252 RELATIONSHIP BETWEEN BALANCE AND LOWER EXTREMITY ROM, H/Q RATIO, HAMSTRING TIGHTNESS, BEIGHTON SCORE IN PROFESSIONAL FOLK DANCERS AND PROFESSIONAL FOOTBALL PLAYERS

Background One of the factors of performance is to be agile that would require combination of speed, balance, power and coordination. Balance analysis is often used as an indication of risk of frequent injuries. In most of the sports, proprioceptive education programs are adapted to prevent lower extremity functional injuries.

Objective We aimed to determine the difference in balance between professional dancers and professional footballers and its relationship with lower extremity ROM, muscle strength, hamstrings flexibility and composite score of Y-Test result. The model had 88.6% for injury and 56.6% for non-injury.

Main Outcome Measurements SportKAT 4000 (Kinesthetic Ability Trainer) measurements (p<0.005) are better in dancers (eyes open with both feet, right leg only, left leg only, eyes closed both feet, eyes open dynamic both feet) compare to athletes. Active ROM angles (p<0.005) are significantly higher in dancers’ hip, knee and ankle compare to athletes. Our findings showed that dancers’ Beighton score was 3,8±2.3 and athletes’ score was 2,5±1.5. Hamstring length in dancers was 95,5±10 and athletes was 76,6±7,1.

Results Dancers’ static and dynamic balances (p<0.005) are significantly better than athletes. H/Q ratios are not different between dancers and athletes; however, dancers’ Hamstring length (p<0.005) is higher compare to athletes.

Conclusions Decreased flexibility and ROM cause lesser resistance to perturbation and balance problems. We think that dancer are better in static and dynamic balances compare to athletes due to greater ROM degrees and Hamstring flexibility.

Abstracts

halves and Number 8s (2.6%). The most common injury location was the ankle (21.4%) and 42.9% of ankle injuries were suffered by Locks. There was a significant association (p=0.010) between player position and injury location. In contrast, no significant associations (p>0.05) were observed between player position and contact injury, contact event or injury type.

Conclusions The Lock position was more prone to injury than any other position during SLUG 2019 but the majority of the players were injured regardless of the playing position. Thorough physical conditioning and skill practice could be key areas of concern to reduce injuries in university-level rugby.

Background Preseason assessment is common in sports teams and aims to analyze athletes’ physical and functional parameters. These data assist physical therapists to develop global and individualized injury prevention programs and to identify any improvement throughout the season.

Objective To determine predictors for musculoskeletal injuries in youth male soccer athletes.

Design Cohort study.

Setting One youth soccer team facility.

Patients (or Participants) One hundred sixteen young male soccer athletes.

Interventions (or Assessment of Risk Factors) All data were collected in two days. Athletes were aleatory selected to perform the tests and the physical therapists, previously trained, applied the following tests: single leg hamstring bridge (SLHB), bridge test with unilateral knee extension, passive hip internal rotation (IR) range of motion (ROM), hip abductor strength, hamstring flexibility and composite score of Y-Test. Considering it could have an interference in other tests, Y-Test were the last measure in all athletes. Injuries were collected throughout the season.

Main Outcome Measurements any lower limb (LL) injury occurring during scheduled games or practices that cause an athlete to miss a subsequent game or practice session.

Results The Classification and Regression Trees (CART) model identified as predictors of LL injuries in youth soccer athletes: SLHB, bridge test with unilateral knee extension, passive hip internal rotation ROM, hip abductors strength, hamstrings flexibility and composite score of Y-Test result. The model had an accuracy of 76% (p<.0001) and the correct classification was 88.6% for injury and 56.6% for non-injury.

Conclusions The SLHB, bridge test with unilateral knee extension, passive hip internal rotation ROM, hip abductors strength, hamstrings flexibility and composite score of Y-Test should be included in pre-season assessment in youth soccer athletes. The results of these tests could be used as parameters to develop a prevention program in soccer.

254 PRE-SEASON CLINICAL ASSESSMENT OF THE HIP EXTENSORS, EXTERNAL ROTATORS AND ABDUCTORS IN COMPETITIVE SPRINTERs

1Pedro Luiz Flores Fagiani; 2A.3A Natália FN Bittencourt; 2Fabian Peralta. 1EUSES/UdG/University of Barcelona (U.B.), Barcelona, Spain; 2FisioDeportiva, Barcelona, Spain; 3Department of Public Health of EMGO + Institute at the VU University Medical Center, Amsterdam, Netherlands; 4Uni Bh University, Belo Horizonte, Brazil; 5PhysApp, Belo Horizonte, Brazil

Background Preseason assessment through an assertive pre-season clinical assessment of the hip extensors, external rotators and abductors in competitive sprinters.
Background Previous research has shown that muscle imbalances may be an important risk factor for lower limb injuries in runners. No studies have evaluated hip musculature imbalance in sprinters. Identifying pre-season strength and imbalances of the hip gluteal musculature can have an important impact on injury prevention within this population.

Objective To describe the muscle performance and imbalances between limbs related to the hip extensor, external rotators and abductors muscles in sprinters.

Design Athletes were assessed during the pre-season period. Muscle function performance of the hip extensors, external rotators and abductors were tested.

Participants All participants (n=69) were federated at the Spanish athletics federation and involved in high-level track and field training sessions (minimum 5 sessions per week) for at least the last 3 years. All of them had undertaken similar training demands in the past.

Interventions We measured the maximum number of repetitions without compensatory movements of each leg during the straight knee bridge exercise (test 1), hip external rotation in prone (test 2) and hip abduction in side-line (test 3). Data analysis and comparison in between limbs were calculated.

Results No significant differences in between limbs were observed in all three tests (p<0.005). The assessment of the hip external rotators (test 2), have shown the worse performance among this population with 30.8% of the athletes on the dominant limb and 35.3% on non-dominant limb not being able to perform even 1 rep without compensation.

Conclusions We did not observe significant imbalances in between limbs. The hip external rotators muscles demonstrated the worst performance with a high number of athletes not being able to perform the test. The weakness of the external rotators and compensations associated with it can have several different impacts on the lower limb function during running, therefore possible importance for injury prevention strategies.

Background Previous research has shown that muscle imbalances may be an important risk factor for lower limb injuries in runners. No studies have evaluated hip musculature imbalance in sprinters. Identifying pre-season strength and imbalances of the hip gluteal musculature can have an important impact on injury prevention within this population.

Objective To describe the muscle performance and imbalances between limbs related to the hip extensor, external rotators and abductors muscles in sprinters.

Design Athletes were assessed during the pre-season period. Muscle function performance of the hip extensors, external rotators and abductors were tested.

Participants All participants (n=69) were federated at the Spanish athletics federation and involved in high-level track and field training sessions (minimum 5 sessions per week) for at least the last 3 years. All of them had undertaken similar training demands in the past.

Interventions We measured the maximum number of repetitions without compensatory movements of each leg during the straight knee bridge exercise (test 1), hip external rotation in prone (test 2) and hip abduction in side-line (test 3). Data analysis and comparison in between limbs were calculated.

Results No significant differences in between limbs were observed in all three tests (p<0.005). The assessment of the hip external rotators (test 2), have shown the worse performance among this population with 30.8% of the athletes on the dominant limb and 35.3% on non-dominant limb not being able to perform even 1 rep without compensation.

Conclusions We did not observe significant imbalances in between limbs. The hip external rotators muscles demonstrated the worst performance with a high number of athletes not being able to perform the test. The weakness of the external rotators and compensations associated with it can have several different impacts on the lower limb function during running, therefore possible importance for injury prevention strategies.