Emerging collaborative research platforms for the next generation of physical activity, sleep and exercise medicine guidelines: the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS)

Galileo Galilei’s quote ‘measure what is measurable, and make measurable what is not so’ has particular relevance to health behaviours, such as physical activity (PA), sitting and sleep, whose measurement during free living is notoriously difficult. To date, much of what we know about how these behaviours affect our health is based on self-report by questionnaires which have limited validity, are prone to bias and inquire about selective aspects of these behaviours. Although self-reported evidence has made great contributions to shaping public health and exercise medicine policy and guidelines until now, the ongoing advancements of accelerometry-based measurement and evidence synthesis methods are set to change the landscape. The aim of this editorial is to outline new directions in PA and sleep-related epidemiology that open new horizons for guideline development and improvement; and to describe a new research collaboration platform: the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS) (figure 1).

FEASIBLE RESEARCH TECHNOLOGY AT SCALE, BIG CONSORTIA
Measurement technology used in epidemiology has made measurable what was not so until recently. Several population-based studies use accelerometers that are worn by participants for 24 hours a day for a whole week, offering unprecedented insights into the health attributes of PA, sitting and sleep. One of the most exciting aspects of accelerometers is that they show great promise for capturing nearly complete accounts of movement behaviour, including posture and activity type detection.1 However, advanced measurement methods and optimal evidence synthesis are not synonymous. Individual accelerometry studies have limited generalisability beyond the specific country, population and setting, and usually have low statistical power to address detailed research questions. For example, none of the National Health and Nutrition Examination Survey (NHANES) accelerometry studies2 have been able to study potentially metabolic health-enhancing sporadic short (<2–3 min) bursts of higher intensity incidental PA,4 likely because of the sparsity of such data. Like any other field, classic systematic reviews of accelerometry inherit the problems of source studies and their conclusions may not be robust.2 We need to think differently when it comes to consolidating, analysing and interpreting new formats of accelerometry data. As John Ioannidis’ BJSM editorial succinctly put it, the next generation of evidence in exercise medicine and PA involves large consortia of individual participant data that are harmonised retrospectively or prospectively.6 Prospective harmonisation (ie, agree on same or similar measurements across different studies prior to data collection), in particular, is an extremely powerful tool as it can overcome heterogeneity, which is one of the largest obstacles for rigorous evidence synthesis.6 The value of consortia goes beyond producing more robust and generalisable knowledge, there is also a strong economic argument. The value of every dollar, pound or euro tax payers and research funders invested in the original studies is multiplied through further use of the data resources to inform better public health and clinical practice guidelines.

A NEW CONSORTIUM
The momentum generated by successful accelerometry consortia (eg, International Children’s Accelerometry Database7) and large epidemiological studies like NHANES8 and the UK Biobank9 that used waist or wrist mounted accelerometers inspired the genesis of the ProPASS.7 ProPASS is a research collaboration platform that aims to bring together existing and future observational studies of thigh-worn accelerometry. Although each accelerometer placement site has both strengths and challenges, the ProPASS choice of site was far from accidental: the unique appeal of the thigh-worn method is that it provides information on multiple dimensions of movement behaviour, including movement intensity (eg, light, moderate and vigorous PA) and posture (eg, sitting/lying, standing). Activity types such as cycling, running and stair climbing can also be extrapolated by thigh-attached sensors2 and integration with other important behaviours such as duration and timing of sleep can provide unique insights on lifestyle and health.3 Information about such tangible aspects of human behaviour has immediate relevance to people’s daily lives; and is easier for clinicians, policymakers and the public alike to understand, ‘digest’ and hopefully seek to improve.

The ultimate scientific objective of ProPASS is to produce evidence on the associations of PA, sitting, and sleep and long-term health outcomes and longevity. As of February 2019, ProPASS is supported by 12 international cohorts totalling over 70 000 participants (table 1). To safeguard consortium feasibility, longevity and faster growth, ProPASS is not restricted to one specific model of accelerometer; any triaxial device that outputs raw acceleration and is worn on the thigh is suitable—an approach we have validated empirically.3 The ProPASS cohorts are rich in health outcome data, many contain genotypic information, and most can be linked to administrative health and mortality records, opening up a huge variety of possibilities to generate new knowledge.
Table 1 Accelerometry studies supporting the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS)

<table>
<thead>
<tr>
<th>Main study Name/country</th>
<th>Leading institution</th>
<th>Geographical coverage of the study</th>
<th>Participants (n)</th>
<th>Sex</th>
<th>Population/age range (accelerometry measurement)</th>
<th>Accelerometry device</th>
<th>Years (accelerometry measurement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Longitudinal Study on Women’s Health/Australia</td>
<td>The University of Queensland and The University of Sydney</td>
<td>Australia (target) =3250</td>
<td>Women</td>
<td>General population/45–50 years</td>
<td>ActiPAL3 and ActiPAL4 micro</td>
<td>2019–2020</td>
<td></td>
</tr>
<tr>
<td>1970 British Birth Cohort Study/UK</td>
<td>Loughborough University and University College London</td>
<td>UK =5500</td>
<td>Both</td>
<td>General population/47–49 years</td>
<td>ActiPAL3 micro</td>
<td>2016–2018</td>
<td></td>
</tr>
<tr>
<td>Copenhagen City Heart Study/Denmark</td>
<td>Frederiksberg Hospital, Copenhagen</td>
<td>Two districts of Copenhagen =2000</td>
<td>Both</td>
<td>General population/18 years or older</td>
<td>Actigraph GT3X</td>
<td>2011–2015</td>
<td></td>
</tr>
<tr>
<td>Danish Physical ACTivity cohort with Objective measurements (DPHACTO) Study/Denmark</td>
<td>National Research Centre for the Working Environment, Copenhagen</td>
<td>Denmark =1000</td>
<td>Both</td>
<td>Workers in manufacturing, cleaning and transportation companies/18–67 years</td>
<td>Actigraph GT3X</td>
<td>2012–2014</td>
<td></td>
</tr>
<tr>
<td>Danish Observational Study of ElderCare work and musculoskeletal disorderS (DOSES) Study/Denmark</td>
<td>National Research Centre for the Working Environment, Copenhagen</td>
<td>Greater Copenhagen region =500</td>
<td>Both</td>
<td>Eldercare workers/18–67 years</td>
<td>Actigraph GT3X</td>
<td>2013–2014</td>
<td></td>
</tr>
<tr>
<td>Finnish Retirement and Aging study (FIREA)/Finland</td>
<td>University of Turku</td>
<td>Southwest Finland =280</td>
<td>Both</td>
<td>General population/occupational cohort/59–65 years, 60–64 years</td>
<td>ActiPAL3</td>
<td>2015–2020</td>
<td></td>
</tr>
<tr>
<td>Health 2016 Study/Denmark</td>
<td>Centre for Clinical Research and Prevention, Frederiksberg</td>
<td>Western part of Greater Copenhagen =800</td>
<td>Both</td>
<td>General population/18–69 years</td>
<td>Axivity</td>
<td>2016–2017</td>
<td></td>
</tr>
<tr>
<td>The Nord-Trøndelag Health Study (HUNT 4) Norway</td>
<td>Norwegian University of Science and Technology</td>
<td>Northern part of Trøndelag region =40,000</td>
<td>Both</td>
<td>General population/18 years or older</td>
<td>Axivity 3</td>
<td>2017–2019</td>
<td></td>
</tr>
<tr>
<td>The Maastricht Study/The Netherlands</td>
<td>Maastricht University</td>
<td>South of The Netherlands =9000</td>
<td>Both</td>
<td>General population (oversampling of people with type 2 diabetes)/40–75 years</td>
<td>ActiPAL3</td>
<td>2010–2019</td>
<td></td>
</tr>
<tr>
<td>Swedish CardioPulmonary bioImage Study (SCAPIS) Ad-On Gothenburg/Sweden</td>
<td>University of Gothenburg</td>
<td>Gothenburg region =500</td>
<td>Both</td>
<td>General population/50–64 years</td>
<td>Axivity AX3</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>Swedish CardioPulmonary bioImage Study (SCAPIS) Ad-On Umeå/Sweden</td>
<td>Umeå University</td>
<td>Umeå region =2500</td>
<td>Both</td>
<td>General population/50–64 years</td>
<td>ActiPAL3</td>
<td>2016–2018</td>
<td></td>
</tr>
<tr>
<td>Swedish CardioPulmonary bioImage Study (SCAPIS) Ad-On Uppsala/Sweden</td>
<td>Uppsala University</td>
<td>Uppsala region =5000</td>
<td>Both</td>
<td>General population/50–64 years</td>
<td>Axivity AX3</td>
<td>2015–2018</td>
<td></td>
</tr>
</tbody>
</table>

CALL FOR COLLABORATION

New research collaboration platforms have paved the way for the next generation of evidence on PA-related behaviours and health. Recording detailed and accurate objective accounts of daily movement behaviour and posture is now feasible in large epidemiological studies. To fully capitalise on the opportunities offered by such methodological progress at least two essential conditions need to be met: breaking down silos to integrate research paradigms across PA domains, and tight interdisciplinary collaboration. Meeting ProPASS’ objectives is dependent on these conditions.

In this editorial we invite researchers from any discipline who have collected or are considering to collect thigh-worn accelerometry data in observational studies to contact us. We also invite scientists with an interest in health-related data consortia, as well as health professionals and policymakers to help us form a ProPASS research agenda with maximal relevance to patients, the public and health policy. There is no question in our mind that such a research agenda is a prerequisite for the success of ProPASS and any other effort aimed at shaping the next generation of PA, sitting, sleep and exercise medicine guidelines.

Get in touch to discuss opportunities for your existing or future studies to join ProPASS (email: propass.consortium@sydney.edu.au). Join our mailing list (www.propassconsortium.org) to stay updated about future events and activities.

Emmanuel Stamatakis 1, Annemarie Koster 2, Mark Hamer 2,4, Vega Rangul 2,3, I-Min Lee 4, Adrian E Bauman 2, Andrew J Atkin 2, Mette AaM all 3, Charles E Matthews 2, Paul Jarle Mork 11, Lisa Askie 2,12, Peter Cistulli 11, Malcolm Granat 14, Peter Palm 15, Patrick Joseph Crowley 16, Matthew Stevens 18, Nidhi Gupta 16, Anna Pulakka 2, Sari Stenholm 17, Daniel Arvidsson 18

Gita Mishra, P Shen, A de Paepe, S Loutride, C McManus, D Poole, P Visscher, S Stamatakis, H Seaton, A Galloway

1 Prevention Research Collaboration, Charles Perkins Centre, Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
2 Department of Nutrition, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
3 School of Sport Exercise and Health Sciences, Loughborough University, Loughborough, UK
4 School of Public Health, University of Queensland, Brisbane, Queensland, Australia
5 Department of Public Health and Nursing, HUNT Research Centre, Faculty of Medicine and Health Sciences, School of Public Health, University of Tromsø, Tromsø, Norway
6 Department of Medical Sciences, Uppsala University, Uppsala, Sweden
7 School of Health Sciences, University of East Anglia, Norwich, UK
8 Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
9 Research Centre for Prevention and Health, Copenhagen, Denmark
10 Department of Public Health and Nursing, The Norwegian University of Science and Technology, Trondheim, Norway
11 NHMRC Clinical Trials Centre, University of Sydney, New South Wales, Australia
12 School of Health Sciences, University of Salford, Salford, UK
13 School of Health Sciences, University of Utah, Salt Lake City, USA
14 School of Health Sciences, University of Birmingham, Birmingham, UK
15 School of Health Sciences, University of Turku, Turku, Finland
16 Department of Physical Activity and Health, School of Public Health, University of Turku, Turku, Finland
17 School of Public Health, University of Queensland, Brisbane, Queensland, Australia
18 School of Public Health, University of Sydney, Sydney, New South Wales, Australia
19 School of Health and Life Science, Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, UK
20 Department of Movement and Sports Sciences, Universiteit Gent, Gent, Belgium
21 Department of Sport Medicine, Norwegian School of Sport Sciences, Oslo, Norway

Contributors ES conceived the idea and drafted the first draft of the manuscript and carried out all revisions. AH, AK, MH and VR contributed to the idea.

All authors reviewed critically the manuscript and provided detailed suggestions for revisions. AP, VR, AH, MA, PP, PW, DA, AK, GM and ES provided the data presented in table 1.

Funding The ProPASS consortium has received financial support from the following organisations: an unrestricted grant by PAL Technologies, Scotland, UK; a grant by the Worldwide Universities Network–Research Development Fund 2018; an internal seed grant by the University of Sydney; a National Health and Medical Research Council (Australia) equipment grant; in-kind support by the National Research Centre for the Working Environment, Copenhagen; and financial support by Loughborough University.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Revised 5 March 2019

Accepted 9 April 2019

Published Online First 10 May 2019

doi:10.1136/bjsports-2019-100786

REFERENCES
