PILOT EVALUATION OF RISK ASSESSMENT AND ENHANCED PROTOCOLS REGARDING CONTACTS AT AN INTERNATIONAL PROFESSIONAL GOLF EVENT

1Patrick Robinson, 2,3,4Andrew Murray, 3Volker Scheer, 5Graeme Close, 6Denis Kinance, 1Edinburgh Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK; 2European Tour Performance Institute, Virginia Water, UK; 3Health Science Department, Universidad a Distancia de Madrid, Madrid, Spain; 4Ultra Sports Science Foundation, Pierre Benite, France; 5Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK; 6School of Dental Medicine, University of Berne, Berne, Switzerland; 1Medical and Scientific Department, Cignpost Diagnostics, Farnborough, UK; 2Sport and Exercise, University of Edinburgh, Edinburgh, UK; 3Medical and Scientific Department. The Randak, St. Andrews, UK; 4Medical and Scientific Department. The International Golf Federation, Lausanne, UK

Background Following conversations with the International Chief Medical Officer Group for Sport, the World Health Organisation Mass Gatherings team, and host public health teams, a risk assessment and managed risk approach was piloted for professional golf at the Gran Canaria Lopesan Open 17th to 25th April 2021.

Objective The aim of this study was to assess if a risk-assessed approach to contact tracing was practical to undertake at a major sporting event while also enabling a safe environment for those participating.

Design Prospective cohort study

Setting Professional golf event.

Patients (or Participants) Attendees of event.

Interventions (or Assessment of Risk Factors) All participants required a minimum of one negative RT-PCR test prior to travelling to each tournament. High risk contacts were isolated for 10 days. Moderate risk contacts received education regarding enhanced medical surveillance, had daily rapid antigen testing for 5 days, with RT-PCR day 5, mandated mask use, and access to outside space for work purposes only. Low risk contacts received rapid antigen testing every 48 hours and PCR testing on day 5.

Main Outcome Measurements RT-PCR positive test.

Results A total of 550 persons were accredited and were required to undergo RT-PCR testing before the event. Two of these tests were positive (0.36%). Of these, Case 1 had one high, 23 moderate, and 48 low risk contacts. Case 2 did not have any significant travel history within 2 days of positive test, and had one high risk contact. There were no further positive tests on site in the wider cohort of attendees, from a total of 872 RT-PCR and 198 rapid antigen tests.

Conclusions This pilot study showed it is practical, feasible, and well accepted to provide enhanced (daily) virus testing and risk-mitigating measures at a professional golf event.

TEST-RETEST, INTRA- AND INTER-RATER RELIABILITY OF THE REACTIVE BALANCE TEST: A NEUROCOGNITIVE FUNCTIONAL TEST TO EVALUATE ADAPTABILITY WITHIN INJURY RISK PROFILING

1Bruno Tassignon, 1Jo Verschueren, 2Jonas De Wachter, 1Alexandre Maricot, 1Kevin De Paauw, 2Evert Verhagen, 3Romain Meusen. 1Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; 2Amsterdam Collaboration on Health and Safety in Sports, Department of Public and Occupational Health, Amsterdam UMC, Amsterdam, Netherlands; 3Strategic Research Program Exercise and the Brain in Health and Disease: the added value of Human-Centered Robotics, Vrije Universiteit Brussel, Brussels, Belgium

Background Balance tests are often selected to screen for injury risk, but only evaluate pre-planned movements. Recently, adaptability was put forward as a key driver in injury prevention. Adaptability is defined as athletes’ ability to adequately adapt their responses under a comprehensive variety of conditions. The reactive balance test (RBT) is designed as a neurocognitive functional test that integrates environmental perception and decision-making to evaluate adaptability while maintaining unilateral balance.

Objective To determine test-retest, intra- and inter-rater reliability of the RBT in healthy recreational athletes.

Design Test-retest reliability study design.

Setting Primary prevention in clinical setting.

Participants Twenty-one healthy recreational athletes (age = 22 ± 1 years, height = 175 ± 9 cm, weight = 69 ± 7 kg).

Interventions Two experimental trials were separated by an average of 33 ± 15 days. During experimental trials participants performed the Y-balance test (to determine maximal reach distances) four times and the RBT once. The LED lights of the RBT were set at 80% of the maximal reach distance on each axis of the Y-balance test. The RBT consists out of 36 randomised stimuli.

Main Outcome Measures Outcome measures of the RBT are accuracy and visuomotor response time. Intraclass correlation coefficients (ICC), standard errors of measurement and prediction, and minimal detectable difference were calculated.

Results Excellent intra-rater reliability was observed for visuomotor response time (ICC: 0.992, [0.981;0.997]) and accuracy (ICC: 0.925, [0.827;0.969]). Excellent inter-rater reliability was also observed for both visuomotor response time (ICC: 0.978, [0.946;0.991]) and accuracy (ICC: 0.920, [0.803;0.968]). Test-retest reliability for visuomotor response time could be considered good (ICC: 0.831, [0.629;0.928]), while moderate test-retest reliability was found for accuracy (ICC: 0.706, [0.420;0.820]).

Conclusions Our results indicate that overall test-retest, intra- and inter-rater reliability of the RBT was moderate to excellent. Thus, the RBT possesses acceptable reliability to use in group level analyses. Future research should further determine the clinimetric properties of the RBT in specific populations and research the RBT along the sport injury continuum.

MAXIMISING THE RELEVANCE AND DISSEMINATION OF THE IOC MEDICAL CONSENSUS STATEMENTS: KEY STAKEHOLDER’S PERCEPTIONS OF THE IOC CONSENSUS STATEMENTS IN A DEVELOPING COUNTRY (SOUTH AFRICA)

1Marileise Badenhorst, 1Lauren Fortington, 2Caroline Bolling, 2Evert Verhagen, 3Carolyn Emery, 1Martin Schwellnus, 1Kati Pasanen, 1Wayne Derman, 1Caroline Finch. 1Australian Centre for Research into Injury in Sport and its Prevention (ACRISP), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia; 2Amsterdam Collaboration on Health and Safety in Sports, Department of Public and Occupational Health, Amsterdam UMC, Amsterdam, Netherlands; 3Sport Injury Prevention Research Centre, University of Calgary, Calgary, Canada; 4Institute of Sport and Exercise Medicine, University of Stellenbosch, Cape Town, South Africa; 5Sport, Exercise Medicine and Lifestyle Institute (SEMLI), University of Pretoria, Pretoria, South Africa

Background The IOC Sports Medical and Scientific Commission has supported the development and dissemination of sports medicine consensus statements for athlete health.