Article Text

Download PDFPDF
Diagnostic evaluation and cardiopulmonary exercise test findings in young athletes with persistent symptoms following COVID-19
  1. Nathaniel Moulson1,
  2. Sarah K Gustus2,
  3. Christina Scirica3,
  4. Bradley J Petek2,4,
  5. Caroyln Vanatta2,
  6. Timothy W Churchill2,4,
  7. James Sawalla Guseh2,4,
  8. Aaron Baggish2,4,
  9. Meagan M Wasfy2,4
  1. 1 Cardiology Division, The University of British Columbia, Vancouver, British Columbia, Canada
  2. 2 Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA
  3. 3 Pediatric Pulmonary Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, USA
  4. 4 Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
  1. Correspondence to Dr Meagan M Wasfy, Cardiovascular Performance Program, Massachusetts General Hospital, Boston, MA 02114, USA; mwasfy{at}partners.org

Abstract

Objectives Persistent or late-onset cardiopulmonary symptoms following COVID-19 may occur in athletes despite a benign initial course. We examined the yield of cardiac evaluation, including cardiopulmonary exercise testing (CPET), in athletes with cardiopulmonary symptoms after COVID-19, compared CPETs in these athletes and those without COVID-19 and evaluated longitudinal changes in CPET with improvement in symptoms.

Methods This prospective cohort study evaluated young (18–35 years old) athletes referred for cardiopulmonary symptoms that were present>28 days from COVID-19 diagnosis. CPET findings in post-COVID athletes were compared with a matched reference group of healthy athletes without COVID-19. Post-COVID athletes underwent repeat CPET between 3 and 6 months after initial evaluation.

Results Twenty-one consecutive post-COVID athletes with cardiopulmonary symptoms (21.9±3.9 years old, 43% female) were evaluated 3.0±2.1 months after diagnosis. No athlete had active inflammatory heart disease. CPET reproduced presenting symptoms in 86%. Compared with reference athletes (n=42), there was similar peak VO2 but a higher prevalence of abnormal spirometry (42%) and low breathing reserve (42%). Thirteen athletes (62%) completed longitudinal follow-up (4.8±1.9 months). The majority (69%) had reduction in cardiopulmonary symptoms, accompanied by improvement in peak VO2 and oxygen pulse, and reduction in resting and peak heart rate (all p<0.05).

Conclusion Despite a high burden of cardiopulmonary symptoms after COVID-19, no athlete had active inflammatory heart disease. CPET was clinically useful to reproduce symptoms with either normal testing or identification of abnormal spirometry as a potential therapeutic target. Improvement in post-COVID symptoms was accompanied by improvements in CPET parameters.

  • Covid-19
  • athletes
  • exercise test

Data availability statement

Data are available upon reasonable request.

This article is made freely available for personal use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

https://bmj.com/coronavirus/usage

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Data availability statement

Data are available upon reasonable request.

View Full Text

Footnotes

  • Twitter @NateMoulson_MD, @TimChurchillMD, @meaganwasfy

  • Contributors NM helped design the study, monitored the data collection, cleaned and analysed the data, and drafted and revised the paper. SKG designed the survey tool, monitored the data collection, cleaned and analysed the data and revised the paper. CS analysed the data and revised the paper. BJP generated the figures and revised the paper. CV monitored the data collection, cleaned the data and revised the paper. TWC revised the draft paper. JSG revised the draft figures and the draft paper. AB helped design the study and revised the draft paper. MMW designed the study, monitored the data collection, cleaned and analysed the data, and drafted and revised the figures and paper. MMV is the guarantor of the study.

  • Funding MMW received funding for this study from the Massachusetts General Hospital COVID Junior Investigator Support Grant. NM is supported by the University of British Columbia Clinician Investigator Program.

  • Competing interests None declared.

  • Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.