Exercise-induced laryngeal obstruction (EIRO) in athletes: a narrative review by a subgroup of the IOC Consensus on ‘acute respiratory illness in the athlete’

Hege Havstad Clemm,1,2 J Tod Olin,3 Cameron McIntosh,4 Martin Schwellnus,5,6 Nicola Sewry,5,6 James H Hull,7 Thomas Halvorsen1,2,8

ABSTRACT
Exercise-induced laryngeal obstruction (EIRO) is caused by paradoxical inspiratory adduction of laryngeal structures during exercise. EIRO is an important cause of upper airway dysfunction in young individuals and athletes, can impair exercise performance and mimic lower airway dysfunction, such as asthma and/or exercise-induced bronchoconstriction. Over the past two decades, there has been considerable progress in the recognition and assessment of EIRO in sports medicine. EIRO is a highly prevalent cause of unexplained dyspnoea and wheeze in athletes. The preferred diagnostic approach is continuous visualisation of the larynx (via laryngoscopy) during high-intensity exercise. Recent data suggest that EIRO consists of different subtypes, possibly caused by different mechanisms. Several therapeutic interventions for EIRO are now in widespread use, but to date, no randomised clinical trials have been performed to assess their efficacy or inform robust management strategies. The aim of this review is to provide a state-of-the-art overview of EIRO and guidance for clinicians evaluating and treating suspected cases of EIRO in athletes. Specifically, this review examines the pathophysiology of EIRO, outlines a diagnostic approach and presents current therapeutic algorithms. The key unmet needs and future priorities for research in this area are also covered.

INTRODUCTION
Exercise-induced laryngeal obstruction (EIRO) is increasingly recognised as an important cause of exertional breathing problems or upper airway dysfunction, particularly affecting athletes and physically active young individuals. EIRO is defined as transient upper airway obstruction that typically occurs at the supraglottic level, most often followed by a glottic component, causing exertional dyspnoea. It is important that sport and exercise medicine physician and other health professionals, athletic trainers and coaches who are involved in the care of athletes presenting with exercise-related symptoms recognise EIRO. It is also important that they have a diagnostic and therapeutic approach to this condition for the following reasons: EIRO is common, it impacts on exercise performance and quality of life, and tends to be confused with and inappropriately diagnosed or treated as lower airway dysfunction (ie, asthma, exercise-induced bronchoconstriction (EIB), airway hyper-responsiveness (AHR)). Fortunately, both awareness of EIRO and the relevant diagnostic techniques have improved over the past decade.

The prevalence rates of EIRO in adolescent populations range from 5% to 8%.1–3 This increases to more than 20% in some groups of individuals, where exercise is a key part of their everyday life, such as elite athletes and combat soldiers.4–6 EIRO deters people from participation in physical activities and sports and can, in severe cases, lead to exercise avoidance, impair performance and affect sports careers in athletes.7 Moreover, incorrect diagnosis and management of EIRO can result in affected individuals being incorrectly prescribed asthma medications, with an associated potential to cause adverse effects.8

For decades, asthma and/or EIB was regarded as the most prevalent medical cause of exertional dyspnoea. Accordingly, when athletes present with respiratory symptoms that occur during exercise, the sports and exercise medicine community has tended to focus on the assessment and management of the lower airways, particularly EIB.9,10 Objective testing for EIB has been recommended in most guidelines, but regrettably not always performed.11–18 Given new knowledge related to the high prevalence of EIRO and a better understanding of the pitfalls of clinically diagnosing asthma and/or EIB, there is now an opportunity to reshape the diagnostic guidelines for athletes presenting with exertional dyspnoea and include objective testing also for EIRO.19,20

The aim of this review is to provide a state-of-the-art overview of EIRO, and guidance for how to evaluate and treat suspected cases of EIRO in athletes. The review will focus on the pathophysiology of EIRO, outline a diagnostic approach and present some of the most applied treatment strategies. The main motivation is to optimise athletes’ respiratory care through recognition of EIRO, and specifically to improve the management of EIRO, based on the available evidence.

METHODS
In late 2019 an IOC consensus statement core panel on acute respiratory illness in athletes was convened on behalf of the IOC Medical and Scientific Commission and chaired by MS. Members of the core panel were selected after careful consideration of all the applications that were received from the IOC networks. A Subgroup 6 of this core panel were selected after careful consideration of all the applications that were received from the IOC networks. A Subgroup 6 of this core group, consisted of MS, NS, CM, chaired by HHC,
focused on acute nasal illness, structural pathology and laryngeal dysfunction in athletes.

Corresponding members of Subgroup 6, TH, JTO and JHH were selected after application based on clinical and research experience on EILO in athletes, involvement in international guideline committees and publications in the field the last 5 years.

The subgroup conducted a systematic literature search. Relevant scientific full-text articles, written in English, published between 1990 and 31 July 2020, were identified by a systematic search in Medline, EBSCOhost, Web of Science (Core Collection) and EMBASE. Inclusion criteria were humans aged 15–65 years, athletes or physically active individuals, reports of prevalence/incidence/rate/risk factors for non-inflammatory/non-infective mechanical upper airway obstruction in the setting of acute respiratory illness. All possible terms of EILO known were included, and five additional articles were included. HC and TO individually screened 1029 records by at title/abstract level after duplicate removal. A total of 47 full-text articles were tested for eligible, and 8 full-text articles on EILO were included, based on the search. Two more publications were included after the search (marked articles in table 1) There were not enough data to support a systematic review, and this manuscript is therefore presented as a narrative review based on the available literature. Finally, for some clinically important aspects of EILO, the authors have resorted to ‘expert opinion’.21

OBSERVATIONS

Normal laryngeal structure and function at rest and during exercise

The larynx is situated above the trachea and represents a narrow and complex valve-like structure that controls air flow to the lungs. The larynx represents and controls a large proportion of total airway resistance, protects the lungs from aspiration, performs fine-tuned movements to facilitate articulation and is crucial for effective cough and secretion clearance. The vocal folds are under both autonomic and voluntary control.22 23 During exercise, the vocal folds and the arytenoids move to a relatively fixed abducted position, both in inspiration and during expiration. Simultaneously, the epiglottis flattens against the tongue base on inspiration, and thereby stretching the aryepiglottic folds. These mechanisms optimise and facilitate airflow by increasing the cross-sectional area of the laryngeal aperture.22 23

<table>
<thead>
<tr>
<th>Table 1</th>
<th>A summary of studies on the prevalence of EILO in athletes and adolescents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of EILO in athletes</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
</tr>
<tr>
<td>Morris et al</td>
<td>1999</td>
</tr>
<tr>
<td>Rundell and Spiering</td>
<td>2003</td>
</tr>
<tr>
<td>Hanks et al</td>
<td>2012</td>
</tr>
<tr>
<td>Nielsen et al</td>
<td>2013</td>
</tr>
<tr>
<td>Turmel et al</td>
<td>2015</td>
</tr>
<tr>
<td>Heffler et al</td>
<td>2015</td>
</tr>
<tr>
<td>Irewall et al</td>
<td>2021</td>
</tr>
</tbody>
</table>

Prevalence of EILO in adolescents						
Authors	Year	Population	Design	Findings	Diagnostic method	Comments
Christensen et al	2011	556 invited, 150 tested for AHR, 17.6% tested for EILO	Cross-sectional Prospective	AHR in 28% of invited. EILO in 42% of tested, 7.6% of total invited. Six persons had both AHR and EILO	Continuous laryngoscopy during exercise	
Johansson et al	2015	3838 invited, 2309 responded, symptoms in 330 85 with and 42 without symptoms tested	Cross-sectional Prospective	11% had EILO; 40% had EIB; Estimated EILO prevalence 5.7%. Similar in boys and girls	Continuous laryngoscopy during exercise	Well-designed
Ersson et al	2020	549 first-year high-school athletes invited 42 with and 34 without dyspnoea tested	Cross-sectional Prospective	EIB in 8/41 with and 16/57 without dyspnoea EILO in 5/34 with and 3/42 without dyspnoea; Estimated prevalence of EILO 8.1%	Continuous laryngoscopy during exercise (on bike)	Self-reported symptoms are week indicators for both EIB and EILO

Studies published after conducting the systematic search. AHR, airway hyper-responsiveness; CLE, continuous laryngoscopy exercise; EIB, exercise-induced bronchoconstriction; EILO, exercise-induced laryngeal obstruction; VCD, vocal cord dysfunction.
Abnormal laryngeal function during exercise
EILO is a form of inducible laryngeal obstruction (ILO) (Exer-
cise + ILO = EILO), that causes breathing problems during
exercise, in the context of normal laryngeal anatomy and func-
tion at rest.24 This condition, previously described as vocal
cord dysfunction (VCD) and/or paradoxical vocal fold motion, was
redefined in 2013 by a consensus task force commissioned by
the European Respiratory Society, the European Laryngological
Society and the American College of Chest Physicians.24 Obstruc-
tion can occur at the glottic and/or supraglottic level, and may
happen separately, in parallel or sequentially. In fact, most often
it is the supraglottic and not the glottic or vocal cord region
structures that contribute to closure.24 25 Supraglottic obstruction
typically takes the form of abnormal inward prolapse of other
laryngeal structures, such as the arytenoid cartilages, or redund-
ant intra-arytenoid tissue or epiglottic tissue.16 25

Prevalence of EILO in athletes and adolescents
In general, the prevalence of EILO in populations across age,
sex, ethnic background and athletic level is poorly described,
although data suggest prevalence in certain populations that
is comparable to that of asthma and/or EIB. Available data are
limited in quantity and limited by varying diagnostic criteria and
referral bias, with most studies lacking the robust confirmation
of the diagnosis with a continuous laryngoscopy during high-
intensity exercise (CLE) test28 (see table 1).

In the most extensive study in Olympic-level athletes, the
prevalence of EILO was 5%.29 In this study, the diagnosis was
based on clinical assessments of stridor without laryngoscopy (an
approach that may underestimate prevalence). In addition half
of the athletes with stridor had asthma. In another cohort study
of elite cross-country skiers without respiratory symptoms, 89
skiers completed a CLE test and 27% had supraglottic EILO—
none had glottic EILO.8 Asthma was present in 38%, of whom
29% had EILO.6 In this study, the exercise test applied was
considered valid if the participants achieved 90% of maximum
heart rate, which may not have been sufficient to trigger EILO
in susceptible individuals,25 and therefore EILO may have been
underestimated.

In athlete populations presenting with respiratory complaints,
the prevalence of EILO is likely to be higher. In the most
rigorous study, CLE tests were performed in a group of athletes
referred for exercise-induced symptoms. In this study, the prev-
ance of EILO was 35% and 14% and had coexisting asthma.4
In a retrospective chart review of university athletes presenting
with exertional respiratory complaints, postexercise laryngos-
copy (among other tests) identified EILO in 70% of athletes, and
37% had coexisting asthma.8 In a cross-sectional study of 352
athletes who underwent EVH challenge during flexible laryngos-
copy, 41 (12%) were suspected of having EILO.31 EILO was veri-
fied in all 41 athletes, using a surrogate challenge that did not
reproduce respiratory distress.31 In 37 healthy rowers without
respiratory complaints, 3B was diagnosed in 27% and EILO
was diagnosed in 43%. In this study, the diagnosis of EILO was
based on inspiratory flow volume loops (a method now consid-
ered highly imprecise).32 Finally, in a study examining active duty
military patients with exertional dyspnoea where laryngoscopy
was performed before and after exercise, EILO was present in
12%.6 In three studies, continuous laryngoscopy during exercise
(CLE) tests were performed in adolescents in general and the
reported prevalence of EILO was 5%–8%.6 13 14

In summary, the best available evidence appears to indi-
cate that EILO causes respiratory symptoms in approximately
5%–10% of adolescents and young adults, with even higher
rates in athletes reporting respiratory symptoms.

Risk factors associated with EILO in athletes
The cause of EILO is still unknown, however several risk factors
are likely to be relevant. Specifically, asthma, gastro-oesophageal
reflux disease (GERD), nasal disease,5 39 anatomic factors
related to the upper airway, behavioural health factors and
 genetic factors have been suggested as both a cause or a risk
factor. Psychological characteristics, such as a heightened level
of anxiety, have been suggested as modifiers for EILO in athletes,
perhaps by contributing to aggravate the attacks and the severity
of dyspnoea. Although the relationship between responses to
situational stresses during exercise and airway behaviour remain
to be studied, in subjects with confirmed EILO, recent data
suggest that underlying baseline anxiety does not seem more
common than in a control population.36

There is evidence that asthma, EIB and EILO can co-exist
in a considerable number of patients.4 37 Moreover, recently
published clinical studies have pointed out that EILO may be
an integrated part of the asthma paradigm.36 37 In a study
conducted over 30 years ago (1991) it was first documented
that the normal laryngeal response to exercise was altered in
asthma, both by absence of the expected increase of the expira-
tory dimension, and by less consistent inspiratory responses.38
As EILO and lower airway dysfunction may coexist,2 39 it is
possible that patients with EILO also react to cold air by the
same mechanisms.39 40 with anecdotal reports that symptoms of
EILO worsen in cold and humid air29 as well as during outdoor
activity when compared with indoor activity.29

Although it is theorised that GERD increases the risk of EILO,
treating EILO patients with with proton-pump inhibitors has not
proven effective in reducing symptoms.41

Interactions between the high airflow observed in elite sport and
anatomic factors may contribute to cause disease. As EILO seems
to be more prevalent in athletes,115 it is possible that the mech-
anical forces on the airway induced by high airflow states lead to
the development of EILO. An anatomic contributor to EILO may also
explain the observed female predominance2 4 in pubertal years
and beyond as females have, on average, smaller upper airways
than males.4 Anatomical differences in airway dimensions may also
be relevant and explain why this is a condition that most commonly
develops in the peripubertal age group. Further work is needed
to determine the factors explaining an apparently heightened prev-
ance of EILO in young female athletes and how this relates to
airway dimension, pressure changes and development of upper
airway turbulence during vigorous exercise.

Plausible modes of inheritance have been suggested,35 42 but
no definite proof of a hereditary component exists.

Many publications have emphasised a psychological compo-
nent of EILO.43 44 To date, an over-representation of psychiatric
disease or personality disorders has not been documented in
patients with isolated EILO.44 The only possible psychological
component that may be associated with EILO is a ‘high achiever’
type of personality.33 44 However, this personality type is not
uncommon in athletes in general, and this association might
represent confounding interactions. The risk factors and causal
mechanisms that are implicated in the development of EILO
represent an area for future research.

Diagnosis of EILO
Clinical diagnosis of EILO
The typical patient with EILO does not report symptoms at rest.
Some may find it difficult to attribute their exertional respiratory
symptoms to a specific phase of the respiratory cycle. Typically, symptoms are reported to occur during the inspiratory phase of the respiratory cycle. However, complaints of dyspnoea on expiration have also been reported.

Patients generally present with complaints of various combinations of other symptoms including throat tightness, choking sensations, upper chest tightness and sometimes chest pain, noisy breathing, stridor, hoarseness, changes of the voice, cough and panic reactions. Symptoms typical of EILO may not be specific to EILO and can also be associated with other diseases such as asthma, structural airway abnormalities, cardiac diseases, vascular anomalies, tumours/cancer, primary hyperventilation/breathing pattern disorders, poor breathing techniques, low physical fitness and psychological causes. Often athletes will report that breathing simply feels ‘harder’. This has recently been substantiated by findings from a study evaluating intrathoracic pressure changes and diaphragm indicating that the development of EILO is indeed associated with commensurate changes in the work of breathing.

Symptom descriptions may also vary between individuals, depending on their prior experiences, and factors relating to personal ambitions and lifestyle. Caution should therefore be exercised in making diagnostic decisions based on symptoms alone. However, the clinical experience of the authors suggests that video recordings of characteristic field symptoms can complement the history and physical examination to make a clinical diagnosis of EILO.

Differentiating between asthma/EIB and EILO in athletes

Bronchial obstruction and asthma are topics beyond the scope of this review, but need to be considered for two important reasons: (1) health professionals, athletes, trainers and support teams often confuse asthma/EIB and EILO; (2) asthma/EIB and EILO may coexist in the same athlete thus adding to diagnostic confusion but also driving a tendency to treatment failure. Because it may be difficult to distinguish EILO from EIB, a diagnostic respiratory evaluation of an athlete with exertional dyspnoea needs to include spirometry before and after a bronchodilator, as a minimum. Preferably, it should also include a bronchial hyper-responsiveness test and exercise test (figure 2). However, two tests that both involve exercising to exhaustion and/or tests of AHR on the same day is not recommended.

Continuous laryngoscopy exercise (CLE) testing to diagnose EILO

Although a variety of diagnostic methods have been used in the assessment of EILO in the past few decades, the continuous laryngoscopy during high-intensity exercise (CLE) test is recognised as the ‘gold standard’ for the diagnosis of EILO. The test involves placement of a flexible video laryngoscope to allow real-time visualisation of the larynx throughout a complete exercise session. It requires a comprehensive laboratory set-up, skilled personnel and experience in evaluating the results. The video recordings from a flexible laryngoscope safely allow for close inspection of findings both during intense exercise and after the test, evaluation of findings by more than one person and the recordings ensure later diagnostic considerations. Moreover, video recordings are important in the therapeutic biofeedback setting, showing patients what takes place in their larynx when they experience symptoms. CLE testing allows direct biofeedback to the athlete and is vital in the work up for potential surgical intervention. Continuous placement and recording of laryngeal appearance is favoured over ‘before and after’ exercise laryngoscopic visualisation, given the fact that CLE
allows focused evaluation of the severity of laryngeal closure at the precise time an athlete is most symptomatic. A combined CLE and cardiopulmonary exercise test permits concurrent assessment of maximal oxygen uptake, cardiac performance and other causes of exertional dyspnoea but is not considered vital for the diagnosis of EILO. Cardiopulmonary exercise data obtained from a CLE setting seem to be comparable to data obtained from an ordinary cardiopulmonary exercise test. Thus, performing a cardiopulmonary exercise test (CPET) with a CLE set-up in patients with unexplained exertional breathing problems, where laryngeal obstruction might be involved, allows for simultaneous assessment of other conditions in the differential diagnostic reflections.

Exercise protocols used for CLE testing may vary and ideally should use a sport-specific protocol to achieve a peak work capacity and high level of ventilation. EILO typically occurs at the highest levels of ventilation, and testing should therefore involve exercising to complete exhaustion or to intolerable symptoms. Treadmill running, ergometer cycling, rowing, swimming or stair climbing have all been used in a diagnostic setting to reproduce real-life symptoms of EILO. Ideally, the mode and the intensity of the exercise should be tailored to the individual patient, based on triggers identified from their medical history, nicely described in rowers and in swimmers. In a laboratory setting one must standardise and compromise, and at a minimum ensure that the exercise goes on to complete exhaustion or to intolerable symptoms. In most young people treadmill exercise is better than exercising on a bicycle to achieve this aim. The CLE test has been used in clinical practices and multiple research studies and provides recorded images detailing the temporal changes of laryngeal obstruction, as it occurs during ongoing exercise. The CLE test has helped establish the fact that EILO commonly arises from supraglottic (ie, aryepiglottic fold) obstruction, and that in most cases this is followed by a glottic fold adduction (ie, vocal cord), whereas a pure glottic obstruction is less common. The CLE method has been applied in several studies of symptomatic individuals, as well as in symptom-negative controls, but the intertest reliability and validity remain to be established.

Alternative diagnostic approaches for EILO are not effective

The CLE test may not be possible in all healthcare settings, and therefore other methods for detecting EILO have been advanced. Although early literature suggests that resting flow-volume loop analysis might be helpful, approaches aiming to diagnose EILO at rest lack face validity in a condition that, by definition, does not feature airway obstruction at rest. A lack of correlation between resting spirometry and CLE findings has also been confirmed empirically. Exercise tidal flow-volume loops have not been extensively studied, but may prove useful in

Figure 2 Diagnostic evaluation and treatment algorithm for athletes with exertional dyspnoea: when to do the CLE test. CLE, continuous laryngoscopy exercise; CPET, cardiopulmonary exercise test; EIB, exercise-induced bronchoconstriction; EILO, exercise-induced laryngeal obstruction.
terms of demonstrating an attenuated inspiratory flow.66 Bronchial provocation tests (other than EIB tests) have been found to have limited value in EILO diagnostics, both when performed with and without a laryngoscopy in place.64 67 Eucapnic voluntary hyperpnoea (EVH) can induce glottic as well as supraglottic obstruction.66 67 Laryngoscopy performed during an eucapnic hyperpnoea test (EVH) would provide hyperventilation without exercising and could conceivably represent a diagnostic shortcut in the evaluation of EILO. This has been tested with diverging conclusions.31 67 However, physiological breathing responses that naturally evolve during exercise will not appear during EVH. It seems reasonable that symptoms that are experienced while exercising are best addressed by a test that also involves exercise, and the position of EVH in the diagnostic hierarchy for EILO has not been settled.

Thus, if the history and the clinical impression is not clear, a CLE test, a procedure which can be accomplished in collaboration between exercise labs and interested endoscopists, must be performed to definitively diagnose EILO. Moreover, direct visualisation is required to further characterise EILO by glottic and supraglottic subtype, which is important for treatment (figure 2).

Characterising and assessing the severity of EILO

The relative (compared with resting conditions) extent of laryngeal adduction during a CLE test can be quantified by means of scoring systems, of which four have been published: (1) estimation of the laryngeal anterior–posterior diameter or the anterior glottic angle68; (2) a computerised calculation method that counts pixels from still frame images (the EILOMEA method)69; (3) a machine learning approach based on convolutional neural networks that analyses laryngoscopic videos70; and (4) the CLE scoring system.71 72

The CLE scoring system is most widely used and is a subjective semiquantitative evaluation of obstruction with scores ranging from 0 (complete patency) to 3 (almost complete closure) at glottic and supraglottic level at moderate and at maximum intensity (figure 3). Studies addressing its validity have reached variable conclusions,72 73 but despite challenges related to linking symptoms and visualised findings, it remains the most employed scoring system to classify severity.

Defining EILO from threshold CLE scores has proved challenging.72 73 Typically, moderate obstruction defined by a CLE score ≥2 at the glottic or supraglottic level is considered diagnostic.69 72 73 Recent advances in translaryngeal pressure measurements may guide diagnostic and therapeutic decision-making in the future.74 In terms of monitoring the severity of previously-diagnosed EILO over time and in response to interventions in clinics and clinical trials, a patient-reported outcome measure is available.76

TREATMENT STRATEGIES FOR EILO

Currently, there is a lack of well-designed randomised controlled studies on treatment strategies for EILO. Treatment strategies include the following: (1) pharmacological treatment, (2) non-pharmacological treatment (biofeedback,63 speech therapy77 78/ laryngeal control therapy,77 78 inspiration muscle training (IMT)27 79 and (3) surgical treatment (see figure 4). Most treatment strategies are based on anecdotal success and single-centre intervention descriptions that often use non-validated or non-standardised disease strata, interventions and outcome measures. Variable availability of some of the treatment tools may complicate an optimal therapeutic approach to some athletes with challenging EILO.

Pharmacological treatment for EILO

A few pharmacological therapies for EILO have been proposed in the literature. Some authors have proposed the use of medication to minimise effects from contributors to upper airway irritation, including the use of nasal steroids and medications to reduce gastro-oesophageal reflux. Other authors have proposed medication aimed at intervening in neural pathways, including the use of inhaled anticholinergics, oral tricyclic antidepressants, and injections with botulinum toxin.40 To date, no convincing effect has been shown for any pharmacological treatment of EILO.

Non-pharmacological therapies commonly used for EILO

The aim of any non-pharmacological treatment approach to EILO is to provide patients with a strategy on how to develop better control of the larynx during exercise and enable patients to continue exercising without experiencing EILO. Conservative treatment strategies include simple breathing advice, various approaches to speech therapy,77 78 biofeedback,63 IMT27 79 and laryngeal control therapy.88

Breathing advice and biofeedback

Information and breathing advice are based on the notion that patients who are properly informed and practice breathing exercises under skilled supervision, will be placed in a position to control their laryngeal function (online supplemental table 2A). Biofeedback involves respiratory education provided during laryngoscopy, to make the patient conscious of how to open the larynx by watching it happen simultaneously on the screen. The technique involves an element of biofeedback if patients are made aware of the extent to which they succeed in abducting their larynx while performing the breathing exercises. It must be emphasised that any new breathing technique must be repeated until it becomes adapted as a part of an automated pattern, which is a process that requires time, endurance and motivation. Author anecdotes suggest that athletes with EILO both appreciate and may clinically respond to breathing advice.

Inspiratory muscle training

IMT has traditionally focused on strengthening inspiratory respiratory muscles (diaphragm and accessory respiratory muscles) to...
Figure 4 Suggested treatment strategies for athletes with EILO. EIB, exercise-induced bronchoconstriction; EILO, exercise-induced laryngeal obstruction.

increase maximal inspiratory pressure and/or maximal voluntary ventilation. It has been proposed that increased inspiratory strength from IMT may enable patients with EILO to generate enough inspiratory force to overcome their laryngeal airflow obstruction. However, this might be harmful in some subtypes of EILO, as observed in a case report describing a patient whose supraglottic EILO worsened after IMT. Thus, it has been proposed that low inspiratory resistance should be preferred when training with IMT to target laryngeal coordination rather than strengthening inspiratory muscles. Findings from studies utilising IMT to treat EILO report positive effects, especially on glottic adduction.

Speech/laryngeal control therapy

Speech and language therapy generally includes educating the patient about EILO, relaxation training, instruction on paced exercise and techniques to optimise laryngeal function during exercise. Moreover, there are various techniques aiming to regulate inspiratory flow targeting abdominal/diaphragmatic breathing, relaxation of tension in the larynx, and a posture that promotes better breathing techniques. While no placebo-controlled trials have been published, studies reporting on speech and language therapy are promising.

Surgical treatment for EILO

Surgical treatment of EILO has been reported by several research groups. There is general agreement that surgery should be limited to patients with moderate or severe obstruction caused by the supraglottic structures. These individuals should also be highly motivated to improve symptoms that significantly interfere with quality of life and athletic performance.

PREVENTION OF EILO

Currently, there are no evidence-based prevention strategies for EILO. However, in our experience, athletes and young individuals, who have a history of EILO over prolonged periods of time (years), are more difficult to treat successfully than those who seek advice early (months). Athletes with breathing problems should therefore be provided with easy access to skilled professionals and a competent approach to diagnostic work up. Treatment should be guided by the images from a CLE test, as the two major EILO subtypes (glottic and supraglottic obstruction) probably require different treatment approaches. Surgery must not be performed without clear evidence of supraglottic EILO from a CLE test.

PROGNOSIS OF EILO

Despite adequate diagnosis, athletes may have limited access to therapeutic interventions for EILO. Several studies from the general population have highlighted that if EILO is left untreated or undertreated, people tend to alter lifestyle and reduce their level of physical activity. There have not been studies which have quantified performance decrements in elite athletes with untreated EILO.

SUMMARY AND CONCLUSIONS

This review highlights the importance of EILO in athletes, showing that it is common, may mimic lower airway dysfunction (ie, asthma, EIB, AHR) and represent a barrier to peak performance in athletes. EILO has not been adequately researched, and there are many knowledge gaps and questions for the sports medicine community. Most importantly, is to better understand the mechanism(s) central to the disease process. There is also a need to understand the overall impact of the condition in diverse populations.
Review

What is already known?

⇒ Exercise-induced laryngeal obstruction (EILO) is a transient upper airway obstruction that can cause exertional dyspnoea.
⇒ EILO is increasingly recognised as an important cause of exertional breathing problems.
⇒ EILO particularly affects physically active young individuals.

What are the new findings?

⇒ EILO is common in athletes and must be distinguished from other respiratory conditions to avoid inappropriate diagnosis and treatment as lower airway dysfunction (ie, asthma, exercise-induced bronchoconstriction, airway hyper-responsiveness or other conditions).
⇒ The ‘gold standard’ to diagnose and categorise EILO in athletes is by means of continuous laryngoscopy performed during high-intensity exercise.
⇒ Subtypes of EILO in athletes (supraglottic and glottic) are described and may require different therapeutic approaches.
⇒ New algorithms for evaluation and treatment of EILO in athletes are presented, based on expert opinion and best available evidence.
⇒ Randomised controlled trials are urgently needed to provide an evidence-based approach to treatment of EILO.

Supplemental material

This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Hege Havstad Clemm http://orcid.org/0000-0002-0096-4032
J Tod Olin http://orcid.org/0000-0003-0251-7623
James H Hull http://orcid.org/0000-0003-4697-1526
Thomas Halvorsen http://orcid.org/0000-0003-1471-0225

REFERENCES

Review

