APPLYING BAYESIAN NETWORKS TO INJURY OCCURRENCE IN PROFESSIONAL FOOTBALL

Karen aus der Fünten, Anne Hecksteden, Fabio Serpiello, Sam Robertson, Kate Kai-Yee Yung, Paul Pao-Yen Wu, Abed Hadji, Kate Robertson, Tobias Tröß, Karen aus der Fünten, Anne Hecksteden, Fabio Serpiello, Sam Robertson, Institute for Health and Sport (IHS), Victoria University, Melbourne, Australia; Institute for Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany; School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia; ARC Centre of Excellence in Mathematical and Statistical Frontiers (ACEMS), Melbourne, Australia; Musculoskeletal and Sports Injury Epidemiology Centre, Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden; Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Australia; Department of Family Practice, University of British Columbia, Vancouver, Canada.

Background Bayesian networks (BN) are directed acyclic graphs derived from empirical data that describe the dependency and probability structure. It may facilitate understanding of complex epidemiology by presenting the data in a multi-dimensional visual representation, and guiding inferences on the likelihood of the severity based on new information.

Objective To provide a brief overview of BN and demonstrate its utility on a practical example of making inferences on days of absence when hypothetically new information was introduced.

Design Retrospective analysis of prospectively collected injury data.

Participants All male football players who were playing in the highest German professional league (Bundesliga) from 2014/2015 to 2019/2020 seasons were included. Players were identified from a publicly available database.

Data analysis A BN structure was inferred using GeNIE 2.0. A search and score algorithm and existing empirical evidence knowledge were used to identify the structure. The variables included were age, height, weight, main position, part of the season, event, injury type, the injured body part, days of absence. The parameters were calculated with the expectation-maximization algorithm.

Main Outcome Measurements Injury severity based on days of absence (mild: <4, minimal >4–7, moderate >7–28, severe >28).

Results 3,030 player seasons were registered over the six seasons (age: 25.5±4.0, height (cm): 183.3±6.4 and weight (kg): 78.3±6.8), with 5,883 time-loss injuries. A network structure derived from empirical data that describe the dependency and probability structure. It may facilitate understanding of complex epidemiology by presenting the data in a multi-dimensional visual representation, and guiding inferences on the likelihood of the severity based on new information.

Conclusions The BN may offer an enhanced insight into the complex epidemiological systems and guide inferences on injury severity based on new information. This may potentially help clinicians in creating hypothetical scenarios on the severity and facilitate shared decision making.

Abstract 427 Table 1 The probability of injury severity of two hypothetical cases

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Minimal</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0.26</td>
<td>0.41</td>
<td>0.24</td>
<td>0.09</td>
</tr>
<tr>
<td>Case 2</td>
<td>0.19</td>
<td>0.31</td>
<td>0.32</td>
<td>0.17</td>
</tr>
</tbody>
</table>

and is specific to the study population. Counterfactual analysis may be used to inform coaches and clinicians about the likelihood of severity of an injury based on the features of the injury, for example, the characteristics of the player and the game.

Conclusions The BN may offer an enhanced insight into the complex epidemiological systems and guide inferences on injury severity based on new information. This may potentially help clinicians in creating hypothetical scenarios on the severity and facilitate shared decision making.

Abstract 428 DOES EXERCISING WITH A FACE MASK AFFECT ATHLETES PERFORMANCE?

Wesam Saleh A Al Attar, Mohamed A Husain, Department of Physical Therapy, Faculty of Applied Medical Science, Umm Al Qura University, Makkah, Saudi Arabia; Department of Sport, Exercise and Health, Faculty of Medicine, University of Basel, Basel, Switzerland; Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Physiotherapy, College of Health and Sport Sciences, University of Bahrain, Manama, Bahrain.

Background With the spread of Coronavirus Disease (COVID-19), wearing a mask became mandatory publicly and during exercise.

Objective To investigate the prevalence of wearing face masks and their impact on athletes’ comfort and performance.

Setting An online survey.

Patients (or Participants) A total of 633 athletes participated in the study.

Interventions (or Assessment of Risk Factors) A self-administered web-based questionnaire was developed. Primary data were correlated with secondary data such as average temperatures, which were obtained from open sources.

Main Outcome Measurements The primary outcomes were the prevalence of wearing face masks and their impact on athletes’ comfort and performance.

Results A total of 633 athletes from 188 countries participated in the study in the period between June and July 2020. They were mostly males (n = 536) and aged 20–29 years (n = 290). A total of 633 athletes completed a self-administered web-based questionnaire. They were mostly males (n = 536) and aged between 20–29 years old (n = 290). Four hundred twenty-three athletes reported that their performance was affected due to wearing a mask. Using a mask while exercising significantly affected performance, X^2 = 633, p <.001. The type of mask worn also significantly impacted performance, X^2 = 656.5, p <.001. Further analysis showed that 100% of those wearing N95, FFP2, or the equivalent mask reported affected performance compared to 90.9% for athletes wearing surgical masks. The point-biserial correlation was negative between performance and maximum ambient temperature, rpb = -.435, p <.001.

Conclusions Performing high-intensity exercises while wearing face masks may lead to discomfort, breathing restrictions, and impaired fitness level of athletes. It is recommended to review the healthcare policies of wearing masks while exercising.