Abstracts

Background Rugby participation rates are rising, particularly in the female game where a 60% increase in player numbers was observed from 2013 to 2017. Despite the recent growth, the female amateur game is lacking comprehensive long-term injury surveillance.

Objective To compare injuries in male and female amateur Rugby Union.

Design Prospective cohort study.

Setting Irish amateur clubs, during seasons 2017/18 (n=15 male clubs, 4 female) and 2018/19 (n=25 male clubs, 7 female).

Participants Male (n=958) and female (n=234) amateur players.

Independent Variables Match exposure.

Main Outcome Measurements Match injury incidence and severity.

Results Overall incidence rates were 47.7 and 35.4/1,000 player hours for males and females respectively. Similarities existed between males and females regarding common diagnoses and injury occurrence, with 58% of injuries occurring during the tackle. Concussion and ankle lateral ligament injuries were the most common diagnoses for both males (5.5 and 4.1/1,000 player hours) and females (5.5 and 3.9/1,000 player hours). However, differences showed females suffering more injuries in the ruck compared to males (6.1 vs 3.8/1,000 player hours) while males sustained more non-contact injuries (9.9 vs 1.4/1,000 player hours). Females had a 2nd quarter injury peak (15.2/1,000 player hours), whereas males had a 3rd quarter injury peak (15.2/1,000 player hours). Concussion had the highest injury burden in males (90 days/1,000 player hours), while anterior cruciate ligament injuries had the highest burden (307 days/1,000 player hours) in females.

Conclusions Long-term prospective injury surveillance is vital to inform targeted prevention strategies. The earlier occurrence of injury in females should be investigated further to determine whether player substitution strategies may decrease injuries. Prevention strategies incorporating neuromuscular training should be considered, given the high rate of ankle ligament injuries in both males and females, and the burden of knee ligament injuries in females.

011 COMPARISON OF INJURIES AND ILLNESSES BETWEEN REGULAR COMPETITION AND SHORT-TERM MATCH CONGESTION DURING A FULL SEASON IN ELITE MALE PROFESSIONAL BASKETBALL

1,2Steven Doeven, 3Michel S Brink, 2Barbara Huijgen, 2Johan de Jong, 1Koen Lemmink.

1Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, the Netherlands, Groningen, Netherlands; 2School of Sport Studies, Hanze University of Applied Sciences, the Netherlands, Groningen, Netherlands

10.1136/bjsports-2021-IOC.10

Background It is crucial to balance load and recovery during short-term match congestion in basketball. Currently, it is unknown if higher total load during short-term match congestion lead to higher injury and illness rates.

Objective Aim of this study was to compare injuries and illnesses and total weekly load during 1-match weeks compared to ≥2-match weeks in basketball.

Design During this prospective observational study, players were monitored during a full season.

Setting Two basketball teams participating in the domestic-league championship, CUP matches and Euro league were followed.

Patients (or Participants) Sixteen elite male professional basketball players participated in this study. Characteristics of the players were (mean±SD): age 24.8±2.0 years, height 193.8±7.5 cm, weight 94.8±14.0 kg, body fat 11.9±3.0% and VO2max 51.9±3.3 mL·kg⁻¹·min⁻¹.

010 EFFECTS OF A STRENGTH AND PROPRIOCEPTIVE TRAINING PROGRAMME ON NECK FUNCTION AND CONCUSSION INJURY RISK IN ELITE SCOTTISH RUGBY UNION PLAYERS

1Stuart Bailey, 1Russell Martindale, 2Lars Engebretsen, 3Jen Sweeting, 3Jared Deacon, 5Florence Laing, 1Debbie Palmer. 1School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK; 2Oslo Sports Trauma Research Center, Oslo, Norway; 3Scottish Rugby Union, Edinburgh, UK; 4Institute for Sport, PE and Health Sciences, Moray House School of Education and Sport, Edinburgh, UK

10.1136/bjsports-2021-IOC.9

Background Cervical musculature function (strength, endurance, and proprioception) may be a modifiable risk factor for concussion in contact sports. The ability to enhance neck function and reduce concussive risk needs to be determined.

Objective To assess the efficacy of a training programme to enhance neck function and lower match concussion injury risk in rugby union players.

Design Repeated-measures intervention with control.

Setting Premiership rugby union players in Scotland during the 2018/19 season.

Patients (or Participants) Premiership players selected for Scotland Rugby academies (intervention group; INT; n = 30) or those with their clubs (control group; CON; n = 20).

Interventions (or Assessment of Risk Factors) A neck training programme was implemented twice per week during the 2018/19 season for INT, while CON performed no systematic neck training.

Main Outcome Measurements For both INT and CON neck strength (maximal voluntary contraction; MVC), endurance (exercise capacity; TFF) and proprioception pre- and post-season, and match concussion injury incidence were recorded.

Results Left and right cervical flexion MVC force and flexion TFF all significantly increased in the intervention group (p < 0.001), with no significant change in the control group. While there were increases in cervical flexion and extension MVC force in both groups from pre to post-season, there was a significantly greater increase amongst the intervention group (p < 0.05). Concussion incidence was lower in INT versus CON (INT: 7.7/1000 match hours; CON: 18.4/1000 match hours). However, this was not a significant alteration in risk (incidence rate ratio: 0.42; 95% CI: 0.08–2.1).

Conclusions The neck function programme increased cervical MVC force and flexion exercise capacity, beyond any changes induced by a season of rugby union. The intervention group also had a lower incidence of concussion across the season. This pilot study shows good promise and highlights the need for further investigation.
Interventions (or Assessment of Risk Factors) In total 47 matches by basketball team A (9 players) and 41 matches by team B (7 players) were performed throughout the season. All training sessions and matches were executed as prescribed by the training and coaching staff without interference or manipulation.

Main Outcome Measurements The Oslo Sports Trauma Research Center (OSTRC) Questionnaire on Health Problems was used to collect data on injuries and illnesses on a weekly base. Furthermore, players filled in s-RPE and duration for each training and match. Prevalence,’ severity scores, time-loss and total weekly load were compared for 1-match weeks and ≥2-match weeks. The data were analyzed using multilevel modeling.

Results Prevalence of injuries and illnesses were 18.1% and 4.6% for 1-match weeks and 17.2% and 3.3% for ≥2-match weeks. Severity scores and time-loss were not significantly different for 1-match weeks compared to ≥2-match weeks. Total weekly load was lower during ≥2-match weeks compared to 1-match weeks.

Conclusions No significant differences for injuries and illnesses were observed between 1-match weeks and ≥2-match weeks. Coaches appeared to reduce training load to compensate for multiple matches during short-term match congestion.

EVALUATION OF IN-EAR SENSOR SYSTEMS FOR QUANTIFYING HEAD IMPACTS IN YOUTH FOOTBALL

1,2Stian Bahr Sandmo, 1Thor Einar Andersen, 3,4Inga K Koerte, 1Roald Bahr. 1Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Oslo, Norway; 2Faculty of Medicine, University of Oslo, Oslo, Norway; 3School of Engineering and ACRISP, Edith Cowan University, Joondalup, Australia; 4Monash University of Accident Research Centre, Monash University, Melbourne, Australia; 5McIntosh Consultancy and Research, Sydney, Australia; 6Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany; 7Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts, USA

Background Wearable sensor systems have the potential to quantify head kinematic responses of head impacts in football. However, on-field use of sensors (e.g. accelerometers) remains challenging due to factors such as poor coupling to the head.

Objective To test the validity of a novel in-ear sensor for quantifying head-impact exposure in youth football.

Design Descriptive laboratory study/validation study.

Setting Youth football.

Participants Six male youth football players (15.3±0.3 years).

Evaluations In step 1, the sensor was mounted to a Hybrid III headform (HIII) and impacted with a linear impactor or foot-ball (range: 9–144g). Accelerative forces, including peak linear acceleration (PLA), were obtained from both systems. In step 2, heading events resulted in higher PLA outputs compared to non-heading events. A 9g cut-off value yielded a positive predictive value of 100% in the structured training protocol vs. 65% in regular football sessions.

Conclusions The in-ear sensor displayed considerable random error and overestimated head impact exposures substantially. It showed excellent on-field accuracy for discriminating headings from other accelerative events, but secondary means of verifying events are still necessary.