The epidemiology of sport-related shoulder injuries among youth: a systematic review

Objective This study investigated whether body composition and physical characteristics differ between junior flatwater kayak athletes with and without shoulder pain.

Design Cross-sectional study.

Participants The study included 178 Japanese junior kayak athletes (116 boys and 62 girls) (age 13.4 ± 0.9 years, height 162.1 ± 7.1 cm, weight 54.1 ± 8.5 kg) who participated in a national junior training camp (2015–2018). Participants were categorised into 2 groups based on a self-reported history of kayaking-induced shoulder pain.

Main Outcome Measurements Body composition was measured using the Body Impedance Analyser (InBody 720) device, and range of motion was evaluated using a goniometer. Shoulder pain was assessed based on a questionnaire, interview, and physical examination performed during the national training camp. Logistic regression analysis was performed to determine the factors associated with shoulder pain.

Results In this study, 42.1% (n = 75) of the participants experienced shoulder pain. Multivariate analysis revealed that lower trunk muscle mass per body weight was the most significant predictor of shoulder pain. Trunk muscle mass per body weight (odds ratio [OR] 0.81, 95% confidence interval [CI] 0.74–0.90) and age (OR 1.74, 95% CI 1.31–2.32) were associated with shoulder pain in junior kayak athletes.

Conclusions This study suggests that screening for body composition is essential to treat and perhaps prevent shoulder pain. In addition to evaluation of total and regional body composition, evaluation of muscle characteristics may be useful for injury prevention. Lower trunk muscle mass was shown to be associated with shoulder pain. Therefore, appropriate trunk movements and core strengthening should receive attention in junior kayaking athletes.

RISK FACTORS FOR SHOULDER PAIN IN JUNIOR FLATWATER KAYAK ATHLETES

Background Shoulder injuries are common among flatwater kayak athletes and are predominantly characterised by features of overuse.
using Grading of Recommendations Assessment, Development and Evaluation.

Setting Recreational and elite sports settings or military settings.

Patients (or Participants) Athletes (all sports) and military personnel above 16 years of age.

Interventions (or Assessment of Risk Factors) Exposure: GJH or shoulder joint hypermobility.

Main Outcome Measurements Acute shoulder injury or activity-related shoulder pain.

Results In total, 2,496 participants (31.9% females, mean age 19.9 years) from seven studies were included. Athletes with joint hypermobility were more likely to have shoulder injuries (OR = 3.41, 95% CI 1.88, 6.21, $I^2 = 71.5\%$) than athletes without joint hypermobility. Exposure definition had large impact on estimates (GJH, OR = 1.97, 95% CI 1.32, 2.94; shoulder joint hypermobility, OR = 6.79, 95% CI 3.91, 11.80; $p=0.002$), while remaining subgroup analyses showed no differences. The overall quality of evidence was low.

Conclusions We found 3-fold higher odds of shoulder injuries among athletes with joint hypermobility compared with non-exposed athletes. Due to low quality of evidence, future research may change the effect estimate. These findings highlight the need for prevention of shoulder injuries in athletes with joint hypermobility.

Background A decrease in dominant shoulder internal and total rotational range of motion (ROM) has been found in tennis players immediately after competitive play. This can become a risk factor for shoulder injuries if certain thresholds are reached. The adaptation is theorised to result from follow through of the serve, requiring the shoulder to decelerate through eccentric action of external rotators. This theory has not been confirmed by empirical research comparing serving to groundstrokes.

Objective To investigate the immediate effects of serving on shoulder rotational ROM in tennis players by comparing serving to groundstrokes.

Design Same-subject, randomised, crossover design.

Setting International High Performance Tennis Centre.

Participants Eighteen male and 12 female professional and university tennis players.

Interventions Participants undertook both serving and groundstroke interventions (involving 120 tennis balls) in a randomised order.

Main Outcome Measurements Passive glenohumeral internal and external rotation ROM measurements, using a digital inclinometer, were undertaken at baseline and immediately following serving and groundstroke interventions on both dominant and non-dominant shoulders. Total rotation was calculated as the sum of internal and external rotation.

Results On the dominant and non-dominant shoulders there was no significant interaction effect between the factors of tennis intervention (serving and groundstrokes) and time (pre and post) ($p = <0.05$). Indicating that change in rotational ROM was not specific to tennis intervention. On the dominant shoulder there was a significant main effect of time ($p = 0.007$), with internal, external and total rotational ROM decreasing irrespective of tennis intervention.

Conclusions Both tennis interventions resulted in immediate significant reductions in shoulder rotational ROM on the dominant shoulder but not the non-dominant shoulder of professional and university tennis players. These were within normal ranges that do not present risk factors for shoulder injuries. There was no significant difference between serving and groundstroke interventions. This might be an important consideration when planning tennis training.

Background The majority of serious medical complications within triathlons occur during the swim leg of the race. Race organisers and medics have a duty of care to ensure that their teams are prepared to rapidly identify, remove and treat swimmers in distress.

Objective To describe the incidence and causes for water rescue team extractions from the swim part of triathlon events.

Design Observational study.

Setting Two large community-based mass-participation triathlon races held in the UK during the summer over 4 years between 2013–2016.

Patients (or Participants) All participants requiring intervention from the water rescue team were included in the study. Relay participants were excluded.

Interventions (or Assessment of Risk Factors) Demographics including age, gender; and race factors including distance and wave size.

Main Outcome Measurements Participant demographics and reasons for intervention were recorded in water rescue team extraction logs. Outcomes of serious medical complications were recorded where available.

Results Race reports from 7 triathlons in the UK between 2013 – 2016 were analysed. 44,159 triathletes started the events, competing across swim leg distances of 400 m, 750 m and 1500 m. 232 competitors required extraction from the water (5.2/1000 starters). Those aged 30–34 were most likely to require extraction. There was no significant difference in extraction rates between male and female participants. 14.7% of extractions were due to breathing difficulties. Other reasons for extraction were tiredness (31%), cramp (12%) and injury (8%). Two male athletes suffered cardiac arrests in the water and required resuscitation. One later died in hospital.

Conclusions Serious medical complications in the swim leg of triathlons are rare but can be fatal. Water rescue and race medical teams must be adequately prepared to rapidly identify and intervene in such cases. Further research is needed to look at causes of breathlessness in injury in these events.