may be especially at risk. However data is scarce and valid comparisons are difficult.

Objective To gauge the prevalence of psychological distress and the level of wellbeing amongst UK Olympic and Paralympic programme athletes.

Design Cross-sectional questionnaire cohort study.

Setting UK Olympic and Paralympic, summer and winter sport athletes.

Patients (or Participants) 394 athletes from 29 sports.

Interventions (or Assessment of Risk Factors) Between October 2018 and June 2019, participants completed the Kessler Psychological Distress Scale (K10) and the World Health Organisation-Five Well-Being Index (WHO5) questionnaires that indicate levels of psychological distress and subjective wellbeing respectively.

Main Outcome Measurements Percentage of athletes reporting low, moderate, high and very high psychological distress. Percentage of athletes reporting high and low wellbeing.

Results 24% of athletes reported high or very high psychological distress. More Paralympic that Olympic athletes reported high/very high distress (27% vs 22%). The mean distress score was comparable to age matched population samples. 19% of athletes reported low psychological wellbeing and this was more common in Paralympic athletes than Olympic athletes (23% vs 17%). The mean wellbeing score was comparable to age matched population samples.

Conclusions UK Olympic and Paralympic athletes report psychological distress and wellbeing levels similar to aged matched populations. Paralympic athletes have slightly higher levels of distress and lower wellbeing than Olympic athletes and this may relate to disability specific stressors. Sport programmes should have robust mental health support plans that includes regular athlete screening and commensurate support services with additional specific support for athletes with disabilities.

Mental Fatigue Interacts with Brain Activity During Predefined and Reactive Balance Tasks: Is it Time to Add More Context to Injury Prevention Screening?

Background Athletes indicate that mental fatigue (MF) interferes with maximal performance. MF has also been hypothesized to play an important role in injury occurrence. Clinically applied studies show that MF affects brain activity and decreases endurance, skill and decision-making performance. Nevertheless, no clear insights exist on how MF might affect brain activity during predefined and reactive balance test performance. Gaining insights into this topic could further strengthen or challenge the MF-injury hypothesis.

Objective To study whether (1) MF alters the electrophysiological functioning of the brain during one predefined and one reactive balance task, and (2) performance on these balance tasks.

Design Cross-over design.

Setting Primary clinical setting.

Participants Twelve healthy participants (age = 22 ± 1 years; height = 176.9 ± 8.4 cm; weight = 69.7 ± 10.4 kg).

Interventions MF was induced by a 90-minute Stroop task, while the control task included watching a 90-minute documentary.