Infographic. Consensus recommendations on the classification, definition and diagnostic criteria of hip-related pain in young and middle-aged active adults from the International Hip-related Pain Research Network, Zurich 2018

Young and middle-aged active adults with hip and groin pain often present with a confusing overlap of signs and symptoms. There is no consensus on how to define or classify hip disease with different and overlapping intra-articular and extra-articular contributors to symptoms in an anatomically complex region. Several researchers and consensus groups have previously attempted to define aspects of hip and groin pain.1–4 In 2017, the International Hip Pain Research Network (IHiPRN) was established to facilitate collaboration across research groups and disciplines and to improve knowledge dissemination of hip-related pain to clinicians. In this paper,5 published in the British Journal of Sports Medicine, we first describe the general consensus process applied to all topics in this series. We then make recommendations on the first topic on how to classify, define and diagnose hip disease in young and middle-aged active adults, with hip-related pain as the main symptom. Other papers in this series used this classification of hip-related pain in the assessment of (1) patient-reported outcome...
measures, standardised measurement of physical capacity and physical therapist-led treatment.

For this paper, the working group used a scoping review framework to search the literature for systematic reviews, intervention and observational studies (prospective or retrospective) with a study population of at least 10 young and middle-aged active adults and published in English language, peer-reviewed journals. Evidence summaries and consensus recommendations were then presented to and discussed by the whole group of HITPRN participants. We reached consensus on three clinical recommendations, one clinical and research recommendation, and two research recommendations (infographic), all of which were an amalgamation of best available evidence and expert opinion. Following discussion, each participant was asked to perform a blinded vote on the recommendation (infographic). Both non-musculoskeletal and serious hip pathology conditions (eg, tumours, infections, slipped capital femoral epiphysis), as well as matching musculoskeletal conditions (eg, lumbar spine) should first be excluded before categorising hip disease in young and middle-aged active adults presenting with hip-related pain. Once these are excluded, hip-related pain should be categorised into (1) femoroacetabular impingement syndrome, (2) acetabular dysplasia and/or hip instability and (3) other conditions without bony morphology causing hip-related pain, such as chondral, labral and ligamentum teres conditions.

The diagnostic clinical utility for the various clinical and radiological measures was stratified according to magnitude of the pretest to post-test probability shift, precision (repeatability of the results), and study quality. Each of these values were represented on a 2×2 quadrant (magnitude×precision) as not recommended (red quadrant), cautiously recommended (yellow quadrants) or recommended (green quadrant) if the study quality was high.

We determined that the diagnostic utility of clinical examination and diagnostic imaging in isolation are limited and recommend a comprehensive diagnostic approach of patient symptoms, clinical signs and diagnostic imaging. We recognise that the diagnostic capability of matching symptoms, clinical signs and diagnostic imaging is unknown for patients with hip-related pain and recommend that future studies be considered in determining such diagnostic utilities.

Infographic

1Department of Orthopaedic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
2Lutrobe Sports Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
3Department of Orthopaedic Surgery, Erasmus MC Center for Groin Injuries, Erasmus University Medical Centre, Rotterdam, Netherlands
4Aspetar Sports Groin Pain Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
5Department of Orthopaedic Surgery, Erasmus University Medical Centre, Rotterdam, Netherlands
6Elite Sports Imaging, SL, Madrid, Spain
7Musculoskeletal Radiology, Corades, LLC, Brookline, Massachusetts, USA
8Health Sciences, Lund University, Lund, Sweden
9Sports Orthopaedic Research Center–Copenhagen (SORC-C), Arthroscopic Center, Department of Orthopaedic Surgery, Copenhagen University Hospital, Amager-Hvidovre, Denmark, Amager-Hvidovre Hospital, Hvidovre, Copenhagen, Denmark
10Division of Orthopaedic surgery, Oslo University Hospital, Oslo, Norway
11Warwick Orthopaedics, University of Warwick, Coventry, UK
12Orthopaedics Warwick Medical School, University of Warwick, Coventry, UK
13Family Practice & Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada
14Research, Schulttsh Clinic Human Performance Lab, Zurich, Switzerland
15Physical Therapy, Washington University School of Medicine in Saint Louis, Saint Louis, Missouri, USA
16Human Performance Lab, Schulttsh Clinic, Zurich, Switzerland
17Laboratory of Exercise and Health, ETH Zurich, Switzerland
18School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
19Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
20Division of Physical Therapy, The Ohio State University, Columbus, Ohio, USA
21Department of Physiotherapy, Australian Institute of Sport, Canberra, Australian Capital Territory, Australia
22Australian Collaboration for Research into Injury in Sport and its Prevention (ACRISP), Federation University Australia, Ballarat, Victoria, Australia
23Department of Cardiology, Alfred Health, Melbourne, Victoria, Australia
24School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
25Department of Orthopaedic Surgery, University of Oxford, Institute of Musculoskeletal Sciences, Oxford, UK
26Department of Orthopaedic Surgery, University of Oxford, Institute of Musculoskeletal Sciences, Oxford, UK
27Swiss Olympic Medical Center, Hospital de la Tour, Meyrin, Geneva, Switzerland
28Sports Medicine, University Hospital of Lausanne, Lausanne,VD, Switzerland
29Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
30Faculty of Health, University of Technology Sydney, Sydney, New South Wales, Australia
31Department of Orthopedic Surgery, Copenhagen University Hospital, Amager-Hvidovre, Sports Orthopedic Research Center - Copenhagen (SORC-C), Hvidovre, Denmark
32La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services, and Sport, La Trobe University, Bundoora, Victoria, Australia
33School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Queensland, Australia
34Department of Orthopaedics, Schulttsh Klinik, Zurich, Switzerland
35Physical Therapy & Athletic Training, Boston University, Boston, Massachusetts, USA
36Physiotherapy, HES-SO Valais, University of Applied Sciences Western Switzerland, Leukerbad, Valais, Switzerland
37Oslo Sports Trauma Research Centre (OSTRC), Norwegian School of Sport Sciences, Oslo, Norway
38Department of Sport Medicine, Norwegian School of Sport Sciences, Oslo, Norway
39Division of Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway
40La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
41Research & Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
42College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
43Sports Medicine, ASPETAR Orthopedic and Sports Medicine Hospital, Doha, Qatar
44Department for Continuing Education, University of Oxford, Oxford, UK

Correspondence to Rititje Agricola, Department of Orthopaedic Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands, r.agricola@erasusmc.nl

Twitter Michael P Reiman @MikeReiman, Rititje Agricola @RititjeAgricola, Joanne L Kemp @JoanneLKemp, Joshua S Heerey @Heerey, Pim van Kluij @Pimsvklij, Andrea B Mosler @AndreaBMosler, Eva Ageberg @EvaAgeberg, Damian Griffin @DamianGriffin, Nicola C Casartelli @NicCasartelli, Laura E Diamond @lauradiamond05, Michael Drew @mickdrew, Daniel J Friedman @ddfdriinan, Boris Gojanovic @bdsporsancze, Marcia Harris-Hayes @MHarris-Hayes, Franco M Impellizzeri @francomimpelli, Lasse Ishak @LasseIshak, Matthew G King @mattmkgin1, Peter R lawrenson @PeteLawrenson, Cara L Lewis @ProfCaralewis, Håvard Moksnes @HMoksnes, Mark J Scholes @Mark.Scholes85, Adam I Semciv @ASemciv, Andreas Serner @aserner, Kristian Thorborg @KThorborg, Adam Virgile @adavirgile, Tobias Wörm @Wuninaho and Paul Dijkstra @DrPaulDijkstra

Contributors AV, RA, MPF and HPD contributed to the conception of the work. All authors contributed to the interpretation, drafting and revision of the infographic and gave their final approval.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
REFERENCES


