Patients (or Participants) We enrolled 66 student-athletes (53.0% Female, Age: 20.0 ± 1.1 years old, Height: 1.75 ± 0.11m, Weight: 78.7 ± 20.9kg) from 16 sports who were diagnosed with sports-related concussions.

Interventions (or Assessment of Risk Factors) Electronic medical records were tracked for a year following the concussion for diagnosed lower extremity MSK injuries.

Main Outcome Measurements All participants completed a multifaceted concussion baseline consisting of 1) 22-item 0–6 self-reported symptom checklist with outcomes including, 1) number of symptoms endorsed, 2) total symptom score, 3) Standard Assessment of Concussion, 4) Balance Error Scoring System, 5) Immediate Post-Concussion Assessment and Cognitive Testing composite scores, 6) clinical reaction time, and 7) the King-Devick test. The concussion participants completed the same exam acutely post-concussion (<48 hours) and binary logistic regression was used to identify predictors of subsequent MSK from the change scores (Acute minus Baseline).

Results The participant demographics and injury characteristics (p=0.318, Exp(B)=1.020) and concussion clinical outcomes (p=0.461, Exp(B)=1.200) did not predict subsequent MSK. Exploratory analysis failed to identify any individual predictive variable from the clinical measures including total symptoms (Δ=9.3, p=0.738), symptoms severity (Δ=21.1, p=0.738), BESS (Δ=0.6 errors, p=0.474), SAC (Δ=−0.7, p=0.938), Verbal Memory (Δ =1.6, p=0.064), Visual Memory (Δ=5.1, p=0.724), Motor Speed (Δ=0.6, p=0.297), Reaction Time (Δ=0.04 s, p=0.642), CRT (Δ=15.8 ms, p=0.446), King-Devick (Δ=6.9 s, p=0.792).

Conclusions None of the standard concussion assessments significantly predicted MSK injury in the year following concussion. Thus, clinicians are not able to utilize common neurological measures or participant demographics to identify those at risk for subsequent LE MSK suggesting injury prevention programs should be implemented for all post-concussion athletes.

Background There is evidence that concussion can increase the risk of sustaining a subsequent musculoskeletal (MSK) injury up to 24-months post injury. The reason for increased risk is unknown although irregularities in brain and motor function exist between groups.

Objective To determine the likelihood of UK High Performance System athletes sustaining a subsequent MSK injury within a 4-month period post-concussion.

Design Retrospective Cohort Study. A concussion was identified in 26 of 33 sports.

Interventions Participants were given baseline tests including computerized neuropsychological test battery (ImPACT™) and the State Trait Anxiety Inventory (STAI-Y) to determine cognitive function and levels of anxiety, respectively. Participants were divided into groups based upon STAI-Y scores. Using SPSS, one-way ANOVAs were calculated on ImPACT composite scores, using an alpha level of .05 for all tests.

Results 7% (n=9) and 17% (n=21) endorsed high state and trait anxiety respectively. Statistically significant differences existed between state anxiety groups on composite reaction time (F(1,124) = 6.72, p=0.011, eta squared = .03), composite impulse control (F(1,124) = 8.49, p= 0.004, eta squared = .01), and total symptoms (F(1,124) = 7.09, p<0.001, eta squared = .01), with high state anxiety athletes performing worse and reporting more symptoms.

Conclusions Rural low SES athletes endorsed lower levels of anxiety than the general population, however those with high state anxiety endorsed more symptoms and performed worse on measures of impulsivity. This study provides initial evidence that state anxiety is a predictor of MSK injury after concussion.
evidence that anxiety may influence cognitive test scores in this population. Future research should examine the influence of anxiety during post-concussion assessment when stakes may be higher in this underrepresented population.

Background Preventing sports-related concussions is a medical priority across all levels of contact sports. Doctors play a key role in ensuring concussed athletes can safely return to sport, yet research has shown deficiencies in concussion knowledge and education amongst doctors and medical students. In the UK, studies assessing concussion knowledge and learning experiences have not previously been conducted in medical schools despite a parliamentary inquiry highlighting evidence regarding the links between sport and brain injury.

Objective To assess medical students’ concussion knowledge and learning needs in Scottish Medical Schools.

Design An online survey with 23 questions assessing aspects of concussion prevention, detection and management was distributed to Scottish Medical schools. Data collection took place between October and December 2020. Scores were calculated based on correct recognition of symptom and management approaches.

Setting Clinical year medical students studying in Scotland.

Participants 200 medical students completed the survey (8% response rate).

Results On average, participants scored 87.3% (sd 9.56) on symptom recognition items but only 31% (sd 15.3) on questions related to management and prevention. 38% incorrectly identified that brain imaging could diagnose a concussion. Only 15% of participants correctly identified that headgear does not prevent concussions and only one participant correctly identified the minimum ‘return to sport’ timeframes for adults and children. 15% of participants reported having learnt about concussion at medical school and 92.5% were interested in receiving concussion teaching at medical school.

Conclusions Medical students show competence in concussion recognition but there are gaps in knowledge concerning concussion prevention and management. Concussion is not frequently taught in medical schools despite a desire for it to be covered in curricula. Further studies are needed to understand how concussion education can best be incorporated to ensure future doctors are competent in managing concussions and minimising the risk of secondary harms.

Background While evaluating balance and neurocognitive function following concussion is clinically valuable for both diagnosis and treatment, it is unclear if these assessments are best employed in reference to a pre-injury evaluation, or to normative results sampled from a healthy population.

Objective To evaluate the performance of a computerized assessment of balance and neurocognitive function in athletes following a sport-related concussion (SRC) compared to either their own pre-injury test scores, or the scores of a normative sample of uninjured athletes.

Hypothesis SRC test scores would discriminate better from athlete’s own pre-injury scores compared to those of an uninjured cohort.

Design Prospective observational study design.

Setting Sport medicine clinic at a Canadian University.

Participants One hundred and forty Canadian Interuniversity athletes (n =73 male, n = 67 female) from 12 different sports. Seventy non-injured athletes (n = 31 male, n = 39 female) were assessed prior to the start of their competitive season, while 70 athletes (n = 42 male, n = 28 female) with SRC were assessed within one week of injury.

Assessment of Risk Factors At the time of testing, fourteen measures of neurocognitive function (n = 6) and balance (n = 8) were assessed using the C3 Logix application (NeuroLogic Technologies, Cleveland, Ohio).

Main Outcome Measures Presence or absence of SRC, as diagnosed by a sport medicine doctor.

Results Partial least squares discriminant analyses followed by the evaluation of model classification accuracy (Accru) revealed better discriminative performance when test scores in athletes with SRC were compared to an uninjured cohort (Accru = 0.74), as opposed to their own pre-injury test scores (Accru = 0.61).

Conclusions Contrary to our hypothesis, these initial results suggest that neurocognitive and balance testing following SRC may benefit from comparison to normative reference values sampled from a healthy population.