jensen LD. The role of physical fitness as risk indicator of increased low back pain intensity among people working with physically and mentally disabled persons: a 30-month prospective study. *Spine (Phila Pa 1976)* 2008;33:546-54. - Andersen JH, Haahr JP, Frost P. Risk factors for more severe regional musculoskeletal symptoms: a two-year prospective study of a general working population. *Arthritis Rheum* 2007;56:1355-64. - Hartvigsen J, Christensen K. Active lifestyle protects against incident low back pain in seniors: a population-based 2-year prospective study of 1387 Danish twins aged 70-100 years. *Spine (Phila Pa 1976)* 2007;32:76-81. - Jacob T. Low back pain incident episodes: a community-based study. *Spine J* 2006;6:306-10. - Leino-Arjas P, Solovieva S, Kirjonen J, Reunanen A, Riihimäki H. Cardiovascular risk factors and low-back pain in a long-term follow-up of industrial employees. *Scand J Work Environ Health* 2006;32:12-9. - Yip VY. New low back pain in nurses: work activities, work stress and sedentary lifestyle. *J Adv Nurs* 2004;46:430-40. - Picavet HS, Schuit AJ. Physical inactivity: a risk factor for low back pain in the general population? *J Epidemiol Community Health* 2003;57:517-8. - Power C, Frank J, Hertzman C, Schierhout G, Li L. Predictors of low back pain onset in a prospective British study. *Am J Public Health* 2001;91:1671-8. - Croft PR, Papageorgiou AC, Thomas E, Macfarlane GJ, Silman AJ. Short-term physical risk factors for new episodes of low back pain. Prospective evidence from the South Manchester Back Pain Study. *Spine (Phila Pa 1976)* 1999;24:1556-61. - Eriksen W, Natvig B, Bruusgaard D. Smoking, heavy physical work and low back pain: a four-year prospective study. *Occup Med (Lond)* 1999;49:155-60. - Burdorf A, Van Der Steenhoven GA, Tromp-Klaren EG. A one-year prospective study on back pain among novice golfers. *Am J Sports Med* 1996;24:659-64. - Jacobs JM, Hammerman-Rozenberg R, Cohen A, Stessman J. Chronic back pain among the elderly: prevalence, associations, and predictors. *Spine (Phila Pa 1976)* 2006;31:E203-7. - Mikkelsson LO, Nupponen H, Kaprio J, Kautiainen H, Mikkelsson M, Kujala UM. Adolescent flexibility, endurance strength, and physical activity as predictors of adult tension neck, low back pain, and knee injury: a 25 year follow up study. *Br J Sports Med* 2006;40:107-13. - Sihawong R, Sitthipornvorakul E, Paksaichol A, Janwantanakul P. Predictors for chronic neck and low back pain in office workers: a 1-year prospective cohort study. *J Occup Health* 2015;58:16-24. - Herin F, Vezina M, Thaon I, Soulat JM, Paris C, ESTEV group. Predictive risk factors for chronic regional and multisite musculoskeletal pain: a 5-year prospective study in a working population. *Pain* 2014;155:937-43. - Makris UE, Fraenkel L, Han L, Leo-Summers L, Gill TM. Risk factors for restricting back pain in older persons. *J Am Med Dir Assoc* 2014;15:62-7. - Nilsen TI, Holtermann A, Mork PJ. Physical exercise, body mass index, and risk of chronic pain in the low back and neck/shoulders: longitudinal data from the Nord-Trondelag Health Study. *Am J Epidemiol* 2011;174:267-73. - van Oostrom SH, Monique Verschuren WM, de Vet HC, Picavet HS. Ten year course of low back pain in an adult population-based cohort--the Doetinchem cohort study. *Eur J Pain* 2011;15:993-8. - Rivinoja AE, Paananen MV, Taimela SP, et al. Sports, smoking, and overweight during adolescence as predictors of sciatica in adulthood: a 28-year follow-up study of a birth cohort. *Am J Epidemiol* 2011;173:890-7. - Mattila VM, Saarni L, Parkkari J, Koivusilta L, Rimpelä A. Predictors of low back pain hospitalization--a prospective follow-up of 57,408 adolescents. *Pain* 2008;139:209-17. - Hemingway H, Shipley M, Stansfeld S, et al. Are risk factors for atherothrombotic disease associated with back pain sickness absence? The Whitehall II Study. *J Epidemiol Community Health* 1999;53:197-203. - Müller CF, Monrad T, Biering-Sorensen F, Darre E, Deis A, Kryger P. The influence of previous low back trouble, general health, and working conditions on future sick-listing because of low back trouble. A 15-year follow-up study of risk indicators for self-reported sick-listing caused by low back trouble. *Spine (Phila Pa 1976)* 1999;24:1562-70. - Aartun E, Hartvigsen J, Boyle E, Hestbaek L. No associations between objectively measured physical activity and spinal pain in 11-15-year-old Danes. *Eur J Pain* 2015. - Franz C, Jespersen E, Rexen CT, Leboeuf-Yde C, Wedderkopp N. Back injuries in a cohort of schoolchildren aged 6-12: A 2.5-year prospective study. *Scand J Med Sci Sports* 2015. - Kääriä S, Kirjonen J, Telama R, Kaila-Kangas L, Leino-Arjas P. Does strenuous leisure time physical activity prevent severe back disorders leading to hospitalization? *Eur Spine J* 2014;23:508-11. - van Amelsvoort LG, Spigt MG, Swaen GM, Kant I. Leisure time physical activity and sickness absenteeism; a prospective study. *Occup Med (Lond)* 2006;56:210-2. - Bergstrom G, Bodin L, Bertilsson H, Jensen IB. Risk factors for new episodes of sick leave due to neck or back pain in a working population. A prospective study with an 18-month and a three-year follow-up. *Occup Environ Med* 2007;64:279-87. - 43 Strowbridge NF. Gender differences in the cause of low back pain in British soldiers. *J R Army Med Corps* 2005;151:69-72. - Salminen JJ, Erkintalo M, Laine M, Pentti J. Low back pain in the young. A prospective three-year follow-up study of subjects with and without low back pain. *Spine (Phila Pa 1976)* 1995;20:2101-7; discussion 2108. - Kujala UM, Taimela S, Viljanen T, et al. Physical loading and performance as predictors of back pain in healthy adults. A 5-year prospective study. *Eur J Appl Physiol Occup Physiol* 1996;73:452-8. - Kopec JA, Sayre EC, Esdaile JM. Predictors of back pain in a general population cohort. *Spine* (*Phila Pa 1976*) 2004;29:70-7; discussion 77-8. - van Poppel MN, Koes BW, Deville W, Smid T, Bouter LM. Risk factors for back pain incidence in industry: a prospective study. *Pain* 1998;77:81-6. - Szpalski M, Gunzburg R, Balague F, Nordin M, Melot C. A 2-year prospective longitudinal study on low back pain in primary school children. *Eur Spine J* 2002;11:459-64. - Jespersen T, Jorgensen MB, Hansen JV, Holtermann A, Sogaard K. The relationship between low back pain and leisure time physical activity in a working population of cleaners--a study with weekly follow-ups for 1 year. *BMC Musculoskelet Disord* 2012;13:28. - Barnekow-Bergkvist M, Hedberg GE, Janlert U, Jansson E. Determinants of self-reported neck-shoulder and low back symptoms in a general population. *Spine (Phila Pa 1976)* 1998;23:235-43. - Mitchell T, O'Sullivan PB, Burnett A, et al. Identification of modifiable personal factors that predict new-onset low back pain: a prospective study of female nursing students. *Clin J Pain* 2010;26:275-83. - Sandler RD, Sui X, Church TS, Fritz SL, Beattie PF, Blair SN. Are flexibility and muscle-strengthening activities associated with a higher risk of developing low back pain? *J Sci Med Sport* 2014;17:361-5. - Gjestland K, Bø K, Owe KM, Eberhard-Gran M. Do pregnant women follow exercise guidelines? Prevalence data among 3482 women, and prediction of low-back pain, pelvic girdle pain and depression. *Br J Sports Med* 2013;47:515-20.