uninjured athletes, matched for gender and type of sport, was included.

Assessment of Risk Factors All participants performed a stepping-down task under 4 conditions: 1. no additional challenges (NORM), 2. whilst performing a cognitive dual-task (DUAL), 3. whilst undergoing unpredictable surface perturbations (PERT), 4. whilst performing a cognitive dual-task + undergoing unpredictable surface perturbations.

Main Outcome Measurements Muscle activations of the vastus medialis (VM), vastus lateralis, hamstrings medialis (HM), hamstrings lateralis were recorded with surface EMG. Integrals were calculated over the landing period (50–250 ms after initial contact) and normalized to maximal voluntary contractions.

Results The ACLR athletes showed an almost unadjusted strategy of increased HM (6.7% (ACL); 3.9% (control), F=5.07, p=0.031) and decreased VM activation across all tasks (6.8% (ACL); 12.9% (control), F=8.52, p=0.006), whilst the control group had a clear increase in HM activation (3.2% (NORM); 5.6% (PERT), t=4.06, p=0.001) and VM activation (9.0% (NORM);16.9% (PERT), t=3.81, p=0.001) when unpredictable perturbations occurred. However, within the ACLR athletes HM activation decreased when a dual task was added (7.3% (NORM); 4.7% (DUAL), t=3.4, p=0.003).

Conclusions It seems that the neuromuscular strategy of the ACLR athlete is an overprotective strategy to improve knee stability. They use this strategy in every situation, potentially to compensate for the altered proprioceptive input. This overprotective strategy is jeopardized under cognitively challenging circumstances, confirming that underlying neurocognitive limitations contribute to altered neuromuscular control in ACLR athletes.

Background Studies have reported that females and males exhibit different landing techniques. However, few studies have examined the effect of gender on landing technique in athletes following ACLR.

Objective To compare landing technique between females and males following ACLR during landing from heading-jump (LHJ) and landing from long-jump (LLJ).

Design Cross-sectional study.

Setting Biomechanical laboratory.

Patients (or Participants) Eight female and 8 male recreational athletes.

Interventions (or Assessment of Risk Factors) LHJ included jumping forward to head a soccer ball and landing on the force plates, whereas LLJ included jumping forward and landing on the force plates.

Main Outcome Measurements A 2×2 ANOVA (gender × landing) was performed to evaluate kinematics, kinetics, and electromyography data.

Results A significant interaction was found only for knee flexion angles (F1,14= 12.67, p = 0.003). Pairwise comparisons showed that males landed with decreased knee flexion compared with females during LLJ (p = 0.01). LHJ showed decreased knee flexion compared with LLJ in females (p < 0.001) and males (p = 0.001). Significant main effects of landing were found. LHJ showed decreased hip flexion angles (F1,14= 71.07, p < 0.001), decreased knee flexion angles (F1,14= 95.17, p < 0.001), decreased knee extension moments (F1,14= 20.12, p = 0.001), and decreased plantarflexion moments (F1,14= 34.71, p < 0.001). Also, a significant main effect of gender for hip flexion was found showing that males landed with decreased hip flexion angles (F1,14= 7.17, p = 0.01).

Conclusions LHJ showed greater injury predisposing factors compared with LLJ. Females and males following ACLR showed nearly similar landing biomechanics. However, males landed with smaller hip and knee flexion angles (stiff-landing); therefore, preventative training programs may focus on improving the use of hip and knee joints (soft-landing) during landing to decrease the risk of consequent injuries in males following ACLR.

Background During pole vault, a high level of energy is transferred from horizontal speed of athlete to the pole. Several ways of performing the pole vault exist, and could be associated with specific injury risk.

Objective To analyse the potential association between the biomechanical patterns of pole vault and the history of injuries.

Design Retrospective study.

Setting National elite indoor championship and youth national indoor championship (U17 and U20) of pole vault (athletics)

Participants 62 (70.5%) of the eligible population participating in the championships) healthy national level male and female pole vaulters.

Main Outcome Measurements We prospectively collected the pole vault biomechanical data of the run-up and take-off phases of the vault, and we retrospectively collected the history of injuries during the 12 preceding months through an online questionnaire.

Results A total of 62 (70.5%) of those participating in the championships pole vaulters accepted to participated in this study, and benefited from pole vault biomechanical and injury

200 RELATIONSHIP BETWEEN POLE VAULT BIOMECHANICS AND PREVIOUS INJURIES

1Ahmad Alanazi, 2Faisal Al-Enezi, 3Mishal Aldaihan, 4Hamad Al Amer, 5Alexis Ortiz, 6Department of Physical Therapy, Majmaah University, Majmaah, Saudi Arabia; 7Therapeutic Deputyship, Ministry of Health, Riyadh, Saudi Arabia; 8Université de Lorraine, Faculty of Medicine, Saint-Etienne, France; 9Department of Clinical and Exercise Physiology, Sports Medicine Unit, University Hospital of Saint-Etienne, Faculty of Medicine, Saint-Etienne, France; 10Medical Commission, French Athletics Federation (FFA), Paris, France; 11Swiss Olympic Medical Center, Centre de médecine du sport, Division de médecine physique et réadaptation, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; 12European Athletics Medical and Anti Doping Commission, European Athletics Association (AEA), Lausanne, Switzerland; 13French Athletics Federation (FFA), FFR division, Paris, France; 14Université de Lorraine, Faculty of Medicine, Laboratory « Développement, Adaptation et Handicap » (EA 3450), Vandœuvre-lès-Nancy, France; 15Université de Lorraine, Faculty of Sports Sciences, Villers-lès-Nancy, France; 16EA 4660, Culture, Sport, Health and Society Department and Exercise Performance, Health Innovation platform, University of Bourgogne France Comté, Besançon, France; 17EA 7307, Laboratoire Performance, Santé, Méthode, Société, Reims, France

http://bjsm.bmj.com on September 17, 2023 by guest. Protected by copyright.