contains ten items of which the last three concerns tasks that some patients cannot and some do not perform. No manual for the use of ATRS has been developed. The purpose was to investigate how ATRS responds at 4, 6 and 12 months after rupture and develop a manual for the use of ATRS.

Materials and methods This study was performed as a retrospective registry study analysing prospectively gathered data from the Danish Achilles tendon Database. The data was gathered 4, 6 and 12 months after rupture. The original score based on 10 items was compared with a score based on the first 7 items adjusted to the same scale as the original score. Density- and scatterplots were made and differences between the scores were tested by t-test or Mann–Whitney U test.

Results 2790 completed ATRS scores were included. The 7-item score statistically significantly overestimated the value of the 10 items score at all time points ($p<0.001$) but only at 4 months the difference was clinical relevant (9.7 points).

Conclusion The ATRS cannot be recommended for use at 4 months the last three items could be omitted. A manual for the use of the ATRS will be developed defining how and when the score should be applied.

Abstracts

21 VALIDATION OF ACHILLES TENDON LENGTH MEASURE AND ACHILLES TENDON RESTING ANGLE IN RELATION TO COPENHAGEN ACHILLES LENGTH MEASURE

1Maria Swennergren Hansen*, 1,2Morten Tange Kristensen, 3Per Hölmi, 4Kristoffer Wäschlihme Barfod. Physical Medicine and Rehabilitation Research Copenhagen (PMR-C), Department of Physical and Occupational Therapy, Copenhagen University Hospital Amager-Hvidovre, Denmark; 5Department of Orthopaedic Surgery, Copenhagen University Hospital Amager-Hvidovre, Denmark; 6Sports Orthopedic Research Center – Copenhagen (SORC-C), Department of Orthopaedic Surgery, Copenhagen University Hospital Amager-Hvidovre, Denmark

Introduction Elongation of the Achilles tendon after rupture is a frequent and overlooked complication. The Achilles Tendon Length Measure (ATLM) and the Achilles Tendon Resting Angle (ATRA) are indirect length measures using the resting angle of the ankle. Copenhagen Achilles Length Measure (CALM) is a direct ultrasound measure. Examination of the association of elongation to valid clinical measures of the length of the Achilles tendon are needed. The purpose was to examine the concurrent validity of ATLM and ATRA in relation to CALM within one year of rupture.

Materials and methods The study was performed as a validity study. Data were collected from patients included in a randomized controlled trial. Mixed linear regression, controlling for time after injury, age and gender, was performed investigating the three models (dependent-independent): CALM-ATRA, CALM-ATLM and ATRA-ATLM.

Results 130 patients were included (23 women, 107 men) mean age 41.8 years (SD 10.5). All three regression models demonstrated a statistical significant ($p<0.01$) linear relationship. For each degree ATRA increased, CALM increased with 1.7 mm. For each cm ATLM increased, ATRA increase with 0.39 mm. For each cm ATLM increase, CALM increased with 1.7 mm. For each cm ATLM increase, ATRA increase with 1.6 degrees.

Conclusion ATRA and ATLM are found to have a linear relationship to CALM and seems valid as surrogate measurements for the assessment of tendon elongation after an Achilles tendon rupture.

22 RUNNING A MARATHON – THE EFFECT ON ACHILLES TENDON STRUCTURE

1Lucas Maciel Rabelo*, 1,2Mathijs van Ark, 3Sophie Albers, 1Ron L Diercks, 1Johannes Zwerver, 1Inge van den Akker-Scheek. 1University of Groningen, University Medical Center Groningen, Department of Sports and Exercise Medicine, Netherlands; 2Hanze University of Applied Sciences Groningen, Department of Physiotherapy, Netherlands; 3University of Groningen, University Medical Center Groningen, Department of Orthopedics, Netherlands

Introduction More than half a million athletes were enrolled in a marathon run during the last years. During running the Achilles tendon is submitted to high loads, and multiple tensile strain cycles. There are no studies investigating the effect of a marathon in the structure of the Achilles tendon. Thus, the aim of this study was to investigate the short-term response of the Achilles tendon structure after running a marathon.

Materials and methods Ten male non-elite runners who participated in a marathon were included. Tendon structure was assessed before, 2 days and 7 days after a marathon using the ultrasound tissue characterization (UTC), an imaging tool which quantifies tendon organization dividing the structure into four different echo types (I–IV).

Results Two days after a marathon, no significant changes in tendon structure were observed. However, after 7 days both insertional and midportion structure changed significantly. At the insertion of the tendon there was a significant decrease in the percentage of echo types I, III and IV and a significant increase in the percentage of echo type II. The midportion of the tendon showed a significant decrease in the percentage of echo types III and IV and a significant increase in the percentage of echo type II.

Conclusion We observed that the effects of running a marathon on the Achilles tendon structure occurred 7 days after the event. In a population of runners without tendon injuries, there seems to be a positive adaptation of the tendon to the load after running a marathon.

23 EVALUATION OF IN-EAR SENSOR SYSTEMS FOR QUANTIFYING HEAD IMPACT EXPOSURE IN YOUTH FOOTBALL

1Stian Bahr Sandmo*, 1,2,3Andrew S McIntosh, 1Thor Einar Andersen, 1Inga K Koerte, 1Roald Bahr. 1Department of Sports Medicine, Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Norway; 2University of Groningen, University Medical Center Groningen, Department of Physiotherapy, Netherlands; 3Hanze University of Applied Sciences Groningen, Department of Physiotherapy, Netherlands; 4McIntosh Consultancy and Research, Australia; 5Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilian University, Germany; 6Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, USA

Introduction Wearable sensor systems may be useful for measuring head-impact exposure. Here, we tested the validity of in-ear sensors developed to improve head coupling.

Methods First, the sensor was mounted to a Hybrid III headform (HHII) and impacted with a linear impactor or football. Peak linear acceleration (PLA), peak rotational acceleration (PRA) and peak rotational velocity (PRV) were obtained from both systems; random and systematic error were calculated using HHII as reference. Then, six youth football players wore sensors and performed a structured training protocol