Background Previous research has shown that muscle imbalances may be an important risk factor for lower limb injuries in runners. No studies have evaluated hip musculature imbalance in sprinters. Identifying pre-season strength and imbalances of the hip gluteal musculature can have an important impact on injury prevention within this population.

Objective To describe the muscle performance and imbalances between limbs related to the hip extensors, external rotators and abductors muscles in sprinters.

Design Athletes were assessed during the pre-season period. Muscle function performance of the hip extensors, external rotators and abductors were tested.

Participants All participants (n=69) were federated at the Spanish athletics federation and involved in high-level track and field training sessions (minimum 5 sessions per week) for at least the last 3 years. All of them had undertaken similar training demands in the past.

Interventions We measured the maximum number of repetitions without compensatory movements of each leg during the straight knee bridge exercise (test 1), hip external rotation in prone (test 2) and hip abduction in side-line (test 3). Data analysis and comparison in between limbs were calculated.

Results No significant differences in between limbs were observed in all three tests (p<0.005). The assessment of the hip external rotators (test 2), have shown the worse performance among this population with 30.8% of the athletes on the dominant limb and 35.3% on non-dominant limb not being able to perform even 1 rep without compensation.

Conclusions We did not observe significant imbalances in between limbs. The hip external rotators muscles demonstrated the worst performance with a high number of athletes not being able to perform the test. The weakness of the external rotators and compensations associated with it can have several different impacts on the lower limb function during running, therefore possible importance for injury prevention strategies.

255 ISOKINETIC PROFILE AND CONTRALATERAL DEFICIT OF THE LOWER LIMBS OF ARTISTIC GYMNASTICS ATHLETES

1,2Stefânia Gonçalves Dias, 3Natália Batista Albuquerque Goulart Lemos, 4Morgana Lunardi, 2Fernando de Aguiar Lemos, 4Caroline Pieta Dias, 5João Carlos Oliva, 6Marco Aurelio Vaz.

1University of Pernambuco, Petrolina, Brazil, 2University of Rio Grande do Sul, Porto Alegre, Brazil, 3Federal University of Santa Catarina, Florianópolis, Brazil, 4Federal University of Vale do São Francisco, Petrolina, Brazil, 5Federal University of Pernambuco, Petrolina, Brazil, 6University of São Paulo, São Paulo, Brazil

Background The hamstring/quadriceps (H/Q) functional ratio detects muscle imbalance and monitors knee joint stability, making it a predictor of injury, especially ACL. The injury of this ligament in gymnasts is one of the most incident and of greater negative impact on recovery and return to sports.

Objective To evaluate functional H/Q at different angular velocities and contralateral deficit of the lower limbs of female artistic gymnasts athletes.

Design Descriptive study.

Setting Federated athletes, participants of competitions at national and international level, in which two were part of the Brazilian Selection of Artistic Gymnastics.

Patients (or Participants) Selected through a club in Porto Alegre, Brazil. They had an average of eight years of experience in the modality, minimum frequency of training of six times a week, six days.

Patients with any lesion that interfered or made it impossible to perform the evaluations were excluded.

Interventions (or Assessment of Risk Factors) Functional H/Q was calculated by dividing the peak of the hamstring eccentric torque by the peak of the quadriceps concentric torque, analyzed using the isokinetic dynamometer (Biodex Medical System).

Main Outcome Measurements Isokinetic protocol at two speeds: 1) 60°/s and 2) 120°/s; and a questionnaire to determine dominant member (DM).

Results 10 elite gymnasts were evaluated, (mean±SD age 14.9 ±3.7 yrs; body mass 45.6±7.0 kg and height 1.51±0.04 m). The DM, as well as the non-dominant (NDM) at the moment 60°/s (0.71 ± 0.09; 0.77 ± 0.12), had values below those established in the literature (functional H/Q ≤ 0.90), at the moment 120°/s were closer to normal (0.85 ± 0.12; 0.88 ± 0.13). 5 of the 10 athletes obtained values within the normal range in the MND at 120%.

Conclusions All athletes presented significant thigh muscle imbalance, with functional H/Q values lower than those proposed in the literature, with proximity between the limbs. Strength training program of hamstrings should be considered in order to prevent injuries caused by muscle imbalance.

256 THE DIFFERENCES OF STATIC LOWER EXTREMITIES ALIGNMENT BETWEEN FEMALE BALLET STUDENTS AND FEMALE NON-BALLET STUDENTS

1,2Min Jin Kim, 1,2,3Sae Yong Lee, 1Department of Physical Education, Yonsei University, Seoul, South Korea (Republic of), 2YISEM (Yonsei Institute of Sports Science and Exercise Medicine), Seoul, South Korea (Republic of), 3Institute of Convergence Science, Seoul, South Korea (Republic of)

Background Ballet dancers experience changes in body alignment in repeated practice to achieve the ideal turn-out position, and they have different alignments from that of the non-ballet dancers. However, no quantitative data have been reported to support their differences in lower extremity alignment (LEA).

Objective To compare differences in clinical measures of static LEA between female ballet students and female non-ballet students.

Design Descriptive and cohort study.

Setting Controlled laboratory setting.

Patients (or Participants) Eighty-four female ballet students and fifty-one female non-ballet students were recruited.

Interventions (or Assessment of Risk Factors) Every participant read and signed the consent form that approved by the Institutional Reviews Board (IRB). The static LEAs were measured using four instruments, Height gage, 6° and 12° Goniometers, PALM inclinometer, and Bubble inclinometer.

Main Outcome Measurements Twelve static LEAs including leg-length, quadriceps angle, tibiofemoral angle, prone rearfoot angle, forefoot angle, tibial torsion, tibial varum, hip antversion, pelvic tilt, standing quadriceps angle, standing rearfoot angle and navicular drop were measured.

Results Ballet students showed greater mean in tibial torsion (M±SE=4.55, SE=.83, t(26)=5.51, p=.000, 95% CI: 2.92 – 6.18), anterior-posterior pelvic tilt (M±SE=1.93, SE=.46, t(23)=4.10, p=.000, 95% CI: 1.00 – 2.86), and standing rearfoot

Br J Sports Med: first published as 10.1136/bjsports-2021-IOC.234 on 23 November 2021. Downloaded from http://bjsm.bmj.com/ on September 14, 2023 by guest. Protected by copyright.