Return to sport decisions after an acute lateral ankle sprain injury: introducing the PAASS framework—an international multidisciplinary consensus

Michelle D Smith,1 Bill Vicenzino,1 Roald Bahr,2,3 Thomas Bandholm,4,5 Rosalyn Cooke,6 Luciana De Michelis Mendonça,7,8 François Fourchet,9,10 Philip Glasgow,11,12 Phillip A Gribble,13 Lee Herrington,6,14 Claire E Hiller,15 Sae Yong Lee,16,17 Andrea Macaluso,18,19 Romain Meeusen,20 Oluwatoyosi B A Owoeye,21,22 Duncan Reid,23 Bruno Tassignon,20 Masafumi Terada,24 Kristian Thorborg,25,26 Evert Verhagen,27 Jo Verschueren,20 Dan Wang,28 Rod Whiteley,2,3,29 Erik A Wikstrom,30 Eamonn Delahunt31,32

ABSTRACT

Background Despite being the most commonly incurred sports injury with a high recurrence rate, there are no guidelines to inform return to sport (RTS) decisions following acute lateral ankle sprain injuries. We aimed to develop a list of assessment items to address this gap.

Methods We used a three-round Delphi survey approach to develop consensus of opinion among 155 globally diverse health professionals working in elite field or court sports. This involved surveys that were structured in question format with both closed-response and open-response options. We asked panellists to indicate their agreement about whether or not assessment items should support the RTS decision after an acute lateral ankle sprain injury. The second and third round surveys included quantitative and qualitative feedback from the previous round. We defined a priori consensus being reached at >70% agree or disagree responses.

Results Sixteen assessment items reached consensus to be included in the RTS decision after an acute lateral ankle sprain injury. They were mapped to five domains with 98% panelist agreement—PAASS: Pain (during sport participation and over the last 24 hours), Ankle impairments (range of motion; muscle strength, endurance and power), Athlete perception (perceived ankle confidence/reassurance and stability; psychological readiness), Sensorimotor control (proprioception; dynamic postural control/balance), Sport/functional performance (hopping, jumping and agility; sport-specific drills; ability to complete a full training session).

Conclusion Expert opinion indicated that pain severity, ankle impairments, sensorimotor control, athlete perception/readiness and sport/functional performance should be assessed to inform the RTS decision following an acute lateral ankle sprain injury.

Trial registration number ACTRN12619000522112.

INTRODUCTION

Lateral ankle sprains are one of the most common injuries sustained during sport, but they are often perceived to be minor injuries that heal expediently with minimal need for therapeutic intervention.1–3 More than half of individuals who sustain a lateral ankle sprain injury do not seek formal medical treatment4–7 and many return to sport (RTS) before injury-associated impairments are resolved.8 In fact, 71%–75% of US high school athletes were sanctioned to RTS within 3 days of incurring an acute lateral ankle sprain, with 95% sanctioned to RTS within 10 days of injury.9

There are currently no criteria-based guidelines to inform RTS decisions following an acute lateral ankle sprain injury. A recent systematic review did not identify any studies that have prospectively evaluated RTS criteria for individuals who have incurred an acute lateral ankle sprain injury.6 Further, a review of expert opinion identified little consensus on domains, specific assessments or cut-off thresholds to inform RTS decisions following acute lateral ankle sprain injuries.7 Lack of RTS guidelines and appropriate health care2,8 may contribute to premature RTS after a lateral ankle sprain injury.1 We propose that premature RTS may be one factor that contributes to the high prevalence of recurrent ankle problems.9–11 To inform the development of criteria to guide the RTS decision in individuals who have sustained an acute lateral ankle sprain injury and provide the basis for prospective cohort studies to test the utility of the criteria, we aimed to collate expert opinion using a Delphi survey process—a process that has been previously used to develop other RTS criteria (eg, following hamstring injury12,13).

We aimed to develop consensus for assessment items that should inform RTS decisions for individuals who have sustained an acute lateral ankle sprain injury. This is the first step for developing RTS criteria for acute lateral ankle sprain injuries.

METHODS

We used a three-round Delphi approach to establish consensus of opinion from a panel of experts on assessment items that should be included to inform the RTS decision after an acute lateral ankle sprain injury.
sprain injury. Items that did not achieve consensus after the third survey round were left undecided. Each Delphi survey round involved: data collection via an online survey platform, analysis of responses and provision of feedback to panellists. We registered the study at the Australian New Zealand Clinical Trials Registry. Trial information was submitted prior to the start of data collection, but it was not approved until data collection had commenced.

Participants
Eligibility criteria for participants (panellists) were: (1) health and exercise professional (eg, physiotherapist, athletic trainer/therapist, sports medicine physician); (2) working with athletes competing in nationally selected representative teams or teams in Tier/Division 1 national competitions (eg, English Premier League, National Collegiate Athletic Association Division 1, Suncorp Super Netball); (3) working in field or court sports in which acute lateral ankle sprain injuries are among the most prevalent injuries; (4) involved in making RTS decisions for athletes with an acute lateral ankle sprain injury; and (5) proficiency in the English language. The sports targeted for this study included: basketball,14 volleyball,15 netball,16 handball,17 korfball,18 soccer,19 rugby,20 American/Canadian football,21 Australian rules football,16 Gaelic football,16 lacrosse,22 field hockey,16 hurling,16 camogie,16 tennis,23 badminton23 and squash.16 23
Health professionals working with Paralympic, Invictus Games hurling,16 camogie, 16 tennis, 23 badminton 23 and squash. 16 23 and exercise professional (eg, physiotherapist, athletic trainer/
therapist, sports medicine physician); (2) working with athletes
and identify any ambiguities.32 No changes were required to the
injury. This step was undertaken to improve clarity of questions
and provision of feedback to panellists. We registered the study
at the Australian New Zealand Clinical Trials Registry. Trial
information was submitted prior to the start of data collection,
but it was not approved until data collection had commenced.

Participants
Eligibility criteria for participants (panellists) were: (1) health
and exercise professional (eg, physiotherapist, athletic trainer/
therapist, sports medicine physician); (2) working with athletes
competing in nationally selected representative teams or teams
in Tier/Division 1 national competitions (eg, English Premier
League, National Collegiate Athletic Association Division 1,
Suncorp Super Netball); (3) working in field or court sports
in which acute lateral ankle sprain injuries are among the most
prevalent injuries; (4) involved in making RTS decisions for
athletes with an acute lateral ankle sprain injury; and (5) profi-
ciency in the English language. The sports targeted for this study
included: basketball,14 volleyball,15 netball,16 handball,17 korfball,18 soccer,19 rugby,20 American/Canadian football,21 Australian
rules football,16 Gaelic football,16 lacrosse,22 field hockey,16 hurling,16 camogie,16 tennis,23 badminton23 and squash.16 23
Health professionals working with Paralympic, Invictus Games
or other groups of disabled athletes, or athletes from selective
populations (eg, military or World Maccabiah Games) were not
eligible to partake in the panel.

Online surveys
Data collection consisted of online surveys (online supplemental
appendices 1–3) which included closed-response and open-
response questions27 informed by a review of the literature3 and
international expert consensus research on lateral ankle sprain
assessment.24 29 Panellists were asked to indicate ‘Yes’, ‘No’ or
‘Unsure/I do not know’ to a statement such as: ‘Do you feel the
assessment of ankle range of motion should be a criterion to
support the RTS decision after an acute lateral ankle sprain?’.27
Based on Delphi guidelines, we made an a priori decision that consensus was reached when >70% of respondents either included or excluded an RTS assessment item.27 Assessment items that reached consensus were removed from the following survey.

Prior to sending the first round survey to panellists, it was
piloted on sports physiotherapists involved in making RTS deci-
sions for individuals recovering from an acute lateral ankle sprain
injury. This step was undertaken to improve clarity of questions
and identify any ambiguities.32 No changes were required to the
survey after pilot testing.

Procedures
For each of the three Delphi survey rounds, panellists were
sent an email invitation with a link to the online survey. They
were given approximately 4 weeks to complete the survey, with
reminders sent after 1 and 3 weeks. Percentage agreement was
calculated and reported to panellists for items that reached
consensus after each survey round. For items that did not reach
consensus, the percentage of panellists who selected the ‘Yes’,
‘No’ and ‘Unsure/I do not know’ responses and the key reasons
for responses, determined by thematic analysis of free text
responses,12 were reported to panellists in the subsequent round.
Reasons for responses were also used to rephrase the original
question in the final survey round.12 New RTS assessment items
suggested by panellists in the first survey were checked against
previously included items and developed into questions for the
second survey.

After the second survey, RTS assessment items that had
reached consensus were mapped to domains representing sepa-
rate aspects of RTS. This was provisionally undertaken in a
meeting of three authors (MDS, BV, ED) and then presented
to the authorship team for consideration and agreement. The
domains and mapped RTS assessment items were presented
to panellists as part of the third Delphi round. Panellists were
asked to indicate if they agreed or did not agree with each of the
domains and mapped assessment items.

Data analysis
Survey data were exported from SurveyMonkey for calcula-
tion of achievement of consensus. Level (%) of agreement was
calculated for each item. For items that did not reach consensus
after the final Delphi survey round, the percentage of panellists
who selected each answer option (‘Yes’, ‘No’ or ‘Unsure/I do
not know’) is reported. Content analysis was used to identify
themes from open-response questions.33 Responses were initially
read for familiarisation and then re-read for identification of
themes. Once themes were identified, data were categorised.
Themes and categorisation of data into themes were discussed
between three researchers (MDS, ED, BV—one female and two
male physiotherapists with 18–41 years of experience) to ensure
agreement. This culminated in a thematic summary of explana-
tion of responses and a list of new RTS assessment items which
were included in subsequent surveys.

RESULTS
The three rounds of this Delphi survey occurred from December
2018 to February 2020.

Participants
Invitations to participate in this study were sent to 250 indi-
viduals. Of these invitees, 198 (79.2%) accepted the invitation

1271

Original research

Br J Sports Med: first published as 10.1136/bjsports-2021-104087 on 22 June 2021. Downloaded from
http://bjsm.bmj.com/ on September 16, 2022 by guest. Protected by copyright.
and were sent the link to the first Delphi survey (figure 1). A total of 155 panellists (78.3%) completed round 1 of the survey, defined as completing the questions on RTS assessment items. Round 2 and round 3 of the survey were completed by 137 and 119 panellists, respectively (88.4% and 76.8% of panellists who completed survey 1). Demographics of panellists who completed survey 1 are presented in table 1. There were minimal differences in age (<2 years), sex (≤1%), profession (≤5%) and sports (≤6%) between panellists who completed the three surveys (online supplemental appendix 4)—implying a similarity in these participant features across all surveys.

Consensus on assessment items to support the RTS decision

After the three Delphi survey rounds, 16 of the 35 assessment items presented to panellists reached consensus (>70% agreement) to be included in the RTS decision-making process after an acute lateral ankle sprain injury (table 2), and 17 assessment items reached consensus to not be included (table 3). Two assessment items, intra-articular swelling and static postural control/balance, did not reach consensus after the third and final round of the Delphi survey process (table 4).

Consensus on RTS domains and mapping of assessment items

Based on the agreed-upon RTS assessment items, five domains were created and proposed to the panellists. They were Pain, Ankle impairments, Athlete perception, Sensorimotor control and Sport/functional performance (PAASS); 99% of panellists agreed with these domains. The mapping of assessment items to domains was agreed on by 98% of panellists, with two panellists (2%) not in full agreement (figure 2).

DISCUSSION

Our international multidisciplinary Delphi survey study developed consensus for assessment items that should and should not be included in the RTS decision-making process for individuals who have sustained an acute lateral ankle sprain injury. Tables 2–4 show the list of items.

The PAASS framework for RTS decisions

Expert opinion indicated 16 items that should be used to assess pain severity, ankle impairments, sensorimotor control, athlete perception/readiness and sport/functional performance to inform the RTS decision. Assessment items were organised into the PAASS framework (figure 2) based on agreed-upon domains. Overall, assessment items included were those that expert panellists felt directly influenced sport-specific function and/or contributed to risk of injury recurrence. Along with physical tests of sport/functional performance, sensorimotor control and ankle function, the importance of considering the athlete’s perception of their ankle (eg, perceived confidence/reassurance and stability) and readiness to RTS were recognised as an essential part of the RTS decision-making process. This confirms the importance of obtaining input from the athlete and shared decision-making in determining RTS ability.12 13

Assessment items not included in the RTS decision

Expert panellists agreed that 17 of the assessment items presented should not be included in the RTS decision after an acute lateral ankle sprain injury. First, items were excluded if they were not considered to influence RTS ability. Assessment of structural integrity of ligaments on imaging, ligamentous laxity and pain...
severity on palpation, which may be important for injury diagnosis,29 were excluded from the RTS decision-making process as they were thought to resolve in parallel with functional gains and not to be linked to sport-specific function. Similarly, panelists felt that foot mechanics and lower limb/trunk kinematics would not influence the RTS decision-making process. Second, experts felt that general measures of patient-reported foot and ankle function (eg, health-related quality of life, Foot and Ankle Ability Measure34 or Foot and Ankle Outcome Score35) were not sufficiently sensitive to assess RTS requirements. Thus, it was felt that the athletes’ opinion on their ability to RTS was captured through the assessment of perceived ankle stability, ankle reassurance/confidence and psychological readiness. Third, the perceived relatively quick RTS,5 progression of ability and resolution of impairments after an acute lateral ankle sprain led to the exclusion of items that were assessed over longer timeframes (eg, pain severity over the last week) and those with deficits associated with time away from sport and exercise (eg, aerobic and anaerobic fitness). While evidence suggests loss of fitness occurs

Table 1 Demographics of panellists who completed survey 1 (N=155)

Sex, male	122 (78.7)
Age (years)*	41.3 (8.7)
Clinical experience (years)*	16.1 (7.9)
Profession	
Physiotherapist	82 (52.9)
Athletic trainer	28 (18.1)
Sports medicine physician	27 (17.4)
Athletic therapist	7 (4.5)
Exercise physiologist/sports scientist	5 (3.2)
Strength and conditioning coach	4 (2.6)
Other	2 (1.3)
Highest education level	
Postgraduate	124 (80.0)
Bachelor’s degree	19 (12.3)
Certificate/diploma	8 (5.2)
Not stated	4 (2.6)
Sport working in	
Soccer/football	54 (34.8)
Basketball	26 (16.8)
Rugby	25 (16.1)
Volleyball	12 (7.8)
American/Canadian football	10 (6.5)
Handball	6 (3.9)
Netball	5 (3.2)
Field hockey	4 (2.6)
Other	13 (8.4)
Country	
Australia	11 (7.1)
Belgium	14 (9.0)
Brazil	11 (7.1)
Canada	7 (4.5)
China	11 (7.1)
Denmark	7 (4.5)
France	6 (3.9)
Ireland	5 (3.2)
Italy	9 (5.8)
Japan	4 (2.6)
New Zealand	7 (4.5)
Nigeria	1 (0.6)
Norway	10 (6.5)
Qatar	2 (1.3)
South Korea	10 (6.5)
Switzerland	6 (3.9)
The Netherlands	8 (5.2)
UK	10 (6.5)
USA	16 (10.3)

*Data are presented as number (n) and percentage (%) unless otherwise stated. *Data are presented as mean (SD).

Table 2 Consensus on assessment items that should be included in the return to sport decision after an acute lateral ankle sprain, indicating the round of inclusion and level of agreement

<table>
<thead>
<tr>
<th>Assessment item to be included</th>
<th>Round (1–3)</th>
<th>Agreement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sport-specific activities</td>
<td>1</td>
<td>98</td>
</tr>
<tr>
<td>Pain severity during sport participation</td>
<td>1</td>
<td>93</td>
</tr>
<tr>
<td>Ankle range of motion</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>Ankle muscle strength</td>
<td>1</td>
<td>87</td>
</tr>
<tr>
<td>Hopping</td>
<td>1</td>
<td>87</td>
</tr>
<tr>
<td>Agility</td>
<td>1</td>
<td>87</td>
</tr>
<tr>
<td>Completion of a full training session</td>
<td>3</td>
<td>87</td>
</tr>
<tr>
<td>Jumping</td>
<td>1</td>
<td>84</td>
</tr>
<tr>
<td>Pain severity over the last 24 hours</td>
<td>1</td>
<td>81</td>
</tr>
<tr>
<td>Perceived ankle reassurance/confidence</td>
<td>1</td>
<td>81</td>
</tr>
<tr>
<td>Proprioception</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>Perceived ankle stability</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>Psychological readiness</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>Ankle muscle endurance</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>Dynamic postural control/balance</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>Ankle (and lower limb) muscle power*</td>
<td>2</td>
<td>72</td>
</tr>
</tbody>
</table>

*Lower limb muscle power and ankle muscle power were initially presented to panellists as separate items, but 96% of panellists agreed that these items would be assessed together.

Table 3 Consensus on assessment items that should not be included in the return to sport decision after an acute lateral ankle sprain, indicating the round of exclusion and level of agreement

<table>
<thead>
<tr>
<th>Assessment item not to be included</th>
<th>Round (1–3)</th>
<th>Agreement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural integrity of the ligaments on imaging</td>
<td>3</td>
<td>89</td>
</tr>
<tr>
<td>Pain severity over the last week</td>
<td>3</td>
<td>88</td>
</tr>
<tr>
<td>Pain severity on palpation</td>
<td>3</td>
<td>88</td>
</tr>
<tr>
<td>Health-related quality of life</td>
<td>2</td>
<td>85</td>
</tr>
<tr>
<td>Hip and knee muscle endurance</td>
<td>3</td>
<td>85</td>
</tr>
<tr>
<td>Ankle muscle length</td>
<td>3</td>
<td>85</td>
</tr>
<tr>
<td>Dynamic postural control/balance</td>
<td>3</td>
<td>84</td>
</tr>
<tr>
<td>The Functional Movement Screen</td>
<td>2</td>
<td>84</td>
</tr>
<tr>
<td>Aerobic fitness</td>
<td>3</td>
<td>84</td>
</tr>
<tr>
<td>Anaerobic fitness</td>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td>Ligamentous laxity</td>
<td>2</td>
<td>81</td>
</tr>
<tr>
<td>Ankle joint arthrokinematics</td>
<td>3</td>
<td>78</td>
</tr>
<tr>
<td>Ankle muscle reaction time</td>
<td>3</td>
<td>76</td>
</tr>
<tr>
<td>Acute:chronic workload</td>
<td>3</td>
<td>76</td>
</tr>
<tr>
<td>Lower limb and/or trunk kinematics</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>Hip and knee muscle strength</td>
<td>3</td>
<td>74</td>
</tr>
<tr>
<td>Foot biomechanics</td>
<td>2</td>
<td>74</td>
</tr>
<tr>
<td>Straight-line running speed</td>
<td>3</td>
<td>72</td>
</tr>
<tr>
<td>Patient-reported foot and ankle function (using questionnaires such as the Foot and Ankle Ability Measure34 or Foot and Ankle Outcome Score35)</td>
<td>3</td>
<td>70</td>
</tr>
</tbody>
</table>
after 2 weeks of detraining,36 panellists indicated that subtle deficits in aerobic or anaerobic fitness or a suboptimal acute:chronic workload would not stop clearance of an athlete for RTS after an acute lateral ankle sprain. Fourth, items were excluded if it was thought that limitations would be captured with other assessment items included in the PAASS framework. Experts felt that meaningful deficits in ankle muscle length and ankle joint arthrokinematics would be identified when assessing ankle range of motion, and similarly hip and knee muscle strength/endurance deficits would be identified during hopping, jumping and sport-specific tests. They felt that straight-line running would be included within the assessment of sport-specific activities (when required by the sport). Panellists also indicated that it was not required, or possible, to clinically assess ankle muscle reaction time separately from dynamic balance and agility.

Assessment items that did not reach consensus
Of the 35 items presented to panellists in this study, only two items did not reach inclusion or exclusion consensus: intra-articular swelling and static postural control/balance. Key reasons provided by panellists for the inclusion of intra-articular swelling were that swelling can impair muscle, joint, proprioceptive and sport-specific function, and intra-articular swelling is an indication of joint/cartilage damage that may affect long-term joint health. Panellists who indicated that intra-articular swelling should not be included felt that intra-articular swelling is not related to pain or dysfunction, and it is not reasonable to delay RTS based on the presence of swelling, as long as function is restored and impairments have resolved. Close to equal numbers of panellists voted for the inclusion and exclusion of static postural control/balance in the RTS decision. Panellists who thought static postural control/balance should be included felt that it was an important part of understanding function and ability. The following reasons were provided by panellists who indicated that static postural control/balance should not be included in the RTS decision-making process: it is superseded by dynamic postural control/balance when determining ability to RTS, and assessing dynamic postural control/balance provides the necessary information to determine RTS.

RTS compared with initial assessment items
There are some commonalities between assessment items in the PAASS RTS assessment framework and impairments suggested to be important to include in the initial assessment of acute lateral ankle sprain injuries.29 Assessment of pain, ankle joint range of motion, ankle muscle strength and dynamic balance were identified as important to include in both the RTS decision-making process and initial injury assessment. Swelling, ankle joint arthrokinematics, static postural balance, gait, physical activity level and patient-reported foot and ankle function were recommended to be assessed after an acute lateral ankle sprain injury but did not reach consensus for inclusion in the RTS decision-making process. The lack of inclusion of these items in the RTS decision-making process was due to the progressive resolution of deficits and changing focus of management through the rehabilitation continuum, and the specificity of determining RTS ability rather than daily function.

Study strengths and limitations
Our study included diverse geographical, sporting and professional representation. The 155 panellists were from 19 countries, 6 professions and 15 sports, and had a wealth and diversity of clinical experience. This enhances the generalisability of the data obtained and facilitates the utility of the PAASS RTS assessment framework globally. The number of panellists and geographical representation exceeds that of recent consensus statements.12 13 29 37 38 Similar to other consensus papers on RTS criteria13 and management of musculoskeletal/sporting injuries,37 38 the majority of panellists were physiotherapists. The inclusion of panellists working in a range of different sports provides a list of assessment items that can be used generically across different sports. However, there may be items specific to individual sports that were not identified in this study. The panellists in this study were all health and exercise professionals, and we did not include athletes to gain their perspective. This is an important consideration for future research.

While consensus was obtained on assessment items that should be used to inform the RTS decision, we did not investigate specific tests for the agreed-upon assessment items. For
example, we did not ask experts to nominate the test(s) they would use to assess an athlete’s dynamic postural control/balance or pain severity. Thus, while this study provides clinicians with items to assess, it does not specify how clinicians should assess these items. Further, there are no data on cut-off points for measures that indicate if an athlete should or should not RTS. For example, we do not know what deficit in perceived stability is acceptable to sanction an athlete as being ready to RTS. These are important future research directions and we encourage researchers to hypothesise and test thresholds for assessment items in the PAASS RTS assessment framework. We aimed to obtain consensus on assessment items to inform an athlete’s ability to RTS, defined as ‘sanctioned for unrestricted training and cleared/available for match play/competition selection’ but not return to performance.31 Panellists may include different outcomes to assess whether or not an athlete is performing at or above their preinjury level.31

Clinical application of findings

The PAASS framework proposed in this study provides clinicians and researchers with expert-recommended assessment items that can be used to inform RTS decisions after an acute lateral ankle sprain injury. Clinicians can use this framework to enhance clinical decision-making when identifying impairments and determining an athlete’s ability to RTS. There are a range of clinical tests that can be used to assess each item, such as a numerical rating scale to measure pain severity, ankle stability and ankle confidence/reassurance,39 or the T-test,40 505 Test41 or V Reactive Agility Test41 to measure agility. We appreciate that RTS decision-making is multifactorial and context specific. Researchers and clinicians should respect the complexity and temporal nature of the assessment items within the PAASS framework. As outlined in the Strategic Assessment of Risk and Risk Tolerance framework, the PAASS items must be considered in context with the other elements of tissue health (eg, age and injury recurrence) and tissue stresses (eg, type of sport and ability to protect the tissues), and risk tolerance modifiers (eg, timing in season).42

CONCLUSION

This international interprofessional Delphi study survey recommends that health professionals should assess pain severity, ankle impairments, athlete perception, sensorimotor control and sport/functional performance to determine an athlete’s ability to RTS after an acute lateral ankle sprain injury.

Author affiliations

1School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
2Oslo Sports Trauma Research Centre, Norwegian School of Sports Sciences, Oslo, Norway
3Aspetar, Orthopaedic and Sports Medicine Hospital, Doha, Qatar
4Physical Medicine and Rehabilitation Research-Copenhagen (PMR-C), Department of Physical and Occupational Therapy and Department of Clinical Research, Copenhagen University Hospital, Copenhagen, Denmark
5Department of Orthopedic Surgery, Copenhagen University Hospital, Copenhagen, Denmark
6English Institute of Sport, Manchester Institute for Health and Performance, Manchester, UK
7Physical Therapy Department, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
8Graduate Program in Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
9Physiotherapy Department, Hôpital de La Tour, Meyrin, Switzerland
10Laboratoire Interuniversitaire de Biologie de la Motricité, UJMI-Saint-Ettienne, University of Lyon, Lyon, France
11High Performance Unit, Irish Rugby Football Union, Dublin, Ireland
12School of Sport, Ulster University, Jordanstown, UK
13Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky, USA
14Centre for Health, Sport and Rehabilitation Sciences, University of Salford, Salford, UK
15Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney, New South Wales, Australia
16Department of Physical Education, Yonsei University, Seoul, South Korea
17Yonsei Institute of Sports Science and Exercise Medicine, Yonsei University, Seoul, South Korea
18Department of Movement, Human and Health Sciences, University of Rome ‘Foro Italico’, Roma, Italy
19Villa Stuart Sport Clinic, FIGA Medical Centre of Excellence, Roma, Italy
20Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
21Department of Physical Therapy and Athletic Training, Doisy College of Health Sciences, Saint Louis University, Saint Louis, Missouri, USA
22Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
23Faculty of Health and Environmental Sciences, School of Clinical Sciences, AUT University, Auckland, New Zealand
24College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
25Sports Orthopedic Research Center-Copenhagen (SORC-C), Department of Orthopedic Surgery, Amager-Hvidovre University Hospital, Copenhagen, Denmark
26Physical Medicine Rehabilitation Research-Copenhagen (PMR-C), Amager-Hvidovre University Hospital, Copenhagen, Denmark
27Amsterdam Collaboration on Health and Safety in Sports, Department of Public and Occupational Health, Amsterdam Movement Sciences, Amsterdam UMC, VUmc site, Amsterdam, Netherlands
28School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
29School of Human Movement & Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
30Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
31School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
32Institute for Sport and Health, University College Dublin, Dublin, Ireland

What are the findings?

► Five domains covering 16 assessment items constitute the PAASS framework developed by international experts from a wide range of sports that have a high prevalence of ankle sprains.

► The PAASS framework is: Pain (during sports participation and over the last 24 hours), Ankle impairments (range of motion; muscle strength, endurance and power), Athlete perception (perceived ankle confidence/reassurance and stability; psychological readiness), Sensorimotor control (proprioception; dynamic postural control/balance), Sport/functional performance (hopping, jumping and agility; sport-specific activities; ability to complete a full training session).

How might it impact on clinical practice in the future?

► The PAASS framework provides clear clinician consensus-driven direction of what is important and what is not important when making decisions for return to sport (RTS) after an acute lateral ankle sprain injury.

► Pain, ankle impairments, athlete perception, sensorimotor control and sport/functional performance are domains that are advised to be assessed in deciding RTS after an acute lateral ankle sprain.
Provenance and peer review
Research Ethics Committee (2018001434) and the panellists provided electronic

Supplemental material
Data availability statement

Patient consent for publication
Not required.

Provenance and peer review
Not commissioned; externally peer reviewed.

Data availability statement
Data are available upon reasonable request.

Supplemental material
This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

ORCID iDs
Michelle D Smith http://orcid.org/0000-0002-7860-1581
Bill Vicenzino http://orcid.org/0000-0003-2743-5933
Roolad Bahr http://orcid.org/0000-0001-5725-4237
Thomas Bandholm http://orcid.org/0000-0001-6884-1971
Rosalyn Cooke http://orcid.org/0000-0003-2784-9365
Luciana De Michelis Mendonça http://orcid.org/0000-0002-4495-1807
Claire E Hillier http://orcid.org/0000-0001-7366-907X
Andrea Macaluso http://orcid.org/0000-0001-9029-6156
Ullevåløysøy E & Owreøy http://orcid.org/0000-0002-5984-9821
Bruno Tassignon http://orcid.org/0000-0003-3216-4045
Masafumi Terada http://orcid.org/0000-0002-0534-4772
Kristian Thorborg http://orcid.org/0000-0001-9102-4515
Evert Verhagen http://orcid.org/0000-0001-9227-0274
Rod Whiteley http://orcid.org/0000-0002-1452-6228
Erik A Wikström http://orcid.org/0000-0002-7260-0502
Eamonn Delahunt http://orcid.org/0000-0001-5449-5932

REFERENCES