Under-representation of female athletes in research informing influential concussion consensus and position statements: an evidence review and synthesis

Christopher D'Lauro ,¹ Emily Ruth Jones,^{1,2} Lily MC Swope,^{1,3} Melissa N Anderson,^{4,5,6} Steven Broglio ,⁷ Julianne D Schmidt

ABSTRACT

► Additional supplemental

material is published online

only. To view, please visit the

iournal online (http://dx.doi.

org/10.1136/bjsports-2021-

For numbered affiliations see

Correspondence to

Dr Christopher D'Lauro,

Behavioral Sciences and

Leadership, US Air Force

Accepted 23 May 2022

Published Online First

Academy, Colorado Springs,

christopher.dlauro@afacademy.

Check for updates

© Author(s) (or their

employer(s)) 2022. No

To cite: D'Lauro C,

2022;56:981-987.

Jones ER, Swope LMC, et al. Br J Sports Med

commercial re-use. See rights

and permissions. Published

105045).

end of article.

Colorado, USA;

18 July 2022

af.edu

Objective We aimed to quantify the female athlete composition of the research data informing the most influential consensus and position statements in treating sports-related concussions.

Design We identified the most influential concussion consensus and position statements through citation and documented clinician use; then, we analysed the percentage of male and female athletes from each statement's cited research.

Data sources We searched PubMed on 26 August 2021 with no date restrictions for English language studies using the terms 'concussion position statement' and 'concussion consensus statement.'

Eligibility criteria for selecting studies Based on each statement having multiple statement editions, documented clinician use, and substantial citation advantages, we selected the National Athletic Trainers' Association (NATA, 2014), International Conference on Concussion in Sport (ICCS, 2017) and the American Medical Society for Sports Medicine (AMSSM, 2019). We extracted all cited studies from all three papers for assessment. For each paper analysing human data, at least two authors independently recorded female athlete participant data.

Results A total of 171 distinct studies with human participants were cited by these three consensus and position papers and included in the female athlete analyses (93 NATA; 13 ICCS; 65 AMSSM). All three statements documented a significant under-representation of female athletes in their cited literature, relying on samples that were overall 80.1% male (NATA: 79.9%, ICCS: 87.8 %, AMSSM: 79.4%). Moreover, 40.4% of these studies include no female participants at all.

Conclusion Female athletes are significantly underrepresented in the studies guiding clinical care for sport-related concussion for a broad array of sports and exercise medicine clinicians. We recommend intentional recruitment and funding of gender diverse participants in concussion studies, suggest authorship teams reflect diverse perspectives, and encourage consensus statements note when cited data under-represent nonmale athletes.

INTRODUCTION

Each year, between 1.6 and 3.8 million Americans suffer sports and recreation-related concussions.¹

WHAT IS ALREADY KNOWN ON THIS TOPIC?

⇒ Concussion presentation and recovery among male and female athletes have similarities, but also may differ in pathophysiology or healthrelated behaviours in ways that affect clinical care.

WHAT THIS STUDY ADDS?

- ⇒ Consensus and position statements outlining concussion management are critical to guiding clinical care; however, we show the studies that inform them have vastly under-represented female athletes. The three most influential consensus and position statements with three different writing methodologies each reflected a similar bias in the literature.
- ⇒ The most influential consensus and position papers average only 19.9% female participants in the human subjects research supporting their recommendations. Moreover, 40.4% of the studies cited in the most prominent consensus and position papers include no female participants at all.
- ⇒ Under-representation of female athletes in the data underlying concussion consensus and position papers may result in protocols that are more targeted for male athlete recovery.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

⇒ Future research in sport-related concussion should intentionally recruit and fund gender diverse participants, include diverse authorship teams, and acknowledge when cited data under-represent non-male athletes.

Recreational sports participation is a leading cause of concussion in the USA.² Accordingly, there has been an increased interest and available funding directed toward concussion research. Ongoing advancement through the International Conference on Concussion in Sport (ICCS)^{3–5} and other medical organisations^{6–8} have aimed to more effectively treat athletes through evidence based clinical care among other goals. These consensus and position statement processes form the standard of care used by clinicians treating patients with concussion.

BMJ

by BMJ.

The effort of these iterative consensus and position statements has helped crystallise gaps in our knowledge and set a clear agenda for advancing clinical care for concussion over the years. The ICCS started this trend for concussion consensus publication at the Vienna meeting in 2001, with four more subsequent iterations-most recently Berlin in 2017^{3-5 9 10} and has been cited 1980 times across all editions. The National Athletic Trainer's Association (NATA) followed suit with a position statement in 2004,¹¹ updated in 2014,⁶ which have been cited 256 times. The American Medical Society for Sports Medicine (AMSSM) published its first statement in 2013^7 with an update in 2019,8 which have been cited 281 times. Concussion-related publications have dramatically increased since the introduction of the consensus process, necessitating periodic updating of the consensus and position statements. While the concussion literature is growing, there remains continuing clinical questions about how concussions may differ between male, female, transgender and non-binary athletes.¹² Anecdotally, gender-based clinical considerations of concussion are common, but to date no publication has quantified the gender composition of the clinical concussion literature in these consensus and position statements-or of the concussion literature more broadly. If female athletes are under-represented within the sports-related concussion (SRC) literature-particularly in key documents that inform clinical practices-clinicians would face considerable challenges in effectively treating female concussion patients.

Under-representation of female athletes in concussion research has practical consequences for their healthcare and the trajectory of concussion research. Concussion recovery differences in female athletes may be driven by sex (the biological differences between male and female) or by gender (the socially constructed roles of men and women.¹³ Within medical research, this distinction has only more recently gained broader traction,¹ but considerable evidence shows that female athletes have different responses than male athletes to concussions on both the physiological and the psychosocial level.¹⁵ Women are more likely to receive a concussion than male athletes playing the same sport (eg, male vs female soccer, ice hockey or rugby),^{15–17} possibly resulting from lower cervical strength,¹⁸⁻²⁰ different hormone levels,^{21 22} and/or social factors.²³ Lower cervical strength relative to head mass among female athletes suggests differing head impact biomechanics may influence concussion.²⁴ Hormone levels may even create concussion-specific vulnerability windows,²⁵ while also complicating the clinical assessment²⁶ and implicating biological sex as a factor in concussion vulnerability. Within the sociocultural realm, female athletes have generally shown greater willingness to report concussions or symptoms²⁷⁻²⁹ that could impact nearly every self-report measure in concussion and implicates gender-driven acculturation as a factor in recovery. These factors may also individually or collectively influence injury recovery. Following concussion, female athletes show different-potentially longer-recovery trajectories when compared with men, with women taking roughly 10 more days to recover in some studies, ^{30–34} but others failing to find overall recovery differences at all.³⁵ Finally, female athletes have been shown to suffer abnormal menstrual cycles²² and sexual dysfunction³⁶ after concussions, highlighting just two potential long-term health effects for women that have been identified with a completely different presentation.³⁶ in a male athlete population. In short, the combination of sex-based and gender-based differences in concussion are so pervasive that having an equitable representation of female athlete-focused studies would be essential for informing clinical practices in a way that ensures equitable treatment.

While this female athlete disparity in concussion research is often recognised,^{12 37} it is difficult to quantify because of the breadth of the concussion literature and the rate at which this literature is growing. In order to ascertain the representation of female athlete data, our research team focused on analysing the female athlete composition of the three most cited consensus or position statements from three different organisations based on their influential roles within the SRC research and clinical care landscape: the NATA (2014),⁶ International Consensus Conference on Concussion in Sport (ICCCS) who met in 2016-sometimes called the Concussion in Sport Group (CISG),³ and the AMSSM (2019).⁸ Each of these statements was assembled by a team of international experts and focused solely on the research that met the published inclusion criteria. While each organisation stated slightly different aims, our goal was to repurpose the output of these panels to examine the cited literature for male versus female participant balance. We are unaware of any publication that quantifies the gender imbalance in concussion research.

Our expectation was that historical bias towards male athletes would shape concussion research literature to under-represent female athletes. We specifically hypothesised that (1) a greater proportion of studies would focus predominantly on male participants and (2) the overall proportion of participants comprising the concussion sample population—across many studies—would be predominantly male.

METHODS

Selection of consensus statements

The NATA, ICCS and AMSSM organisations' papers were originally selected as the most influential consensus and position statements within SRC based on historical trends and clinician use.^{38 39} Studies of clinician behaviour have shown that sports medicine staff tend to rely on their organisational position and consensus statement plus the most recent ICCCS paper in tandem to stay current on treating concussions. For example, certified athletic trainers (ATs) rely on the Berlin statement and the NATA statement³⁸ for concussion knowledge, while sports medicine physicians use the most recent AMSSM statement and ICCS statement.³⁹ Further, no other concussion statements have been published with multiple versions by any other organisation (see figure 1).

We aimed to ensure that we did not fail to include any similarly influential SRC consensus and position papers. To do this, we used PubMed to identify the most commonly cited consensus and position statements on concussion, searching 'concussion consensus statement' and 'concussion position statement' to determine viable consensus statements (see figure 1, selection diagram). Searches were restricted to English language publications with no date restrictions. For each assessed consensus paper or position statement, we summed citations across all versions to determine cumulative influence. The NATA, ICCS and AMSSM organisations' papers were confirmed as the most cited consensus and position statements within these search results with greater than 200 citations each. No other organisation's consensus or position statements had published multiple editions or a similar citation count. In short, citation patterns, publication of multiple versions and research on clinician behaviour all indicate that these are the most influential SRC statements.

We restricted our analysis to these three statements. The US Air Force Academy IRB designated this study as not human subjects research.

(n=165)

(n=21)

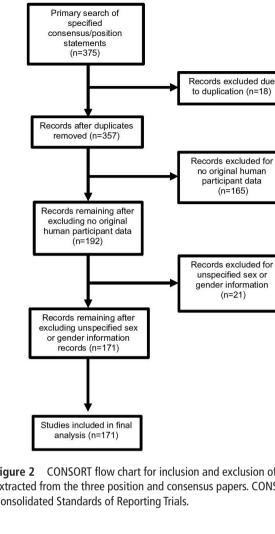


Figure 1 Selection diagram for identifying the influential concussion consensus and position papers. Consensus papers often have intentional copublication to maximise outreach to different communities-for example, to ensure that both neurologists and certified Athletic Trainers are aware of updated concussion guidelines. We summed citations to identical co-publications of consensus statements, but only analysed the most recent iteration of each statement.

Records identified from

"concussion consensus statement"

OR

"concussion position statement"

Records screened (n = 154)

(n =154)

(n = 154)

(n =11)

(n = 3)

Reports sought for retrieval

Reports assessed for eligibility

Intentionally duplicate version of

publications*: (n=19) Original consensus and position

statements included in review

consensus and position papers

Most current iteration of

lden

Scree

Inclu

Databases (n = 1, PubMed)

Records removed before

reasons (n =0)

Records excluded

Reports not retrieved

Reports excluded:

Reason: not a concussion

concussion statement (n =11)

consensus or position

statement (n =116) Reason: first iteration

(n = 0)

(n = 0)

Duplicate records removed

Records removed for other

screening: 163

(n = 9)

Statistical methods for guantifying male and female athlete data

For each statement, we aimed to capture the male and female athlete data comprising the research cited. Any reference that did not analyse human participant data was classified as non-human research (different from the IRB designation) and excluded from statistical analyses-including any review papers. For each study that recorded or implied gender information, we tallied the total number of male and female participants and computed the proportion of male athletes. Due to the wide temporal window of these studies, gender and biological sex were often conflated in older methods sections; our analyses recorded these values as the original investigators reported them. Research occasionally reported participants in all-male leagues (eg, National Football League, NFL) without any gender or sex information; we classified these study's participants as all male. Otherwise, when studies did not clearly state proportions for sex or gender, they were removed from analysis. To classify the sex/gendered composition of each study, we used two primary outcomes measures. First, we categorised the gender distributions reported by each cited study as either all male or all female, then we split the remaining studies with mixed participants into thirds: mostly male (99%–67% male), roughly equal (34%–66% male) or mostly female (67%–99% female). We also used descriptive statistics to show the number of studies that fell in each category both combined and individual by statement. We used Kolmogorov-Smirnov tests, and corresponding skewness values,

Figure 2 CONSORT flow chart for inclusion and exclusion of studies extracted from the three position and consensus papers. CONSORT, Consolidated Standards of Reporting Trials.

to determine whether continuous outcomes of percentage of male participants were normally distributed both combined and individually by statement. We considered values <-1 or >1 to be highly skewed, values between -1 and -0.5 or between 0.5and 1 as moderately skewed, and values >-0.5 or <0.5 to be approximately symmetrical.⁴⁰ Negative values indicated a skew towards male participants. We have included this spreadsheet as a supplement and will make this spreadsheet freely available on publication (see figure 2 for details).

RESULTS

Identification and descriptive information about consensus and position statements.

As each society has published multiple statement versions, we only analysed the most recent iterations here. Each method for producing the selected consensus and positions statements are described below.

National Athletic Trainers Association (2014)

The NATA statement's stated objective is to 'provide ATs, physicians and other healthcare professionals with best-practice guidelines for management of SRCs.' It has been cited 256 times across both editions. The statement notes that ATs are typically the first line of treatment for SRCs in the USA. This statement used SORT to rank the evidence for each study under review.⁴¹ This statement cites 201 references.

International Conference on Concussion in Sport (2017)

The ICCS has evolved since its first consensus agreement into a standardised research integration process of considerable public health importance and has published a description of ⁴² AT the agenda for future research relevant to SRC by identifying knowledge gaps.' Its most recent statement was published in 2017 following the 2016 meeting in Berlin.³ It has been cited 1980 times across all editions. It is sometimes referred to collectively as the CISG. For the Berlin meeting, a core scientific panel was convened alongside an expert panel of international experts. This premeeting process narrowed 45 possible questions to be answered by the Consensus meeting down to 12 questions through a modified Delphi process. As described in the methods publication,⁴² the ICCS then designated lead authors to organise the systematic reviews in each sub-field matched to each author's expertise. Authors searched nearly 60 000 articles, selecting the best for review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Enhancing the QUAlity and Transparency Of health Research guidelines.⁴³ These systematic reviews were then presented at the public meeting for expert comments and used to inform the consensus statement. This statement cites 46 references.

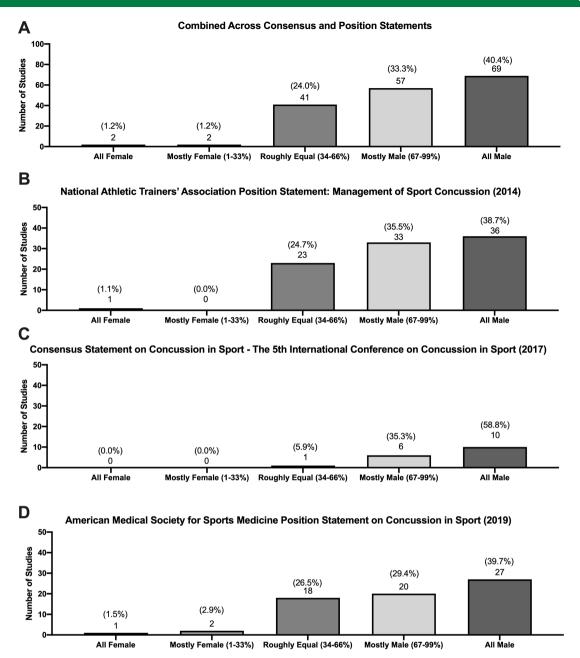
American Medical Society for Sports Medicine (2019)

The AMSSM review is stated 'to provide a narrative review of the existing literature and best practices to assist healthcare providers with the evaluation and management of SRC, and to establish the level of evidence, current knowledge gaps and areas requiring additional research.' It has been cited 281 times across both editions. The Board of Directors for this group nominated the chair and lead author, who then chose the writing group to represent diverse knowledge sets, including sideline and officebased care. This group of 13 authors collaborated across several conference calls and group communications before meeting in 2018 to collaboratively write the statement. Studies were judged by the SORT strength of evidence mechanism.⁴¹ This statement cites 128 references.

Analysis of athlete data

Across all three consensus and position statements, a total of 375 cited publications were reviewed. Our initial screening removed citations with (1) no human participants (2) no indication of gender or sex if there were human participants and (3) duplicate references. This filtering step removed 204 citations, leaving 171 for combined analyses of female and male athlete data (figure 2 and online supplemental figure 1). Duplicate citations were included for individual analyses of each position statement, but included only once when all three documents were evaluated together. Individual analyses included 93 from the NATA, 17 from the ICCS and 68 from the AMSSM. Eighteen (18) papers were cited in two of the consensus documents, while none were cited in all three.

Studies cited by the three consensus/position statements analysed relied on samples that were overall 80.1% male (NATA: 79.9%, AMSSM: 79.4%, ICCS: 87.8%). These were all significantly skewed towards male participants both overall (p<0.001) and for each individual statement (p<0.001 for all), with moderate skewness of -0.911 overall (NATA: -0.866, moderately skewed; AMSSM: -0.950, moderately skewed; ICCS: -1.257, highly skewed). Of the 171 studies analysed across the three statements, 69 (40.3%) had all-male samples, but only two (2, 1.2%) had all-female samples (figures 3 and 4).


DISCUSSION

We found that female athletes are significantly under-represented in the highest impact concussion documents that outline clinical care, as represented by three expert-curated position and consensus statements on concussion from the NATA, ICCS and AMSSM. Clinicians rely on these documents to guide their medical practice, but they may be based on scientific evidence that is not sufficiently representative of female athletes. This disparity may lead to inequitable treatment of female athletes who suffer concussions.

Our results show a profound under-representation of female participants in the concussion consensus literature, matching the imbalances others have documented in the broader sport and exercise medicine literature.⁴⁴ Samples within studies published in three prominent sport and exercise medicine journals we analysed were just 19.9% female. Each statement mentioned female athletes only briefly, typically when describing sex as a modifying factor for return-to-play time.³⁶⁸ It may be expected to have some imbalance in gender representation in concussion research, but the drastic differences are likely due to multiple nested factors. First, current concussion research originated from the 'sport as a laboratory' model, whereby researchers use sport as a controlled environment to conduct studies. With the scarcity of research dollars and resources in early concussion funding, researchers had to use their resources in environments where concussion incidence is high and rosters are large. For example, a football roster with 105 participants could be expected to produce 5.63 concussions per season, while a women's volleyball team with a standard roster of 12 would produce only 0.46, meaning researchers would need to follow roughly 12 women's teams for the same amount of data as one football team despite similar roughly risk. With football being the largest single source of concussions, early sport concussion research in the late 1990s began with college and professional football^{45–49} before expanding to other sports.⁵⁰ Large roster, high incidence sports-primarily collision sports-are therefore the most efficient study model.

Historically, women's opportunity to play sports was limited in the US until Title IX was enacted, and once in place athletics programmes gradually increased participation to equal numbers.⁵¹ Even so, contact/collision sports continue to be largely male-oriented, potentially reducing the perceived need for female-based research. The historical trend in inequity has similarly reduced opportunity for female-focused retrospective research. Several large studies of postconcussion mental health in retired NFL, NCAA and other male professional athletes^{46 52-55} have no parallel female cohort. As one example, Mayo Clinic researchers were able to assess hundreds of former high school football players for neurological testing after identifying them through decades of Rochester, Minnesota high school yearbooks³⁶ while simultaneously noting, 'female sports programmes were not consistently offered' during this time.

Similarly, disproportionate male participation in, and support for, athletics ensures that many sponsor organisations supporting concussion research are male-dominated or all male—such as International Federation of Association Football, the International Ice Hockey Federation and the NFL. The NCAA-US Department of Defense Grand Alliance is one of the few relatively gender-balanced efforts to support clinical concussion research by funding the CARE Consortium.^{57 58} Recent efforts by the CARE Consortium make significant strides towards correcting this imbalance⁵⁸ with females representing roughly 50% of the NCAA athlete sample. Epidemiological databanks,

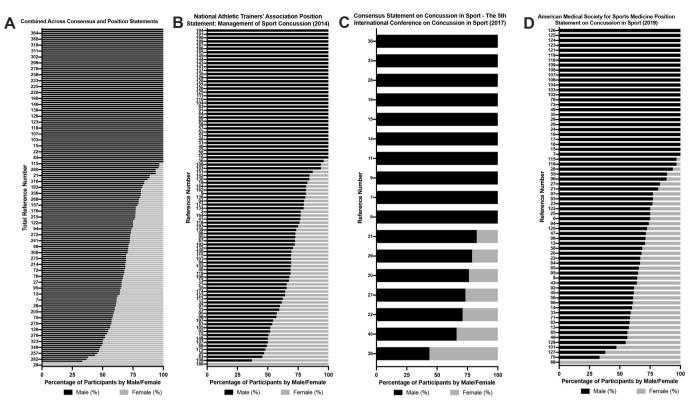


Figure 3 Studies included in the three statements as binned into different male and female athlete compositions. Each column indicates the number of cited studies in that group as well as the percentage it represents (in parentheses).

such as the NCAA Injury Surveillance program⁵¹ and the high school RIO database,^{59 60} have also made substantial strides towards equal representation by sex. Consensus and position statements rely on the evidence available at the time, which naturally lags behind some of these efforts. Still, financial support and logistical assistance for concussion research originating from heavily male sports organisations may continue to influence the concussion research gender composition. As new areas of concussion research emerge, we must consider targeted efforts towards preventing these imbalances in new subfields.

Other systemic influences outside sport may also encourage more focus on men in concussion research to the detriment of women's concussion care. Across the sciences, there is a preponderance of male faculty,⁶¹ especially in research roles,^{62 63} which may bias the selection of male athletes included in research as it has in other domains.^{64 65} Both the Centers for Disease Control and Prevention and the National Institutes of Health (NIH) have instituted guidelines for inclusion of women and female sex model organisms in animal research to ameliorate past inequities.^{66 67} Research samples that contain insufficient diversity to inform care for diverse populations⁶⁸may lead to poorer care for undersampled populations (eg, African-American children and asthma).⁶⁹ Along these lines, men and women clinically differ in adverse drug responses,⁷⁰ substance abuse,⁷¹ and even susceptibility to multiple sclerosis^{72 73}—the last of these raising the possibility that long-term effects of concussions on white matter may also differ between male, female, transgender or non-binary athletes.⁷⁴ Given the considerable known differences in concussions between male and female athletes, only more consistent inclusion of women in ongoing research will create the commensurate evidence base for equitable clinical care.

Funding agencies, researchers, clinicians and other stakeholders should collectively extend efforts toward supporting

Figure 4 Percentage of male and female participants across individual studies cited across all statements (A) and in the three organisational statements (B–D). Each statement was ranked by percentage of female/male athletes for facilitated visual comparison, starting with 0% female athlete studies at the top. Each column represents one study referred to by that consensus statement's reference number on the left axis (eg, reference #191 in NATA 2014). Reference numbers for each study in the combined graph are available in online supplemental file 2. NATA, National Athletic Trainers' Association.

female athletes in concussion research. We have identified several strategies:

- 1. Balancing the representation of female, male, transgender and non-binary authors on consensus and position statement voting and authorship teams—as well as within editorial boards and research programme management.
- 2. Female athlete-focused sections of consensus and position statements should be included until the literature is robust enough for a standalone document for this population.
- 3. Consensus and position statements should acknowledge when predominantly male athlete samples inform recommendations.
- 4. Include a checkpoint within consensus/position statement processes for ensuring that cited research is as balanced as possible (similar toNIH's 'Inclusion of Women and Minorities' requirements).
- 5. Create research funding opportunities that focus solely on women or non-binary and transgender athletes or, at a minimum, include a better balance between male and female athlete data.

Limitations

A sample of the concussion literature based on the consensus statements may capture the most clinically relevant literature but also incurs certain limitations. First, this analysis spans a wide temporal window—including a time period where biological sex and gender were persistently conflated; our analysis must accommodate this inconsistency between self-reported gender and biologically determined sex but crucial differences could be missed with this oversight. Second, these statements, by definition, lag behind the most current work and could misrepresent the current state of research. Third, research outside of the consensus-cited literature could show systemically less (or more) inclusion of female athletes into the concussion literature which would not be reflected in our study. In addition, while these statements all include recommendations for paediatric populations, they are not specifically aimed at that population and a paediatric-specific study on male-female athlete bias may find significant differences from the current document. Finally, this analysis includes an assessment of female athlete inclusion in the general concussion literature, but does not perform this task with paediatric or geriatric populations, general traumatic brain injury, non-binary athletes, athletes with disabilities, athletes of colour, lower socioeconomic status (SES) athletes, athletes outside of Western industrialised nations, native and First Nations athletes, or any other number of different athlete demographics. Further work should seek to create greater inclusion among all demographic dimensions within the concussion literature to assure just distribution of the benefits of research. The current method of this paper-analysing the data from systematic expert-authored reviews-may be an efficient way to assess broader scientific trends as the drastic increase in the research literature makes repeated systematic reviews less feasible.

CONCLUSION

Researchers and funding agencies should acknowledge that passive approaches to concussion research recruitment will result in continued under-representation of female athletes. Instead, concerted inclusion efforts must be made to sample athlete populations in a way that allows an equitable representation of diverse athletes in concussion research. Better female and non-binary athlete-focused concussion research data will narrow the knowledge gap between male and female athletes and ultimately allow better data-driven care for all athletes.

Author affiliations

¹Behavioral Science and Leadership, US Air Force Academy, Colorado Springs, Colorado, USA

²Department of Health Science, Athletic Training Program, The University of Alabama System, Tuscaloosa, Alabama, USA ³F. Edward Hebert School of Medicine, Uniformed Services University of the Health

³F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA

⁴Department of Kinesiology, University of Delaware College of Arts and Sciences, Newark, Delaware, USA

⁵UGA Concussion Research Laboratory, 330 River Road, University of Georgia, Athens, Georgia, USA

⁶Department of Kinesiology, University of Georgia, Athens, Georgia, USA

⁷Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA

Twitter Christopher D'Lauro @CogNerd and Julianne D Schmidt @ugaconcussion

Acknowledgements The authors would like to thank Rachel Kinh Le and Joel Robb for editing and formatting assistance. We would also like to thank three anonymous reviewers. CD'L, JDS and ERJ have previously received grant funding from the US Department of Defense and the National Collegiate Athletic Association through the Mind Matters Challenge Award. JDS and CD'L have also received current or pending funding from the US Department of Defense. SPB has current or past research funding from the National Institutes of Health; Centers for Disease Control and Prevention: Department of Defense - USA Medical Research Acquisition Activity. National Collegiate Athletic Association; National Athletic Trainers' Association Foundation; National Football League/Under Armour/GE; Simbex; and ElmindA. He is co-author of Biomechanics of Injury (3rd edition, Human Kinetics) and he has consulted for US Soccer (paid), US Cycling (unpaid), medico-legal litigation, and received speaker honorarium and travel reimbursements for talks given. He is coauthor of 'Biomechanics of Injury (3rd edition)' and has a patent pending on 'Brain Metabolism Monitoring Through CCO Measurements Using All-Fiber-Integrated Super-Continuum Source' (US Application No. 17/164,490). This work does not necessarily represent the views of the US Air Force Academy, US Air Force, or the US Department of Defense. All data were made publicly available upon publication through Open Science Foundation.

Contributors All authors have made substantial contributions to either conception and design or analysis and interpretation of data, drafting or revision of the article, and have seen and given final approval of the submission.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests CD'L, JDS and ERJ have previously received grant funding from the US Department of Defense and the National Collegiate Athletic Association through the Mind Matters Challenge Award. JDS and CD'L have also received current or pending funding from the US Department of Defense. SB has current or past research funding from the National Institutes of Health; Centers for Disease Control and Prevention; Department of Defense-USA Medical Research Acquisition Activity, National Collegiate Athletic Association; National Athletic Trainers' Association Foundation; National Football League/Under Armour/GE; Simbex; and ElmindA. He is coauthor of Biomechanics of Injury (3rd edition, Human Kinetics) and he has consulted for US Soccer (paid), US Cycling (unpaid), medicolegal litigation and received speaker honorarium and travel reimbursements for talks given. He is coauthor of 'Biomechanics of Injury (third edition)' and has a patent pending on 'Brain Metabolism Monitoring Through CCO Measurements Using All-Fiber-Integrated Super-Continuum Source' (US Application No. 17/164.490). This work does not necessarily represent the views of the US Air Force Academy, US Air Force or the US Department of Defense.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

ORCID iDs

Christopher D'Lauro http://orcid.org/0000-0003-0894-6602 Steven Broglio http://orcid.org/0000-0002-2282-9325 Julianne D Schmidt http://orcid.org/0000-0002-9363-1391

REFERENCES

- Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 2006;21:375–8.
- 2 Laker SR. Epidemiology of concussion and mild traumatic brain injury. *PM&R* 2011;3:S354–8.
- 3 McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 5th International Conference on concussion in sport held in Berlin, October 2016. Br J Sports Med 2017;51:838–47.
- 4 McCrory P, Meeuwisse WH, Aubry M, et al. Consensus statement on concussion in sport: the 4th International Conference on concussion in sport, Zurich, November 2012. J Athl Train 2013;48:554–75.
- 5 Aubry M, Cantu R, Dvorak J. Summary and agreement statement of the first International Conference on concussion in sport, Vienna 2001;5.
- 6 Broglio SP, Cantu RC, Gioia GA, et al. National Athletic Trainers' Association Position Statement: Management of Sport Concussion. J Athl Train 2014;49:245–65.
- 7 Harmon KG, Drezner JA, Gammons M, et al. American medical Society for sports medicine position statement: concussion in sport. Br J Sports Med 2013;47:15–26.
- 8 Harmon KG, Clugston JR, Dec K, et al. American medical Society for sports medicine position statement on concussion in sport. Clin J Sport Med 2019;29:87–100.
- McCrory P. Summary and agreement statement of the 2nd International Conference on concussion in sport, Prague 2004. Br J Sports Med 2005;39:i78–86.
- 10 McCrory P, Meeuwisse W, Johnston K, et al. Consensus statement on concussion in sport 3rd International Conference on concussion in sport held in Zurich, November 2008. Clin J Sport Med 2009;19:185–200.
- 11 Guskiewicz KM. Research based recommendations on management of sport related concussion: summary of the National Athletic Trainers' Association position statement. *Br J Sports Med* 2006;40:6–10.
- 12 Koerte IK, Schultz V, Sydnor VJ, *et al.* Sex-related differences in the effects of sportsrelated concussion: a review. *J Neuroimaging* 2020;30:387–409.
- 13 Courtenay WH. Constructions of masculinity and their inuence on men's well-being: a theory of gender and health. *Soc Sci* 2000;17.
- 14 Nowatzki N, Grant KR. Sex is not enough: the need for gender-based analysis in health research. *Health Care Women Int* 2011;32:263–77.
- 15 Covassin T, Swanik CB, Sachs ML. Epidemiological considerations of concussions among intercollegiate athletes. *Appl Neuropsychol* 2003;10:12–22.
- 16 Zuckerman SL, Solomon GS, Forbes JA, et al. Response to acute concussive injury in soccer players: is gender a modifying factor? J Neurosurg Pediatr 2012;10:504–10.
- 17 Covassin T, Elbin RJ. The female athlete: the role of gender in the assessment and management of sport-related concussion. *Clin Sports Med* 2011;30:125–31.
- 18 Collins CL, Fletcher EN, Fields SK, et al. Neck strength: a protective factor reducing risk for concussion in high school sports. J Prim Prev 2014;35:309–19.
- 19 Tierney RT, Sitler MR, Swanik CB, et al. Gender differences in head-neck segment dynamic stabilization during head acceleration. *Med Sci Sports Exerc* 2005;37:272–9.
- 20 Vasavada AN, Danaraj J, Siegmund GP. Head and neck anthropometry, vertebral geometry and neck strength in height-matched men and women. *J Biomech* 2008;41:114–21.
- 21 Mihalik JP, Ondrak KS, Guskiewicz KM, *et al*. The effects of menstrual cycle phase on clinical measures of concussion in healthy college-aged females. *J Sci Med Sport* 2009;12:383–7.
- 22 Snook ML, Henry LC, Sanfilippo JS, *et al*. Association of concussion with abnormal menstrual patterns in adolescent and young women. *JAMA Pediatr* 2017;171:879.
- 23 Kerr ZY, Register-Mihalik JK, Marshall SW, et al. Disclosure and non-disclosure of concussion and concussion symptoms in athletes: review and application of the socioecological framework. Brain Inj 2014;28:1009–21.
- 24 Wilcox BJ, Beckwith JG, Greenwald RM, *et al*. Head impact exposure in male and female collegiate ice hockey players. *J Biomech* 2014;47:109–14.
- 25 La Fountaine MF, Hill-Lombardi V, Hohn AN, et al. Preliminary evidence for a window of increased vulnerability to sustain a concussion in females: a brief report. Front Neurol 2019;10:691.
- 26 Resch JE, Rach A, Walton S, et al. Sport concussion and the female athlete. Clin Sports Med 2017;36:717–39.
- 27 Wallace J, Covassin T, Beidler E. Sex Differences in High School Athletes' Knowledge of Sport-Related Concussion Symptoms and Reporting Behaviors. J Athl Train 2017;52:682–8.
- 28 Brown DA, Elsass JA, Miller AJ, et al. Differences in symptom reporting between males and females at baseline and after a sports-related concussion: a systematic review and meta-analysis. Sports Med 2015;45:1027–40.
- 29 Combs PR, Ford CB, Campbell KR, *et al*. Influence of self-reported fatigue and sex on baseline concussion assessment scores. *Orthop J Sports Med* 2019;7:232596711881751.
- 30 Colvin AC, Mullen J, Lovell MR, *et al*. The role of concussion history and gender in recovery from soccer-related concussion. *Am J Sports Med* 2009;37:1699–704.

Review

- 31 D'Lauro C, Johnson BR, McGinty G, et al. Reconsidering return-to-play times: a broader perspective on concussion recovery. Orthop J Sports Med 2018;6:232596711876085.
- 32 Scopaz KA, Hatzenbuehler JR. Risk modifiers for concussion and prolonged recovery. *Sports Health* 2013;5:537–41.
- 33 Broshek DK, Kaushik T, Freeman JR, et al. Sex differences in outcome following sportsrelated concussion. J Neurosurg 2005;102:856–63.
- 34 Desai N, Wiebe DJ, Corwin DJ, et al. Factors affecting recovery trajectories in pediatric female concussion. Clin J Sport Med 2019;29:361–7.
- 35 Master CL, Katz BP, Arbogast KB, et al. Differences in sport-related concussion for female and male athletes in comparable collegiate sports: a study from the NCAA-DoD concussion assessment, research and education (care) Consortium. Br J Sports Med 2021;55:1387–94.
- 36 Anto-Ocrah M, Bazarian J, Lewis V, et al. Risk of female sexual dysfunction following concussion in women of reproductive age. Brain Inj 2019;33:1449–59.
- 37 Mollayeva T, El-Khechen-Richandi G, Colantonio A. Sex & gender considerations in concussion research. *Concussion* 2018;3:CNC51.
- 38 Lempke LB, Schmidt JD, Lynall RC. Athletic trainers' concussion-assessment and concussion-management practices: an update. J Athl Train 2020;55:17–26.
- 39 Stache S, Howell D, Meehan WP. Concussion management practice patterns among sports medicine physicians. *Clin J Sport Med* 2016;26:381–5.
- 40 Bulmer, MIchael George. Principles of statistics. 2nd edn. Dover Publications, 1979.
- 41 Ebell MH, Siwek J, Weiss BD, et al. Strength of recommendation taxonomy (SORT): a patient-centered approach to grading evidence in the medical literature. J Am Board Fam Med 2004;17:59–67.
- 42 Meeuwisse WH, Schneider KJ, Dvorak J, et al. The Berlin 2016 process: a summary of methodology for the 5th international consensus conference on concussion in sport. Br J Sports Med 2017;51:873–6.
- 43 Altman DG, Simera I, Hoey J, et al. EQUATOR: reporting guidelines for health research. Lancet 2008;371:1149–50.
- 44 Costello JT, Bieuzen F, Bleakley CM. Where are all the female participants in sports and exercise medicine research? *Eur J Sport Sci* 2014;14:847–51.
- 45 Guskiewicz KM, Mihalik JP, Shankar V, *et al*. Measurement of head impacts in collegiate football players. *Neurosurgery* 2007;61:1244–53.
- 46 Guskiewicz KM, Marshall SW, Bailes J, *et al.* Recurrent concussion and risk of depression in retired professional football players. *Med Sci Sports Exerc* 2007;39:903–9.
- 47 McCrea M, Hammeke T, Olsen G, et al. Unreported concussion in high school football players: implications for prevention. *Clin J Sport Med* 2004;14:13–17.
- 48 Pellman EJ, Lovell MR, Viano DC, et al. Concussion in professional football: recovery of NFL and high school athletes assessed by computerized neuropsychological testingpart 12. *Neurosurgery* 2006;58:263–74.
- 49 Pellman EJ, Viano DC, Casson IR, et al. Concussion in professional football: players returning to the same Game—Part 7. Neurosurgery 2005;56:79–92.
- 50 Guskiewicz KM, Marshall SW, Broglio SP, et al. No evidence of impaired neurocognitive performance in collegiate soccer players. Am J Sports Med 2002;30:157–62.
- 51 Dick R, Agel J, Marshall SW. National collegiate athletic association injury surveillance system commentaries: introduction and methods. J Athl Train 2007;42:173–82.
- 52 Caron JG, Bloom GA, Johnston KM, et al. Effects of multiple concussions on retired national hockey League players. J Sport Exerc Psychol 2013;35:168–79.
- 53 Karantzoulis S, Randolph C. Modern chronic traumatic encephalopathy in retired athletes: what is the evidence? *Neuropsychol Rev* 2013;23:350–60.

- 54 McCrory P, Meeuwisse WH, Kutcher JS, et al. What is the evidence for chronic concussion-related changes in retired athletes: behavioural, pathological and clinical outcomes? *Br J Sports Med* 2013;47:327–30.
- 55 Mackay DF, Russell ER, Stewart K, et al. Neurodegenerative disease mortality among former professional soccer players. N Engl J Med 2019;381:1801–8.
- 56 Janssen PHH, Mandrekar J, Mielke MM, et al. High school football and late-life risk of neurodegenerative syndromes, 1956-1970. Mayo Clin Proc 2017;92:66–71.
- 57 Zuckerman SL, Kerr ZY, Yengo-Kahn A, et al. Epidemiology of sports-related concussion in NCAA athletes from 2009-2010 to 2013-2014: incidence, recurrence, and mechanisms. Am J Sports Med 2015;43:2654–62.
- 58 Broglio SP, McCrea M, McAllister T, et al. A national study on the effects of concussion in collegiate athletes and US military service academy members: the NCAA-DoD concussion assessment, research and education (CARE) consortium structure and methods. Sports Med 2017;47:1437–51.
- 59 Frommer LJ, Gurka KK, Cross KM, et al. Sex differences in concussion symptoms of high school athletes. J Athl Train 2011;46:76–84.
- 60 Bryan MA, Rowhani-Rahbar A, Comstock RD. On behalf of the Seattle sports concussion research collaborative. Sports- and recreation-related concussions in US youth. *Pediatrics* 2016;138:e20154635.
- 61 Huang J, Gates AJ, Sinatra R, *et al*. Historical comparison of gender inequality in scientific careers across countries and disciplines. *Proc Natl Acad Sci U S A* 2020;117:4609–16.
- 62 Hechtman LA, Moore NP, Schulkey CE, et al. NIH funding longevity by gender. Proc Natl Acad Sci U S A 2018;115:7943–8.
- 63 YJ X. Gender disparity in stem disciplines: a study of faculty attrition and turnover intentions. *Res High Educ* 2008;49:607–24.
- 64 Moss-Racusin CA, Dovidio JF, Brescoll VL, et al. Science faculty's subtle gender biases favor male students. Proc Natl Acad Sci U S A 2012;109:16474–9.
- 65 Sheltzer JM, Smith JC. Elite male faculty in the life sciences employ fewer women. *Proc Natl Acad Sci U S A* 2014;111:10107–12.
- 66 Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. *Neurosci Biobehav Rev* 2011;35:565–72.
- 67 Clayton JA. Applying the new SABV (sex as a biological variable) policy to research and clinical care. *Physiol Behav* 2018;187:2–5.
- 68 Cassell EJ. The principles of the Belmont report revisited. How have respect for persons, beneficence, and justice been applied to clinical medicine? *Hastings Cent Rep* 2000;30:12.
- 69 Wechsler ME, Szefler SJ, Ortega VE, et al. Step-up therapy in black children and adults with poorly controlled asthma. N Engl J Med 2019;381:1227–39.
- 70 Mogil JS, Chanda ML. The case for the inclusion of female subjects in basic science studies of pain. *Pain* 2005;117:1–5.
- 71 Franconi F, Brunelleschi S, Steardo L, *et al*. Gender differences in drug responses. *Pharmacol Res* 2007;55:81–95.
- 72 Golden LC, Voskuhl R. The importance of studying sex differences in disease: the example of multiple sclerosis: sex differences in multiple sclerosis. *J Neurosci Res* 2017;95:633–43.
- 73 Wisdom AJ, Cao Y, Itoh N. Estrogen receptor-β ligand treatment after disease onset is neuroprotective in the multiple sclerosis model: ERβ ligand is neuroprotective in EAE. J Neurosci Res 2013;91:901–8.
- 74 Bachmann GA, Mussman B. The aging population: imperative to uncouple sex and gender to establish "gender equal" health care. *Maturitas* 2015;80:421–5.

Alphabetical (within Statement) Female Athlete Papers Table

		Percentage	Reference	Combined
		Male	Number	Reference
Citation	<u>Statement</u>	Participants		<u>Number</u>
Asken, B. M., Bauer, R. M., Guskiewicz, K. M., McCrea, M. A., Schmidt, J. D., Giza, C. C., et				
al. (2018). Immediate Removal From Activity After Sport-Related Concussion Is Associated				
With Shorter Clinical Recovery and Less Severe Symptoms in Collegiate Student-Athletes.				
The American Journal of Sports Medicine, 46(6), 363546518757984–1474.				
http://doi.org/10.1177/0363546518757984	AMSSM	61.71%	92	92
Asken, B. M., McCrea, M. A., Clugston, J. R., Snyder, A. R., Houck, Z. M., & Bauer, R. M.				
(2016). "Playing Through It": Delayed Reporting and Removal From Athletic Activity After				
Concussion Predicts Prolonged Recovery. Journal of Athletic Training, 51(4), 329–335.				
http://doi.org/10.4085/1062-6050-51.5.02	AMSSM	77.32%	93	93
Barr, W. B., & McCrea, M. (2001). Sensitivity and specificity of standardized neurocognitive				
testing immediately following sports concussion. Journal of the International				
Neuropsychological Society, 7(6), 693-702. http://doi.org/10.1017/s1355617701766052	AMSSM	100.00%	15	15
Barr, W. B., Prichep, L. S., Chabot, R., Powell, M. R., & McCrea, M. (2012). Measuring brain				
electrical activity to track recovery from sport-related concussion. Brain Injury : [BI], 26(1),				
58-66. http://doi.org/10.3109/02699052.2011.608216	AMSSM	100.00%	16	16
Black AM, Macpherson AK, Hagel BE, et al. Policy change eliminating body checking in non-				
elite ice hockey leads to a threefold reduction in injury and concussion risk in 11- and 12-				
year-old players. British Journal of Sports Medicine. 2016;50(1):55-61. doi:10.1136/bjsports-				
2015-095103.	AMSSM	96.73%	115	115
Bretzin, A. C., Covassin, T., Fox, M. E., Petit, K. M., Savage, J. L., Walker, L. F., & Gould, D.				
(2018). Sex Differences in the Clinical Incidence of Concussions, Missed School Days, and				
Time Loss in High School Student-Athletes: Part 1. The American Journal of Sports				
Medicine, 46(9), 2263-2269. http://doi.org/10.1177/0363546518778251	AMSSM	60.09%	14	14
Broglio SP, Lapointe A, O'Connor KL, et al. Head impact density: a model to explain the				
elusive concussion threshold. J Neurotrauma.				
2017;34:2675–2683.	AMSSM	100.00%	49	49
Broglio SP, Sosnoff JJ, Ferrara MS. The relationship of athlete-reported concussion				
symptoms and objective measures of neurocognitive function and postural control. Clin J				
Sport Med. 2009;19(5):377-382. doi:10.1097/JSM.0b013e3181b625fe.	AMSSM	75.00%	122	122
Broglio, S. P., Katz, B. P., Zhao, S., McCrea, M., McAllister, T., CARE Consortium	7	. 0.0070		
Investigators. (2018). Test-Retest Reliability and Interpretation of Common Concussion				
Assessment Tools: Findings from the NCAA-DoD CARE Consortium. Sports Medicine,				
48(5), 1255–1268. http://doi.org/10.1007/s40279-017-0813-0	AMSSM	58.92%	33	33
Brooks, M. A., Peterson, K., Biese, K., Sanfilippo, J., Heiderscheit, B. C., & Bell, D. R.	7	00.0270		
(2016). Concussion Increases Odds of Sustaining a Lower Extremity Musculoskeletal Injury				
After Return to Play Among Collegiate Athletes. The American Journal of Sports Medicine,				
44(3), 742–747. http://doi.org/10.1177/0363546515622387	AMSSM	77.33%	97	97
Chin, E. Y., Nelson, L. D., Barr, W. B., McCrory, P., & McCrea, M. A. (2016). Reliability and	/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u>,</u>
Validity of the Sport Concussion Assessment Tool-3 (SCAT3) in High School and Collegiate				
Athletes. The American Journal of Sports Medicine, 44(9), 2276–2285.				
http://doi.org/10.1177/0363546516648141	AMSSM	76.91%	23	23
		10.3170	20	20

Clausen M, Pendergast DR, Willer B, et al. Cerebral blood flow during treadmill exercise is a				
marker of physiological postconcussion syndrome in female athletes. J Head Trauma Rehabil. 2016;31:215–224	AMSSM	0.00%	68	68
Deshpande, S. K., Hasegawa, R. B., Rabinowitz, A. R., Whyte, J., Roan, C. L., Tabatabaei,				
A., et al. (2017). Association of Playing High School Football With Cognition and Mental				
Health Later in Life. JAMA Neurology, 74(8), 909–918.		100.000/	104	104
http://doi.org/10.1001/jamaneurol.2017.1317 Dhawan, P. S., Leong, D., Tapsell, L., Starling, A. J., Galetta, S. L., Balcer, L. J., et al.	AMSSM	100.00%	104	104
(2017). King-Devick Test identifies real-time concussion and asymptomatic concussion in				
youth athletes. Neurology. Clinical Practice, 7(6), 464–473.				
http://doi.org/10.1212/CPJ.00000000000381	AMSSM	100.00%	29	29
Dompier, T. P., Kerr, Z. Y., Marshall, S. W., Hainline, B., Snook, E. M., Hayden, R., & Simon,				
J. E. (2015). Incidence of Concussion During Practice and Games in Youth, High School,				
and Collegiate American Football Players. JAMA Pediatrics, 169(7), 659–665.				
http://doi.org/10.1001/jamapediatrics.2015.0210	AMSSM	75.00%	25	25
Echlin PS, Tator CH, Cusimano MD, et al. A prospective study of physician-observed concussions during junior ice hockey: implications for incidence rates. Neurosurg Focus.				
2010;29(5):E4. doi:10.3171/2010.9.FOCUS10186.	AMSSM	100.00%	121	121
Eckner JT, Chandran S, Richardson JK. Investigating the role of feedback and motivation in	71000101	100:00 /0	121	121
clinical reaction time assessment. PM R. 2011;3(12):1092-1097.				
doi:10.1016/j.pmrj.2011.04.022.	AMSSM	54.84%	128	128
Eckner, J. T., Kutcher, J. S., Broglio, S. P., & Richardson, J. K. (2013). Effect of sport-related				
concussion on clinically measured simple reaction time. British Journal of Sports Medicine,				
48(2), 112–118. http://doi.org/10.1136/bjsports-2012-091579	AMSSM	71.43%	47	47
Eddy R, Goetschius J, Hertel J, Resch J. Test-Retest Reliability and the Effects of Exercise				
on the King-Devick Test. Clin J Sport Med. 2020;30(3):239-244. doi:10.1097/JSM.00000000000586.	AMSSM	38.10%	127	127
Elbin, R. J., Sufrinko, A., Schatz, P., French, J., Henry, L., Burkhart, S., et al. (2016).	AIVISSIVI	30.10%	127	127
Removal From Play After Concussion and Recovery Time. Pediatrics, 138(3).				
http://doi.org/10.1542/peds.2016-0910	AMSSM	73.91%	94	94
Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus				
and improves memory. Proc Natl Acad Sci USA. 2011;108(7):3017-3022.				
doi:10.1073/pnas.1015950108.	AMSSM	33.33%	70	70
Fuller GW, Cross MJ, Stokes KA, et al. King-Devick concussion test performs poorly as a				
screening tool in elite rugby union players: a prospective cohort study of two screening tests				
versus a clinical reference standard. Br J Sports Med. 2018. doi:10.1136/bjsports-2017-098560.	AMSSM	100.00%	125	125
Galetta, K. M., Brandes, L. E., Maki, K., Dziemianowicz, M. S., Laudano, E., Allen, M., et al.	AIVISSIVI	100.00%	120	125
(2011). The King-Devick test and sports-related concussion: study of a rapid visual				
screening tool in a collegiate cohort. Journal of the Neurological Sciences, 309(1-2), 34–39.				
http://doi.org/10.1016/j.jns.2011.07.039	AMSSM	83.11%	27	27
Galetta, K. M., Morganroth, J., Moehringer, N., Mueller, B., Hasanaj, L., Webb, N., et al.				
(2015). Adding Vision to Concussion Testing: A Prospective Study of Sideline Testing in	AMSSM	81.63%	21	21

Versile and Oallanista Athlatera Jamma La (Name Oalbhalera Jammo 05/0) 005 044				
Youth and Collegiate Athletes. Journal of Neuro-Ophthalmology:35(3), 235–241.				
http://doi.org/10.1097/WNO.0000000000226				
Garcia, GG. P., Broglio, S. P., Lavieri, M. S., McCrea, M., McAllister, T., CARE Consortium				
Investigators. (2018). Quantifying the Value of Multidimensional Assessment Models for				
Acute Concussion: An Analysis of Data from the NCAA-DoD Care Consortium. Sports	4140014	04 5004	10	10
Medicine, 48(7), 1739–1749. http://doi.org/10.1007/s40279-018-0880-x	AMSSM	61.52%	40	40
Grool AM, Aglipay M, Momoli F, et al. Association Between Early Participation in Physical				
Activity Following Acute Concussion and Persistent Postconcussive Symptoms in Children				
and Adolescents. JAMA. 2016;316(23):2504-2514. doi:10.1001/jama.2016.17396.	AMSSM	60.71%	66	66
Hecimovich M, King D, Dempsey AR, Murphy M. The King-Devick test is a valid and reliable				
tool for assessing sport-related concussion in Australian football: A prospective cohort study.				
J Sci Med Sport. 2018;21(10):1004-1007. doi:10.1016/j.jsams.2018.03.011.	AMSSM	100.00%	126	126
Herman, D. C., Jones, D., Harrison, A., Moser, M., Tillman, S., Farmer, K., et al. (2017).				
Concussion May Increase the Risk of Subsequent Lower Extremity Musculoskeletal Injury in				
Collegiate Athletes. Sports Medicine, 47(5), 1003–1010. http://doi.org/10.1007/s40279-016-				
0607-9	AMSSM	71.23%	98	98
Hoffman, N. L., Weber, M. L., Broglio, S. P., McCrea, M., McAllister, T. W., & Schmidt, J. D.				
(2017). Influence of Postconcussion Sleep Duration on Concussion Recovery in Collegiate				
Athletes. Clinical Journal of Sport Medicine, Publish Ahead of Print, 1–7.				
http://doi.org/10.1097/JSM.00000000000538	AMSSM	56.29%	85	85
Houck, Z., Asken, B., Bauer, R., Pothast, J., Michaudet, C., & Clugston, J. (2016).				
Epidemiology of Sport-Related Concussion in an NCAA Division I Football Bowl Subdivision				
Sample. The American Journal of Sports Medicine, 44(9), 2269–2275.				
http://doi.org/10.1177/0363546516645070	AMSSM	100.00%	26	26
Howell, D. R., O'Brien, M. J., Fraser, J., & Meehan, W. P. (2018). Continuing Play, Symptom				
Severity, and Symptom Duration After Concussion in Youth Athletes. Clinical Journal of				
Sport Medicine, Publish Ahead of Print, 1–5. http://doi.org/10.1097/JSM.000000000000570	AMSSM	64.97%	95	95
Hugentobler JA, Vegh M, Janiszewski B, et al. Physical therapy intervention strategies for				
patients with prolonged mild traumatic brain injury symptoms: A case series. Int J Sports				
Phys Ther 2015;10:676–89	AMSSM	66.67%	84	84
Janssen PH, Mandrekar J, Mielke MM, et al. High school football and late-life risk of				
neurodegenerative syndromes, 1956–1970. Mayo Clin Proc. 2017;92:66–71.	AMSSM	100.00%	109	109
Kerr ZY, Yeargin S, Valovich McLeod TC, et al. Comprehensive Coach Education and				
Practice Contact Restriction Guidelines Result in Lower Injury Rates in Youth American				
Football. Orthop J Sports Med. 2015;3(7):232596711559457-232596711559458.				
doi:10.1177/2325967115594578.	AMSSM	100.00%	118	118
Kerr ZY, Yeargin SW, Valovich McLeod TC, Mensch J, Hayden R, Dompier TP.				
Comprehensive Coach Education Reduces Head Impact Exposure in American Youth				
Football. Orthop J Sports Med. 2015;3(10):2325967115610545.				
doi:10.1177/2325967115610545.	AMSSM	100.00%	119	119
Kerr, Z. Y., Evenson, K. R., Rosamond, W. D., Mihalik, J. P., Guskiewicz, K. M., & Marshall,				
S. W. (2014). Association between concussion and mental health in former collegiate				
athletes. Injury Epidemiology, 1(1), 28. http://doi.org/10.1186/s40621-014-0028-x	AMSSM	47.18%	101	101
Kerr, Z. Y., Roos, K. G., Djoko, A., Dalton, S. L., Broglio, S. P., Marshall, S. W., & Dompier,				
T. P. (2017). Epidemiologic Measures for Quantifying the Incidence of Concussion in	AMSSM	70.77%	12	12

National Collegiate Athletic Association Sports. Journal of Athletic Training, 52(3), 167–174.				
http://doi.org/10.4085/1062-6050-51.6.05				
King, D., Gissane, C., Hume, P. A., & Flaws, M. (2015). The King-Devick test was useful in				
management of concussion in amateur rugby union and rugby league in New		(1.5.1
Zealand. Journal of the neurological sciences, 351(1-2), 58-64.	AMSSM	100.00%	124	124
Krolikowski MP, Black AM, Palacios-Derflingher L, Blake TA, Schneider KJ, Emery CA. The				
Effect of the "Zero Tolerance for Head Contact" Rule Change on the Risk of Concussions in				
Youth Ice Hockey Players. Am J Sports Med. 2017;45(2):468-473.	AMSSM	00 710/	116	110
doi:10.1177/0363546516669701. Lawrence DW, Richards D, Comper P, Hutchison MG. Earlier time to aerobic exercise is	AIVISSIVI	96.71%	110	116
associated with faster recovery following acute sport concussion. Janigro D, ed. PLoS ONE.				
2018;13(4):e0196062–12. doi:10.1371/journal.pone.0196062.	AMSSM	58.50%	71	71
Leddy JJ, Haider MN, Hinds AL, Darling S, Willer BS. A Preliminary Study of the Effect of	ANIOON	50.50 %	/ 1	71
Early Aerobic Exercise Treatment for Sport-Related Concussion in Males. Clin J Sport Med.				
2019;29(5):353-360. doi:10.1097/JSM.00000000000663.	AMSSM	100.00%	72	72
Leddy, J. J., Hinds, A. L., Miecznikowski, J., Darling, S., Matuszak, J., Baker, J. G., et al.	7.1.001			
(2018). Safety and Prognostic Utility of Provocative Exercise Testing in Acutely Concussed				
Adolescents: A Randomized Trial. Clinical Journal of Sport Medicine : Official Journal of the				
Canadian Academy of Sport Medicine, 28(1), 13–20.				
http://doi.org/10.1097/JSM.000000000000431	AMSSM	68.52%	58	58
Lehman EJ, Hein MJ, Gersic CM. Suicide mortality among retired				
National Football League players who played 5 or more seasons. Am J Sports Med.				
2016;44:2486–2491.	AMSSM	100.00%	103	103
Leong DF, Balcer LJ, Galetta SL, et al. The King-Devick test for sideline concussion				
screening in collegiate football. J Optom. 2015;8:131–139.	AMSSM	93.70%	28	28
Leong DF, Balcer LJ, Galetta SL, Liu Z, Master CL. The King-Devick test as a concussion				
screening tool administered by sports parents. J Sports Med Phys Fitness. 2014;54(1):70-		400.000/	100	100
77.	AMSSM	100.00%	123	123
Marinides, Z., Galetta, K. M., Andrews, C. N., Wilson, J. A., Herman, D. C., Robinson, C. D.,				
et al. (2015). Vision testing is additive to the sideline assessment of sports-related				
concussion. Neurology. Clinical Practice, 5(1), 25–34. http://doi.org/10.1212/CPJ.0000000000000000	AMSSM	67.87%	20	20
Maugans, T. A., Farley, C., Altaye, M., Leach, J., & Cecil, K. M. (2012). Pediatric sports-	AIVISSIVI	07.0770	20	20
related concussion produces cerebral blood flow alterations. Pediatrics, 129(1), 28–37.				
http://doi.org/10.1542/peds.2011-2083	AMSSM	75.00%	6	6
McCrea M, Guskiewicz K, Randolph C, et al. Incidence, clinical course, and predictors of	700000	10.0070	0	0
prolonged recovery time following sport-related concussion in				
high school and college athletes. J Int Neuropsychol Soc. 2013;19:22–33.	AMSSM	88.95%	55	55
McCrea, M., Guskiewicz, K., Randolph, C., Barr, W. B., Hammeke, T. A., Marshall, S. W., &				
Kelly, J. P. (2009). Effects of a symptom-free waiting period on clinical outcome and risk of				
reinjury after sport-related concussion. Neurosurgery, 65(5), 876–82– discussion 882–3.				
http://doi.org/10.1227/01.NEU.0000350155.89800.00	AMSSM	88.50%	96	96
McCrea, M., Kelly, J. P., Randolph, C., Cisler, R., & Berger, L. (2002). Immediate				
neurocognitive effects of concussion. Neurosurgery, 50(5), 1032–40– discussion 1040–2.				
http://doi.org/10.1097/00006123-200205000-00017	AMSSM	100.00%	17	17

McKee AC, Stein TD, Nowinski CJ, et al. The spectrum of disease in chronic traumatic				
encephalopathy. Brain. 2013;136:43–64.	AMSSM	100.00%	106	106
Meier, T. B., Bellgowan, P. S. F., Singh, R., Kuplicki, R., Polanski, D. W., & Mayer, A. R.				
(2015). Recovery of cerebral blood flow following sports-related concussion. JAMA				
Neurology, 72(5), 530-538. http://doi.org/10.1001/jamaneurol.2014.4778	AMSSM	100.00%	7	7
Mucha, A., Collins, M. W., Elbin, R. J., Furman, J. M., Troutman-Enseki, C., DeWolf, R. M.,				
et al. (2014). A Brief Vestibular/Ocular Motor Screening (VOMS) Assessment to Evaluate				
Concussions. The American Journal of Sports Medicine, 42(10), 2479–2486.				
http://doi.org/10.1177/0363546514543775	AMSSM	56.25%	46	46
Norheim, N., Kissinger-Knox, A., Cheatham, M., & Webbe, F. (2018). Performance of				
college athletes on the 10-item word list of SCAT5. BMJ Open Sport & Exercise Medicine,				
4(1), e000412. http://doi.org/10.1136/bmjsem-2018-000412	AMSSM	64.01%	43	43
Oliver JM, Jones MT, Kirk KM, et al. Effect of docosahexaenoic acid on a biomarker of head				
trauma in American football. Med Sci Sports Exerc. 2016;48:974–982.	AMSSM	100.00%	76	76
Putukian, M., Echemendia, R., Dettwiler-Danspeckgruber, A., Duliba, T., Bruce, J., Furtado,				
J. L., & Murugavel, M. (2015). Prospective clinical assessment using Sideline Concussion				
Assessment Tool-2 testing in the evaluation of sport-related concussion in college athletes.				
Clinical Journal of Sport Medicine : Official Journal of the Canadian Academy of Sport				
Medicine, 25(1), 36–42. http://doi.org/10.1097/JSM.000000000000102	AMSSM	66.92%	22	22
Resch JE, Brown CN, Schmidt J, et al. The sensitivity and specificity of clinical measures of				
sport concussion: three tests are better than one. BMJ Open Sport Exerc Med.				
2016;2:e000012.	AMSSM	72.50%	120	120
Savica R, Parisi JE, Wold LE, et al. High school football and risk of neurodegeneration: a				
community-based study. Mayo Clin Proc. 2012; 87:335-340.	AMSSM	100.00%	108	108
Schneider KJ, Meeuwisse WH, Nettel-Aguirre A, et al. Cervicovestibular rehabilitation in				
sport-related concussion: a randomised controlled trial. Br J Sports Med 2014;48:1294-8.	AMSSM	58.06%	83	83
Seidman, D. H., Burlingame, J., Yousif, L. R., Donahue, X. P., Krier, J., Rayes, L. J., et al.				
(2015). Evaluation of the King-Devick test as a concussion screening tool in high school				
football players. Journal of the Neurological Sciences, 356(1-2), 97–101.		(00.00)		
http://doi.org/10.1016/j.jns.2015.06.021	AMSSM	100.00%	24	24
Stein TD, Alvarez VE, McKee AC. Chronic traumatic encephalopathy: a spectrum of				
neuropathological changes following repetitive brain trauma in athletes and military		100.000/	4.07	107
personnel. Alzheimers Res Ther. 2014;6(1):4-11. doi:10.1186/alzrt234.	AMSSM	100.00%	107	107
Thomas DG, Apps JN, Hoffmann RG, McCrea M, Hammeke T. Benefits of strict rest after				
acute concussion: a randomized controlled trial. Pediatrics. 2015;135(2):213-223.		05.000/		0.5
doi:10.1542/peds.2014-0966.	AMSSM	65.66%	65	65
Tsushima, W. T., Siu, A. M., Ahn, H. J., Chang, B. L., & Murata, N. M. (2019). Incidence and				
Risk of Concussions in Youth Athletes: Comparisons of Age, Sex, Concussion History,				
Sport, and Football Position. Archives of Clinical Neuropsychology : the Official Journal of				
the National Academy of Neuropsychologists, 34(1), 60–69.	AMSSM	E7 /60/	10	10
http://doi.org/10.1093/arclin/acy019	AIVISSIVI	57.46%	13	13
Tucker, R., Raftery, M., Fuller, G. W., Hester, B., Kemp, S., & Cross, M. J. (2017). A video				
analysis of head injuries satisfying the criteria for a head injury assessment in professional Rugby Union: a prospective cohort study. British Journal of Sports Medicine, 51(15), 1147–				
1151. http://doi.org/10.1136/bjsports-2017-097883	AMSSM	100.00%	35	35
1151. http://doi.org/10.1150/bjsp015-2017-097065	AIVISSIVI	100.00%	30	30

Zemek, R., Barrowman, N., Freedman, S. B., Gravel, J., Gagnon, I., McGahern, C., et al.				
(2016). Clinical Risk Score for Persistent Postconcussion Symptoms Among Children With				
Acute Concussion in the ED. JAMA: the Journal of the American Medical Association,	4140014	<u> </u>	50	50
315(10), 1014–12. http://doi.org/10.1001/jama.2016.1203	AMSSM	60.99%	56	56
Bleiberg J, Cernich AN, Cameron K, et al. Duration of cognitive impairment after	10000	100.000/	10	140
sports concussion. Neurosurgery 2004;54:1073–78–78–80.	ICCCS	100.00%	18	146
Collie A, Maruff P, McStephen M, et al. Psychometric issues associated with				
computerised neuropsychological assessment of concussed athletes. Br J Sports Med	10000	100.000/	14	140
2003;37:556–9.	ICCCS	100.00%	14	142
Collins MW, Grindel SH, Lovell MR, et al. Relationship between concussion				
and neuropsychological performance in college football players. Jama	10000	400.000/	4.5	1 1 0
1999;282:964–70	ICCCS	100.00%	15	143
Delaney J, Lacroix V, Leclerc S, et al. Canadian football league season Clin J Sport Med	10000	400.000/		450
1997;2000:9–14.	ICCCS	100.00%	28	156
Delaney JS, Lacroix VJ, Leclerc S, et al. Concussions among university football and soccer	10000	70.050/		457
players. Clin J Sport Med 2002;12:331–8.	ICCCS	78.85%	29	157
Gioia G, Janusz J, Gilstein K, et al. Neuropsychological management of consussion				
in children and adolescents: effects of age and gender on ImPact. abstract). Br J Sp	10000	74.000/		150
Med 2004;38:657.	ICCCS	71.02%	22	150
Guilmette TJ, Malia LA, McQuiggan MD. Concussion understanding and				
management among new England high school football coaches. Brain Inj	10000	(00.000)		
2007;21:1039–47.	ICCCS	100.00%	33	161
Johnston KM, Lassonde M, Ptito A. A contemporary neurosurgical approach to sport-related				
head injury: the McGill concussion protocol. J Am Coll Surg2001;192:515–24.	ICCCS	73.33%	27	155
Kashluba S, Paniak C, Blake T, et al. A longitudinal, controlled study of patient				
complaints following treated mild traumatic brain injury. Arch Clin Neuropsychol				
2004;19:805–16.	ICCCS	43.64%	38	166
Kaut KP, DePompei R, Kerr J, et al. Reports of head injury and symptom knowledge among				
college athletes: implications for assessment and educational intervention.				
Clin J Sport Med 2003;13:213–21.	ICCCS	66.04%	40	168
Maddocks D, Dicker G. An objective measure of recovery from concussion in Australian			-	
rules footballers. Sport Health 1989;7:6–7.	ICCCS	100.00%	6	134
McCrea, M., Kelly, J. P., Kluge, J., Ackley, B., & Randolph, C. (1997). Standardized				
assessment of concussion in football players. Neurology, 48(3), 586-588.	ICCCS	100.00%	11	139
Barbic D, Pater J, Brison RJ. Comparison of mouth guard designs and concussion				
prevention in contact sports: a multicenter randomized controlled trial. Clin J Sport Med.				
2005;15(5):294–298	NATA	80.96%	136	310
Bazarian JJ, Zhu T, Blyth B, Borrino A, Zhong J. Subject-specific changes in brain white				
matter on diffusion tensor imaging after sports-related concussion. Magn Reson Imaging.		100		a.c.=
2012;30(2):171–	NATA	100.00%	191	365
Breedlove EL, Robinson M, Talavage TM, et al. Biomechanical				
correlates of symptomatic and asymptomatic neurophysiological impairment in high school		100.001	100	
football. J Biomech. 2012;45(7):1265–1272.	NATA	100.00%	189	363
Broglio SP, Eckner JT, Surma T, Kutcher JS. Post-concussion cognitive declines and				
symptomatology are not related to concussion biomechanics in high school football players.		100.001	100	
J Neurotrauma. 2011;28(10):2061–2068.	NATA	100.00%	128	302

Broglio SP, Ferrara MS, Piland SG, Anderson RB, Collie A.				
Concussion history is not a predictor of computerized neurocog-				
nitive performance. Br J Sports Med. 2006;40(9):802-805.	NATA	81.56%	184	358
Broglio SP, Ferrara MS, Sopiarz K, Kelly MS. Reliable change of the sensory organization				
test. Clin J Sport Med. 2008;18(2):148–154.	NATA	68.99%	102	276
Broglio SP, Macciocchi SN, Ferrara MS. Neurocognitive				
performance of concussed athletes when symptom free. J Athl				
Train. 2007;42(4):504–508.	ICCCS/NATA	76.19%	20/118	292
Broglio SP, Macciocchi SN, Ferrara MS. Sensitivity of the concussion assessment battery.				
Neurosurgery. 2007;60(6):1050–7-8	ICCCS/NATA	82.67%	21/19	193
Broglio SP, Monk A, Sopiarz K, Cooper ER. The influence of ankle support on postural				
control. J Sci Med Sport. 2009;12(3):388–392.	NATA	36.84%	108	282
Broglio SP, Pontifex MB, O'Connor P, Hillman CH. The persistent effects of concussion on				
neuroelectic indices of attention. J Neurotrauma. 2009;26(9):1463–1470.	NATA	72.22%	192	366
Broglio SP, Schnebel B, Sosnoff JJ, et al. Biomechanical properties of concussions in high				
school football. Med Sci Sports Exerc. 2010;42(11):2064–2071.	NATA	100.00%	126	300
Broglio SP, Zhu W, Sopiarz K, Park Y. Generalizability theory analysis of balance error				
scoring system reliability in healthy young adults. J Athl Train. 2009;44(5):497–502.	NATA	52.08%	105	279
Catena RD, Van Donkelaar P, Chou LS. Cognitive task effects on				
gait stability following concussion. Exp Brain Res.				
2007;176(1):23–31.	NATA	57.14%	96	270
Collie A, Maruff P, Makdissi M, McCrory P, McStephen M, Darby D. CogSport: reliability and				
correlation with conventional cognitive tests used in postconcussion medical evaluations.				
Clin J Sport Med. 2003;13(1):28–32	NATA	100.00%	84	258
Collie A, McCrory P, Makdissi M. Does history of concussion affect current cognitive status?				
Br J Sports Med. 2006;40(6):550-				
551.	NATA	100.00%	185	359
Covassin T, Elbin RJ, Harris W, Parker T, Kontos A. The role of age and sex in symptoms,				
neurocognitive performance, and postural stability in athletes after concussion. Am J Sports				
Med. 2012;40(6):1303–1312.	NATA	70.72%	132	306
Davidson JA. Epidemiology and outcome of bicycle injuries presenting to an emergency				
department in the United Kingdom.Eur J Emerg Med. 2005;12(1):24–29.	NATA	65.53%	35	209
De Beaumont L, Theoret H, Mongeon D, et al. Brain function				
decline in healthy retired athletes who sustained their last sports				
concussion in early adulthood. Brain. 2009;132(pt 3):695–708.	NATA	100.00%	187	361
De Monte VE, Geffen GM, May CR, McFarland K, Heath P,				
Neralic M. The acute effects of mild traumatic brain injury on finger tapping with and without				
word repetition. J Clin Exp Neuropsychol. 2005;27(2):224–239.	NATA	69.23%	101	275
Delaney JS, Al-Kashmiri A, Drummond R, Correa JA. The effect				
of protective headgear on head injuries and concussions in adolescent football (soccer)	NATA	50.000/	1.10	000
players. Br J Sports Med. 2008;42(2):110–115.	NATA	50.00%	149	323
Elbin RJ, Schatz P, Covassin T. One-year test-retest reliability of the online version of		15 500/		0
ImPACT in high school athletes. Am J Sports Med. 2011;39(11):2319–2324.	NATA	45.53%	83	257
Ellemberg D, Leclerc S, Couture S, Daigle C. Prolonged neuropsychological impairments				
following a first concussion in female university soccer athletes. Clin J Sport Med.	N14-7-1	0.000/	100	000
2007;17(5):369–374.	NATA	0.00%	188	362

Fazio VC, Lovell MR, Pardini JE, Collins MW. The relation between post concussion				
symptoms and neurocognitive perfor- mance in concussed athletes. NeuroRehabilitation.				
2007;22(3):207–216.	NATA	68.75%	119	293
Field M, Collins MW, Lovell MR, Maroon J. Does age play a role in recovery from sports-				
related concussion? A comparison of high school and collegiate athletes. J Pediatr.		00.040/	00	010
2003;142(5):546–553.	NATA	96.04%	36	210
Finch C, Braham R, McIntosh A, McCrory P, Wolfe R. Should football players wear custom				
fitted mouthguards? Results from a group randomised controlled trial. Inj Prev.	NATA	100 000/	107	311
2005;11(4):242–246. Fox ZG, Mihalik JP, Blackburn JT, Battaglini CL, Guskiewicz KM. Return of postural control	NATA	100.00%	137	311
to baseline after anaerobic and aerobic exercise protocols. J Athl Train. 2008;43(5):456–				
463.	NATA	50.00%	107	281
Gaetz M, Goodman D, Weinberg H. Electrophysiological evidence for the cumulative effects	INATA	50.00 %	107	201
of concussion. Brain Inj. 2000;14(12):1077–1088.	NATA	100.00%	194	368
Gessel LM, Fields SK, Collins CL, Dick RW, Comstock RD. Concussions among United		100.00 /6	134	500
States high school and collegiate athletes. J Athl Train. 2007;42(4):495–503.	NATA	72.44%	67	241
Greenwald RM, Gwin JT, Chu JJ, Crisco JJ. Head impact severity measures for evaluating	11/11/1	72.4470	07	271
mild traumatic brain injury risk exposure.Neurosurgery. 2008;62(4):789–798.	NATA	100.00%	125	299
Guskiewicz KM, Marshall SW, Bailes J, et al. Association between recurrent concussion and		100.0070	120	200
late-life cognitive impairment in retired professional football players. Neurosurgery.				
2005;57(4):719–726.	NATA	100.00%	52	226
Guskiewicz KM, Marshall SW, Bailes J, et al. Recurrent concussion and risk of depression in				
retired professional football players. Med Sci Sports Exerc. 2007;39(6):9	AMSSM/NATA	100.00%	102/51	221
Guskiewicz KM, Ross SE, Marshall SW. Postural stability and				
neuropsychological deficits after concussion in collegiate athletes.				
J Athl Train. 2001;36(3):263–273	NATA	69.44%	100	274
Hagel BE, Pless IB, Goulet C, Platt RW, Robitaille Y. Effectiveness of helmets in skiers and				
snowboarders: case-control and case crossover study. BMJ. 2005;330(7486):281.	NATA	46.94%	30	204
Hinton-Bayre AD, Geffen G. Severity of sports-related concussion and neuropsychological				
test performance. Neurology. 2002;59(7):1068–1070.	NATA	100.00%	129	303
Hunt TN, Ferrara MS. Age-related differences in neuropsycho-logical testing among high				
school athletes. J Athl Train 2009;44(4):405–409.	NATA	100.00%	16	190
Iverson GL, Brooks BL, Ashton VL, Lange RT. Interview versus questionnaire symptom				
reporting in people with the postconcus-				
sion syndrome. J Head Trauma Rehabil. 2010;25(1):23-30.	NATA	57.38%	90	264
Iverson GL, Brooks BL, Lovell MR, Collins MW. No cumulative				
effects for one or two previous concussions. Br J Sports Med.				
2006;40(1):72–75.	NATA	100.00%	186	360
Kahanov L, Dusa MJ, Wilkinson S, Roberts J. Self-reported headgear use and concussions				
among collegiate men's rugby union players. Res Sports Med. 2005;13(2):77–89.	NATA	100.00%	145	319
Kemp SP, Hudson Z, Brooks JH, Fuller CW. The epidemiology of head injuries in English		100.000/	140	017
professional rugby union. Clin J Sport Med. 2008;18(3):227–234.	NATA	100.00%	143	317
Labella CR, Smith BW, Sigurdsson A. Effect of mouthguards on dental injuries and		100 000/	1 4 1	015
concussions in college basketball. Med Sci Sports Exerc. 2002;34(1):41-44.	NATA	100.00%	141	315
Lovell MR, Collins MW, Iverson GL, Johnston KM, Bradley JP. Grade 1 or "ding"	ΝΑΤΑ	01 /00/	18/9	183
concussions in high school athletes. Am J Sports Med. 2004;32(1):47-54.	NATA	81.40%	10/9	103

related concussion: reliability and normative data for the post-concussion scale. Appl Neuropsychol. 2006;13(3):166–174.NATA79.67%173347Maddocks DL, Dicker GD, Saling MM. The assessment of orientation following concussion in athletes. Clin J Sport Med. 1995;5(1):32–35.ICCCS/NATA100.00%7/111285Majerske CW, Mihalik JP, Ren D, et al. Concussion in sports: postconcussive activity levels, symptoms, and neurocognitive performance. J Athl Train. 2008;43(3):265–274.NATA84.21%130304Marshall SW, Loomis DP, Waller AE, et al. Evaluation of protective equipment for prevention of injuries in rugby union. Int J Epidemiol. 2005;34(1):113–118.NATA73.39%139313Martini DN, Sabin MJ, DePesa SA, et al. The chronic effects of concussion on gait. Arch Phys Med Rehabil. 2011;92(4):585–589.NATA54.41%197371McCrea M, Barr WB, Guskiewicz K, et al. Standard regression- based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69.AMSSM/NATA100.00%20/19194McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA. 2003;290(19):2556–2563.NATA100.00%65239McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in highNATA100.00%65239
Maddocks DL, Dicker GD, Saling MM. The assessment of orientation following concussion in athletes. Clin J Sport Med. 1995;5(1):32–35. ICCCS/NATA 100.00% 7/111 285 Majerske CW, Mihalik JP, Ren D, et al. Concussion in sports: postconcussive activity levels, symptoms, and neurocognitive performance. J Athl Train. 2008;43(3):265–274. NATA 84.21% 130 304 Marshall SW, Loomis DP, Waller AE, et al. Evaluation of protective equipment for prevention of injuries in rugby union. Int J Epidemiol. 2005;34(1):113–118. NATA 73.39% 139 313 Martini DN, Sabin MJ, DePesa SA, et al. The chronic effects of concussion on gait. Arch Phys Med Rehabil. 2011;92(4):585–589. NATA 54.41% 197 371 McCrea M, Barr WB, Guskiewicz K, et al. Standard regression- based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69. AMSSM/NATA 100.00% 20/19 194 McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA. NATA 100.00% 65 239 McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high NATA 100.00% 65 239
athletes. Clin J Sport Med. 1995;5(1):32–35.ICCCS/NATA100.00%7/111285Majerske CW, Mihalik JP, Ren D, et al. Concussion in sports: postconcussive activity levels, symptoms, and neurocognitive performance. J Athl Train. 2008;43(3):265–274.NATA84.21%130304Marshall SW, Loomis DP, Waller AE, et al. Evaluation of protective equipment for prevention of injuries in rugby union. Int J Epidemiol. 2005;34(1):113–118.NATA73.39%139313Martini DN, Sabin MJ, DePesa SA, et al. The chronic effects of concussion on gait. Arch Phys Med Rehabil. 2011;92(4):585–589.NATA54.41%197371McCrea M, Barr WB, Guskiewicz K, et al. Standard regression- based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69.AMSSM/NATA100.00%20/19194McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA.NATA100.00%65239McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in highNATA100.00%65239
Majerske CW, Mihalik JP, Ren D, et al. Concussion in sports: postconcussive activity levels, symptoms, and neurocognitive performance. J Athl Train. 2008;43(3):265–274.NATA84.21%130304Marshall SW, Loomis DP, Waller AE, et al. Evaluation of protective equipment for prevention of injuries in rugby union. Int J Epidemiol. 2005;34(1):113–118.NATA73.39%139313Martini DN, Sabin MJ, DePesa SA, et al. The chronic effects of concussion on gait. Arch Phys Med Rehabil. 2011;92(4):585–589.NATA54.41%197371McCrea M, Barr WB, Guskiewicz K, et al. Standard regression-
symptoms, and neurocognitive performance. J Athl Train. 2008;43(3):265–274.NATA84.21%130304Marshall SW, Loomis DP, Waller AE, et al. Evaluation of protective equipment for prevention of injuries in rugby union. Int J Epidemiol. 2005;34(1):113–118.NATA73.39%139313Martini DN, Sabin MJ, DePesa SA, et al. The chronic effects of concussion on gait. Arch Phys Med Rehabil. 2011;92(4):585–589.NATA54.41%197371McCrea M, Barr WB, Guskiewicz K, et al. Standard regression- based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69.AMSSM/NATA100.00%20/19194McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA.NATA100.00%65239McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in highNATA100.00%65239
Marshall SW, Loomis DP, Waller AE, et al. Evaluation of protective equipment for prevention of injuries in rugby union. Int J Epidemiol. 2005;34(1):113–118.NATA73.39%139313Martini DN, Sabin MJ, DePesa SA, et al. The chronic effects of concussion on gait. Arch Phys Med Rehabil. 2011;92(4):585–589.NATA54.41%197371McCrea M, Barr WB, Guskiewicz K, et al. Standard regression- based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69.AMSSM/NATA100.00%20/19194McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA.NATA100.00%65239McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in highNATA100.00%65239
of injuries in rugby union. Int J Epidemiol. 2005;34(1):113–118.NATA73.39%139313Martini DN, Sabin MJ, DePesa SA, et al. The chronic effects of concussion on gait. Arch Phys Med Rehabil. 2011;92(4):585–589.NATA54.41%197371McCrea M, Barr WB, Guskiewicz K, et al. Standard regression- based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69.AMSSM/NATA100.00%20/19194McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA. 2003;290(19):2556–2563.NATA100.00%65239McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in highImage: concussion in highImage: concussion in highImage: concussion in highImage: concussion in high
Martini DN, Sabin MJ, DePesa SA, et al. The chronic effects of concussion on gait. Arch NATA 54.41% 197 371 McCrea M, Barr WB, Guskiewicz K, et al. Standard regression- based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69. AMSSM/NATA 100.00% 20/19 194 McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA. AMATA 100.00% 65 239 McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high AMATA 100.00% 65 239
Phys Med Rehabil. 2011;92(4):585–589.NATA54.41%197371McCrea M, Barr WB, Guskiewicz K, et al. Standard regression- based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69.AMSSM/NATA100.00%20/19194McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA. 2003;290(19):2556–2563.NATA100.00%65239McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in highImage: Concussion in highImage: Concussion in highImage: Concussion in high
McCrea M, Barr WB, Guskiewicz K, et al. Standard regression- based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69. AMSSM/NATA 100.00% 20/19 194 McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA. AMSSM/NATA 100.00% 20/19 194 McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high NATA 100.00% 65 239
based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69.AMSSM/NATA100.00%20/19194McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA. 2003;290(19):2556–2563.NATA100.00%65239McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in highMathematical StructureStructureStructure
concussion. J Int Neuropsychol Soc. 2005;11(1):58–69. AMSSM/NATA 100.00% 20/19 194 McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA. NATA 100.00% 65 239 McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high MCCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concuskiewicz K. Unreported concuskiewicz K. Unreported con
concussion in collegiate football players: the NCAA concussion study. JAMA.NATA100.00%652392003;290(19):2556-2563.NATA100.00%65239McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high65239
2003;290(19):2556–2563. NATA 100.00% 65 239 McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high 65 239
McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high
school football players: implica- tions for prevention. Clin J Sport Med. 2004;14(1):13–17. NATA 100.00% 57 231
McCrea M. Standardized mental status testing on the sideline after
sport-related concussion. J Athl Train. 2001;36(3):274–279. AMSSM/NATA 100.00% 18/22 196
McGrath N, Dinn WM, Collins MW, Lovell MR, Elbin RJ, Kontos AP. Post-exertion
neurocognitive test failure among student-athletes following concussion. Brain Inj.NATA79.63%134308
Mark 79.05% 134 300 McIntosh AS, McCrory P. Effectiveness of headgear in a pilot study of under 15 rugby union
football. Br J Sports Med. 2001;35(3):167–169. NATA 100.00% 144 318
Mihalik JP, McCaffrey MA, Rivera EM, et al. Effectiveness of mouthguards in reducing
neurocognitive deficits following sports- related cerebral concussion. Dent Traumatol.
2007;23(1):14–20. NATA 84.44% 142 316
Moser, R. S., Schatz, P., Neidzwski, K., & Ott, S. D. (2011). Group versus individual
administration affects baseline neurocognitive test performance. The American Journal of
Sports Medicine, 39(11), 2325–2330. http://doi.org/10.1177/0363546511417114 NATA 65.56% 21 195
Mueller BA, Cummings P, Rivara FP, Brooks MA, Terasaki RD. Injuries of the head, face,
and neck in relation to ski helmet use. Epidemiology. 2008;19(2):270-276. NATA 59.38% 31 205
Mueller, B. A., Cummings, P., Rivara, F. P., Brooks, M. A., & Terasaki, R. D. (2008). Injuries
of the head, face, and neck in relation to ski helmet use. Epidemiology (Cambridge, Mass.),
19(2), 270–276. http://doi.org/10.1097/EDE.0b013e318163567c NATA 61.45% 32 206
O'Donoghue EM, Onate JA, Van Lunen B, Peterson CL. Assessment of high school
coaches' knowledge of sport-related concussions. Athl Train Sports Health. 2009;1(3):120– 132. NATA 100.00% 66 240
Parker TM, Osternig LR, Van Donkelaar P, Chou LS. Gait
stability following concussion. Med Sci Sports Exerc.
2006;38(6):1032–1040. NATA 60.00% 97 271
Patel AV, Mihalik JP, Notebaert AJ, Guskiewicz KM, Prentice WE. Neuropsychological
performance, postural stability, and
symptoms after dehydration. J Athl Train. 2007;42(1):66–75. NATA 100.00% 91 265

Peterson CL, Ferrara MS, Mrazik M, Piland S, Elliot R. Evaluation of neuropsychological				
domain scores and postural stability following cerebral concussion in sports. Clin J Sport				
Med. 2003;13(4):230–237.	NATA	69.23%	99	273
Piland SG, Motl RW, Ferrara MS, Peterson CL. Evidence for the				
factorial and construct validity of a self-report concussion				
symptoms scale. J Athl Train. 2003;38(2):104–112.	NATA	79.93%	94	268
Pontifex MB, O'Connor PM, Broglio SP, Hillman CH. The association between mild traumatic				
brain injury history and cognitive control. Neuropsychologia. 2009;47(14):3210–3216.	NATA	75.00%	193	367
Powell JW, Barber-Foss KD. Traumatic brain injury in high school athletes. JAMA.				
1999;282(10):958–963.	NATA	87.06%	151	325
Randolph C, Millis S, Barr WB, et al. Concussion symptom inventory: an empirically derived				
scale for monitoring resolution of symptoms following sport-related concussion. Arch Clin				
Neuropsychol. 2009;24(3):219–229.	NATA	72.70%	95	269
Riemann BL, Guskiewicz KM, Shields EW. Relationship between clinical and forceplate				
measures of postural stability. J Sport Rehabil. 1999;8(2):71-82.	NATA	100.00%	104	278
Riemann BL, Guskiewicz KM. Effects of mild head injury on postural stability as measured				
through clinical balance testing. J Athl Train. 2000;35(1):19–25.	NATA	93.75%	103	277
Sabin MJ, Van Boxtel BA, Nohren MW, Broglio SP. Presence of headache does not				
influence sideline neurostatus or balance in high school football athletes. Clin J Sport Med.				
2011;21(5):411-	NATA	100.00%	93	267
Saunders RL, Harbaugh RE. The second impact in catastrophic contact-sports head trauma.				
JAMA. 1984;252(4):538–539.	NATA	100.00%	48	222
Schatz P, Pardini JE, Lovell MR, Collins MW, Podell K. Sensitivity and specificity of the				
ImPACT test battery for concussion in athletes. Arch Clin Neuropsychol. 2006;21(1):91–99.	NATA	62.32%	113	287
	NATA		87	261
Schmidt JD, Register-Mihalik JK, Mihalik JP, Kerr ZY, Guskiewicz KM. Identifying				
impairments after concussion: normative data versus individualized baselines. Med Sci				
Sports Exerc. 2012;44(9):1621–1628.	NATA	67.45%	13	187
Schulz MR, Marshall SW, Mueller FO, et al. Incidence and risk factors for concussion in high				
school athletes, North Carolina, 996–1999. Am J Epidemiol. 2004;160(10):937–944.	NATA	81.55%	182	356
Sim A, Terrberry-Spohr L, Wilson KR. Prolonged recovery of				
memory functioning after mild traumatic brain injury in				
adolescent athletes. J Neurosurg. 2008;108(3):511–516.	NATA	77.09%	164	338
Sosnoff JJ, Broglio SP, Shin S, Ferrara MS. Previous mild traumatic brain injury and postural				
control dynamics. J Athl Train. 2011;46(1):85–91.	NATA	67.86%	196	370
Sye G, Sullivan SJ, McCrory P. High school rugby players' understanding of concussion and				
return to play guidelines. Br J Sports Med. 2006;40(12):1003–1005.	NATA	100.00%	59	233
Talavage TM, Nauman E, Breedlove EL, et al. Functionally- detected cognitive impairment in				
high school football players without clinically-diagnosed concussion. J Neurotrauma. http://				
online.liebertpub.com/doi/full/10.1089/neu.2010.1512. Published online ahead of print April				
11, 2013. Accessed August 30, 2013.	NATA	100.00%	190	364
Vagnozzi R, Signoretti S, Cristofori L, et al. Assessment of metabolic brain damage and				
recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance				
spectro- scopic study in concussed patients. Brain. 2010;133(11):3232-3242	NATA	77.14%	2	176

Vagnozzi R, Signoretti S, Tavazzi B, et al. Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopy study in concussed athletes,				
part III. Neurosurgery. 2008;62(6):1286–1295.	AMSSM/NATA	64.29%	9/123	297
Valovich McLeod TC, Barr WB, McCrea M, Guskiewicz KM. Psychometric and measurement				
properties of concussion assess- ment tools in youth sports. J Athl Train. 2006;41(4):399-				
408.	NATA	48.00%	175	349
Valovich TC, Perrin DH, Gansneder BM. Repeat administration elicits a practice effect with				
the Balance Error Scoring System but not with the Standardized Assessment of Concussion				
in high school athletes. J Athl Train. 2003;38(1):51–56.	NATA	93.75%	106	280
Valovich-Mcleod TC, Bay RC, Lam KC, Chhabra A. Representative baseline values on the				
Sport Concussion Assessment Tool 2 (SCAT2) in adolescent athletes vary by gender,				
grade, and concussion history. Am J Sports Med. 2012;40(4):927-933.	NATA	76.90%	41	215
Van Kampen DA, Lovell MR, Pardini JE, Collins MW, Fu FH. The "value added" of				
neurocognitive testing after sports-related concussion. Am J Sports Med. 2006;34(10):1630-				
1635.	NATA	69.27%	115	289
Wilkins JC, Valovich McLeod TC, Perrin DH, Gansneder BM. Performance on the Balance				
Error Scoring System decreases after fatigue. J Athl Train. 2004;39(2):156–161.	NATA	100.00%	110	284
Williams SJ, Nukada H. Sport and exercise headache, part 2: diagnosis and classification.				
Br J Sports Med. 1994;28(2):96–100.	NATA	51.94%	92	266
Wisniewski JF, Guskiewicz KM, Trope M, Sigurdsson A. Incidence of cerebral concussions				
associated with type of mouthguard used in college football. Dent Traumatol.				
2004;20(3):143–149.	NATA	100.00%	135	309
Wood RL, McCabe M, Dawkins J. The role of anxiety sensitivity in symptom perception after				
minor head injury: an exploratory study. Brain Inj. 2011;25(13-14):1296-1299.	NATA	49.21%	68	242
Yakovlev PI, Lecours AR. The myelogenetic cycles of regional maturation of the brain. In:				
Minkowski A, ed. Regional Development of the Brain in Early Life. Philadelphia, PA: FA				
Davis; 1967:3–70	NATA	50.56%	15	189
Yeates KO, Kaizer E, Rusin J, et al. Reliable change in postconcussive symptoms and its				214
functional consequences among children with mild traumatic brain injury. Arch Pediatr				
Adolesc Med. 2012;166(7):615–622.	NATA	68.77%	40	
Yeates KO, Luria J, Bartkowski H, Rusin J, Martin L, Bigler ED. Postconcussive symptoms in				
children with mild closed head injuries. J Head Trauma Rehabil. 1999;14(4):337-350.	NATA	64.36%	174	348
Total average		80.09%		

Citation	Reference Number	Running Total Reference Number	Statement
Harmon KG, Drezner JA, Gammons M, et al. American Medical Society for Sports			
Medicine position statement: concussion in sport. Br J Sports Med. 2013;47:15–			
26.	1	1	AMSSM
Ebell MH, Siwek J, Weiss BD, et al. Strength of recommendation taxonomy			
(SORT): a patient-centered approach to grading evidence in the medical literature.			
Am Fam Physician. 2004;69:548–556.	2	2	AMSSM
McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in			
sport-the 5(th) international conference on concussion in sport held in Berlin. Br J			
Sports Med 2016;51:838–47.	3	3	AMSSM
McCrory P, Feddermann-Demont N, Dvor a k J, et al. What is the definition of			
sports-related concussion: a systematic review. Br J Sports Med. 2017;51:877-			
887.	4	4	AMSSM
Barkhoudarian G, Hovda DA, Giza CC. The molecular pathophysiol- ogy of			
concussive brain injury. Clin Sports Med. 2011;30:33-48, vii-iii.	5	5	AMSSM
Maugans, T. A., Farley, C., Altaye, M., Leach, J., & Cecil, K. M. (2012). Pediatric			
sports-related concussion produces cerebral blood flow alterations. Pediatrics,			
129(1), 28–37. http://doi.org/10.1542/peds.2011-2083	6	6	AMSSM
Meier, T. B., Bellgowan, P. S. F., Singh, R., Kuplicki, R., Polanski, D. W., & Mayer,			
A. R. (2015). Recovery of cerebral blood flow following sports-related concussion.			
JAMA Neurology, 72(5), 530-538. http://doi.org/10.1001/jamaneurol.2014.4778	7	7	AMSSM
Vagnozzi, R., Tavazzi, B., Signoretti, S., Amorini, A. M., Belli, A., Cimatti, M., et al.			
(2007). Temporal window of metabolic brain vulnerability to concussions:			
mitochondrial-related impairmentpart I. Neurosurgery, 61(2), 379-88- discussion			
388-9. http://doi.org/10.1227/01.NEU.0000280002.41696.D8	8	8	AMSSM
Vagnozzi, R., Signoretti, S., Tavazzi, B., Floris, R., Ludovici, A., Marziali, S., et al.			
(2008). Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-			
magnetic resonance spectroscopic study in concussed athletespart III.			
Neurosurgery, 62(6), 1286–95– discussion 1295–6.			
http://doi.org/10.1227/01.neu.0000333300.34189.74	9	9	AMSSM
Longhi, L., Saatman, K. E., Fujimoto, S., Raghupathi, R., Meaney, D. F., Davis, J.,			
McIntosh, T. K. (2005). Temporal Window of Vulnerability to Repetitive			
Experimental Concussive Brain Injury. Neurosurgery, 56(2), 364-			
374.doi:10.1227/01.neu.0000149008.73513.44	10	10	AMSSM
Bryan MA, Rowhani-Rahbar A, Comstock RD, et al; Seattle Sports Concussion			
Research Collabrative. Sports- and recreation-related concussions in US youth.			
Pediatrics. 2016;138:e20154635.	11	11	AMSSM

Kerr, Z. Y., Roos, K. G., Djoko, A., Dalton, S. L., Broglio, S. P., Marshall, S. W., & Dompier, T. P. (2017). Epidemiologic Measures for Quantifying the Incidence of			
Concussion in National Collegiate Athletic Association Sports. Journal of Athletic			
Training, 52(3), 167–174. http://doi.org/10.4085/1062-6050-51.6.05	12	12	AMSSM
Tsushima, W. T., Siu, A. M., Ahn, H. J., Chang, B. L., & Murata, N. M. (2019).			7
Incidence and Risk of Concussions in Youth Athletes: Comparisons of Age, Sex,			
Concussion History, Sport, and Football Position. Archives of Clinical			
Neuropsychology : the Official Journal of the National Academy of			
Neuropsychologists, 34(1), 60-69. http://doi.org/10.1093/arclin/acy019	13	13	AMSSM
Bretzin, A. C., Covassin, T., Fox, M. E., Petit, K. M., Savage, J. L., Walker, L. F., &			
Gould, D. (2018). Sex Differences in the Clinical Incidence of Concussions, Missed			
School Days, and Time Loss in High School Student-Athletes: Part 1. The			
American Journal of Sports Medicine, 46(9), 2263–2269.			
http://doi.org/10.1177/0363546518778251	14	14	AMSSM
Barr, W. B., & McCrea, M. (2001). Sensitivity and specificity of standardized			
neurocognitive testing immediately following sports concussion. Journal of the			
International Neuropsychological Society, 7(6), 693–702.			
http://doi.org/10.1017/s1355617701766052	15	15	AMSSM
Barr, W. B., Prichep, L. S., Chabot, R., Powell, M. R., & McCrea, M. (2012).			
Measuring brain electrical activity to track recovery from sport-related concussion.			
Brain Injury : [BI], 26(1), 58–66. http://doi.org/10.3109/02699052.2011.608216	16	16	AMSSM
McCrea, M., Kelly, J. P., Randolph, C., Cisler, R., & Berger, L. (2002). Immediate			
neurocognitive effects of concussion. Neurosurgery, 50(5), 1032–40– discussion			
1040-2. http://doi.org/10.1097/00006123-200205000-00017	17	17	AMSSM
McCrea M. Standardized mental status assessment of sports concussion.Clin J			
Sport Med. 2001;11:176–181.	18	18	AMSSM
McCrea, M., Barr, W. B., Guskiewicz, K., Randolph, C., Marshall, S. W., Cantu, R.,			
et al. (2005). Standard regression-based methods for measuring recovery after			
sport-related concussion. Journal of the International Neuropsychological Society,	10	10	
11(1), 58–69. http://doi.org/10.1017/S1355617705050083	19	19	AMSSM
Marinides, Z., Galetta, K. M., Andrews, C. N., Wilson, J. A., Herman, D. C.,			
Robinson, C. D., et al. (2015). Vision testing is additive to the sideline assessment			
of sports-related concussion. Neurology. Clinical Practice, 5(1), 25–34.			
http://doi.org/10.1212/CPJ.0000000000000000	20	20	AMSSM
Galetta, K. M., Morganroth, J., Moehringer, N., Mueller, B., Hasanaj, L., Webb, N.,			
et al. (2015). Adding Vision to Concussion Testing: A Prospective Study of Sideline			
Testing in Youth and Collegiate Athletes. Journal of Neuro-Ophthalmology : the			
Official Journal of the North American Neuro-Ophthalmology Society, 35(3), 235–	01	01	
241. http://doi.org/10.1097/WNO.000000000000226	21	21	AMSSM

Putukian, M., Echemendia, R., Dettwiler-Danspeckgruber, A., Duliba, T., Bruce, J.,			
Furtado, J. L., & Murugavel, M. (2015). Prospective clinical assessment using			
Sideline Concussion Assessment Tool-2 testing in the evaluation of sport-related			
concussion in college athletes. Clinical Journal of Sport Medicine : Official Journal			
of the Canadian Academy of Sport Medicine, 25(1), 36-42.			
http://doi.org/10.1097/JSM.000000000000000000000000000000000000	22	22	AMSSM
Chin, E. Y., Nelson, L. D., Barr, W. B., McCrory, P., & McCrea, M. A. (2016).			
Reliability and Validity of the Sport Concussion Assessment Tool-3 (SCAT3) in			
High School and Collegiate Athletes. The American Journal of Sports Medicine,			
44(9), 2276–2285. http://doi.org/10.1177/0363546516648141	23	23	AMSSM
Seidman, D. H., Burlingame, J., Yousif, L. R., Donahue, X. P., Krier, J., Rayes, L.			
J., et al. (2015). Evaluation of the King-Devick test as a concussion screening tool			
in high school football players. Journal of the Neurological Sciences, 356(1-2), 97–			
101. http://doi.org/10.1016/j.jns.2015.06.021	24	24	AMSSM
Dompier, T. P., Kerr, Z. Y., Marshall, S. W., Hainline, B., Snook, E. M., Hayden, R.,			7.00000
& Simon, J. E. (2015). Incidence of Concussion During Practice and Games in			
Youth, High School, and Collegiate American Football Players. JAMA Pediatrics,			
169(7), 659–665. http://doi.org/10.1001/jamapediatrics.2015.0210	25	25	AMSSM
Houck, Z., Asken, B., Bauer, R., Pothast, J., Michaudet, C., & Clugston, J. (2016).		20	711100111
Epidemiology of Sport-Related Concussion in an NCAA Division I Football Bowl			
Subdivision Sample. The American Journal of Sports Medicine, 44(9), 2269–2275.			
http://doi.org/10.1177/0363546516645070	26	26	AMSSM
Galetta, K. M., Brandes, L. E., Maki, K., Dziemianowicz, M. S., Laudano, E., Allen,		20	711100111
M., et al. (2011). The King-Devick test and sports-related concussion: study of a			
rapid visual screening tool in a collegiate cohort. Journal of the Neurological			
Sciences, 309(1-2), 34–39. http://doi.org/10.1016/j.jns.2011.07.039	27	27	AMSSM
Leong DF, Balcer LJ, Galetta SL, et al. The King-Devick test for sideline	L1	21	AMOOM
concussion screening in collegiate football. J Optom. 2015;8:131–139.	28	28	AMSSM
Dhawan, P. S., Leong, D., Tapsell, L., Starling, A. J., Galetta, S. L., Balcer, L. J., et	20	20	ANISSIN
al. (2017). King-Devick Test identifies real-time concussion and asymptomatic			
concussion in youth athletes. Neurology. Clinical Practice, 7(6), 464–473.			
http://doi.org/10.1212/CPJ.000000000000381	29	29	AMSSM
Bernhardt D, Roberts W, eds. Preparticipation Physical Evaluation	29	29	AIVISSIVI
Monograph. 4th ed. Chicago, IL: American Academy of Pediatrics; 2010.	30	30	AMSSM
			AIVISSIVI
National Collegiate Athletic Association (NCAA). Interassociation Consensus:			
Diagnosis and Management of Sport-Related Concussion	31	31	AMSSM
Best Practices. Indianapolis, IN; 2016.	31	31	AIVISSIVI
Herring SA, Cantu RC, Guskiewicz KM, et al. Concussion (mild trau- matic brain			
injury) and the team physician: a consensus statement— 2011 update. Med Sci	20	20	
Sports Exerc. 2011;43:2412–2422.	32	32	AMSSM

Broglio, S. P., Katz, B. P., Zhao, S., McCrea, M., McAllister, T., CARE Consortium			
Investigators. (2018). Test-Retest Reliability and Interpretation of Common			
Concussion Assessment Tools: Findings from the NCAA-DoD CARE Consortium.			
Sports Medicine, 48(5), 1255–1268. http://doi.org/10.1007/s40279-017-0813-0	33	33	AMSSM
Nelson LD, LaRoche AA, Pfaller AY, et al. Prospective, head-to-head study of			
three computerized neurocognitive assessment tools (CNTs): reliability and validity			
for the assessment of sport-related concussion.			
J Int Neuropsychol Soc. 2016;22:24–37.	34	34	AMSSM
Tucker, R., Raftery, M., Fuller, G. W., Hester, B., Kemp, S., & Cross, M. J. (2017).			
A video analysis of head injuries satisfying the criteria for a head injury			
assessment in professional Rugby Union: a prospective cohort study. British			
Journal of Sports Medicine, 51(15), 1147–1151. http://doi.org/10.1136/bjsports-			
2017-097883	35	35	AMSSM
Fuller, G. W., Kemp, S. P. T., & Raftery, M. (2017). The accuracy and			
reproducibility of video assessment in the pitch-side management of concussion in			
elite rugby. Journal of Science and Medicine in Sport / Sports Medicine Australia,			
20(3), 246–249. http://doi.org/10.1016/j.jsams.2016.07.008	36	36	AMSSM
Echemendia, R. J., Bruce, J. M., Meeuwisse, W., Hutchison, M. G., Comper, P., &			
Aubry, M. (2018). Can visible signs predict concussion diagnosis in the National			
Hockey League? British Journal of Sports Medicine, 52(17), 1149–1154.			
http://doi.org/10.1136/bjsports-2016-097090	37	37	AMSSM
Patricios, J., Fuller, G. W., Ellenbogen, R., Herring, S., Kutcher, J. S., Loosemore,			
M., et al. (2017). What are the critical elements of sideline screening that can be			
used to establish the diagnosis of concussion? A systematic review. British Journal			
of Sports Medicine, 51(11), 888–894. http://doi.org/10.1136/bjsports-2016-097441	38	38	AMSSM
Randolph, C., McCrea, M., & Barr, W. B. (2005). Is neuropsychological testing			
useful in the management of sport-related concussion? Journal of Athletic			
Training, 40(3), 139–152.	39	39	AMSSM
Garcia, GG. P., Broglio, S. P., Lavieri, M. S., McCrea, M., McAllister, T., CARE			
Consortium Investigators. (2018). Quantifying the Value of Multidimensional			
Assessment Models for Acute Concussion: An Analysis of Data from the NCAA-			
DoD Care Consortium. Sports Medicine, 48(7), 1739–1749.			
http://doi.org/10.1007/s40279-018-0880-x	40	40	AMSSM
Echemendia RJ, Meeuwisse W, McCrory P, et al. The Sport Concussion			
Assessment Tool 5th Edition (SCAT5): background and rationale. Br J			
Sports Med. 2017;51:848–850.	41	41	AMSSM
Davis GA, Purcell L, Schneider KJ, et al. The Child Sport Concussion Assessment			
Tool 5th Edition (Child SCAT5): Background and rationale. Br J Sports Med			
2017;51:859–61	42	42	AMSSM

Norheim, N., Kissinger-Knox, A., Cheatham, M., & Webbe, F. (2018). Performance			
of college athletes on the 10-item word list of SCAT5. BMJ Open Sport & Exercise			
Medicine, 4(1), e000412. http://doi.org/10.1136/bmjsem-2018-000412	43	43	AMSSM
Kamins J, Bigler E, Covassin T, et al. What is the physiological time to recovery			
after concussion? A systematic review. Br J Sports Med 2017;51:935–40.	44	44	AMSSM
Valovich McLeod, T. C., & Hale, T. D. (2015). Vestibular and balance issues			
following sport-related concussion. Brain Injury : [BI], 29(2), 175–184.			
http://doi.org/10.3109/02699052.2014.965206	45	45	AMSSM
Mucha, A., Collins, M. W., Elbin, R. J., Furman, J. M., Troutman-Enseki, C.,			
DeWolf, R. M., et al. (2014). A Brief Vestibular/Ocular Motor Screening (VOMS)			
Assessment to Evaluate Concussions. The American Journal of Sports Medicine,			
42(10), 2479–2486. http://doi.org/10.1177/0363546514543775	46	46	AMSSM
Eckner, J. T., Kutcher, J. S., Broglio, S. P., & Richardson, J. K. (2013). Effect of			
sport-related concussion on clinically measured simple reaction time. British			
Journal of Sports Medicine, 48(2), 112-118. http://doi.org/10.1136/bjsports-2012-			
091579	47	47	AMSSM
O'Connor KL, Rowson S, Duma SM, Broglio SP. Head-Impact–Measurement			
Devices: A Systematic Review. J Athl Train. 2017;52(3):206-227.			
doi:10.4085/1062-6050.52.2.05.	48	48	AMSSM
Broglio SP, Lapointe A, O'Connor KL, et al. Head impact density: a model to			
explain the elusive concussion threshold. J Neurotrauma.			
2017;34:2675–2683.	49	49	AMSSM
McCrea M, Meier T, Huber D, et al. Role of advanced neuroimaging,			
fluid biomarkers and genetic testing in the assessment of sport-related			
concussion: a systematic review. Br J Sports Med. 2017;51:919-929.	50	50	AMSSM
Collins MW, Kontos AP, Okonkwo DO, et al. Statements of agreement from the			
Targeted Evaluation and Active Management (TEAM) approaches to treating			
concussion meeting held in Pittsburgh, October			
15–16, 2015. Neurosurgery. 2016;79:912–929.	51	51	AMSSM
Ellis MJ, Leddy JJ, Willer B. Physiological, vestibulo-ocular and			
cervicogenic post-concussion disorders: an evidence-based classification			
system with directions for treatment. Brain Inj. 2015;29:238-248.	52	52	AMSSM
Collins MW, Kontos AP, Reynolds E, et al. A comprehensive, targeted approach to			
the clinical care of athletes following sport-related			
concussion. Knee Surg Sports Traumatol Arthrosc. 2014;22:235–246	53	53	AMSSM
Feddermann-Demont N, Echemendia RJ, Schneider KJ, et al. What domains of			
clinical function should be assessed after sport-related			
concussion? A systematic review. Br J Sports Med. 2017;51:903–918.	54	54	AMSSM

McCrea M, Guskiewicz K, Randolph C, et al. Incidence, clinical course, and predictors of prolonged recovery time following sport-related concussion in			
high school and college athletes. J Int Neuropsychol Soc. 2013;19:22–33.	55	55	AMSSM
Zemek, R., Barrowman, N., Freedman, S. B., Gravel, J., Gagnon, I., McGahern,		00	
C., et al. (2016). Clinical Risk Score for Persistent Postconcussion Symptoms			
Among Children With Acute Concussion in the ED. JAMA: the Journal of the			
American Medical Association, 315(10), 1014–12.			
http://doi.org/10.1001/jama.2016.1203	56	56	AMSSM
McCrea, M., Guskiewicz, K., Randolph, C., Barr, W. B., Hammeke, T. A., Marshall,			
S. W., & Kelly, J. P. (2013). Incidence, clinical course, and predictors of			
prolonged recovery time following sport-related concussion in high school and			
college athletes. Journal of the International Neuropsychological Society: JINS,			
19(1), 22.	57	57	AMSSM
Leddy, J. J., Hinds, A. L., Miecznikowski, J., Darling, S., Matuszak, J., Baker, J. G.,			
et al. (2018). Safety and Prognostic Utility of Provocative Exercise Testing in			
Acutely Concussed Adolescents: A Randomized Trial. Clinical Journal of Sport			
Medicine : Official Journal of the Canadian Academy of Sport Medicine, 28(1), 13–			
20. http://doi.org/10.1097/JSM.000000000000431	58	58	AMSSM
Schneider KJ, Leddy JJ, Guskiewicz KM, et al. Rest and treatment/ rehabilitation			
following sport-related concussion: a systematic review.			
Br J Sports Med. 2017;51:930–934.	59	59	AMSSM
Schneider KJ, Iverson GL, Emery CA, et al. The effects of rest and			
treatment following sport-related concussion: a systematic review of the			
literature. Br J Sports Med. 2013;47:304–307.	60	60	AMSSM
Griesbach GS, Hovda DA, Molteni R, Wu A, Gomez-Pinilla F. Voluntary exercise			
following traumatic brain injury: brain-derived neurotrophic factor upregulation and			
recovery of function. Neuroscience. 2004;125(1):129-139.			
doi:10.1016/j.neuroscience.2004.01.030.	61	61	AMSSM
Griesbach GS, Tio DL, Vincelli J, et al. Differential effects of voluntary and forced			
exercise on stress responses after traumatic brain injury.	22		
J Neurotrauma. 2012;29:1426–1433.	62	62	AMSSM
Griesbach GS, Tio DL, Nair S, et al. Recovery of stress response coincides			
with responsiveness to voluntary exercise after traumatic brain injury.	22		
J Neurotrauma. 2014;31:674–682.	63	63	AMSSM
Mychasiuk R, Hehar H, Ma I, et al. Reducing the time interval between			
concussion and voluntary exercise restores motor impairment, short- term	04		4140014
memory, and alterations to gene expression. Eur J Neurosci. 2016; 44:2407–2417.	64	64	AMSSM
Thomas DG, Apps JN, Hoffmann RG, McCrea M, Hammeke T. Benefits of strict			
rest after acute concussion: a randomized controlled trial. Pediatrics.	05	05	4140014
2015;135(2):213-223. doi:10.1542/peds.2014-0966.	65	65	AMSSM

		-	
Grool AM, Aglipay M, Momoli F, et al. Association Between Early Participation in			
Physical Activity Following Acute Concussion and Persistent Postconcussive			
Symptoms in Children and Adolescents. JAMA. 2016;316(23):2504-2514.			
doi:10.1001/jama.2016.17396.	66	66	AMSSM
1. Leddy JJ, Kozlowski K, Fung M, Pendergast DR, Willer B. Regulatory and			
autoregulatory physiological dysfunction as a primary characteristic of post			
concussion syndrome: implications for treatment. NeuroRehabilitation.			
2007;22(3):199-205.	67	67	AMSSM
Clausen M, Pendergast DR, Willer B, et al. Cerebral blood flow during treadmill			
exercise is a marker of physiological postconcussion syndrome in female athletes.			
J Head Trauma Rehabil. 2016;31:215–224	68	68	AMSSM
1. Besnier F, Labrunée M, Pathak A, et al. Exercise training-induced modification			
in autonomic nervous system: An update for cardiac patients. Ann Phys Rehabil			
Med. 2017;60(1):27-35. doi:10.1016/j.rehab.2016.07.002.	69	69	AMSSM
1. Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of			
hippocampus and improves memory. Proc Natl Acad Sci USA. 2011;108(7):3017-			
3022. doi:10.1073/pnas.1015950108.	70	70	AMSSM
1. Lawrence DW, Richards D, Comper P, Hutchison MG. Earlier time to aerobic			
exercise is associated with faster recovery following acute sport concussion.			
Janigro D, ed. PLoS ONE. 2018;13(4):e0196062-12.			
doi:10.1371/journal.pone.0196062.	71	71	AMSSM
Leddy JJ, Haider MN, Hinds AL, Darling S, Willer BS. A Preliminary Study of the			
Effect of Early Aerobic Exercise Treatment for Sport-Related Concussion in Males.			
Clin J Sport Med. 2019;29(5):353-360. doi:10.1097/JSM.00000000000663.	72	72	AMSSM
Oliver JM, Anzalone AJ, Turner SM. Protection Before Impact: the Potential			
Neuroprotective Role of Nutritional Supplementation in Sports-Related Head			
Trauma. Sports Medicine. 2018;48(Suppl 1):39-52. doi:10.1007/s40279-017-0847-			
3.	73	73	AMSSM
Trojian TH, Wang DH, Leddy JJ. Nutritional supplements for the treatment and			
prevention of sports-related concussion-evidence still lacking. Curr Sports Med			
Rep. 2017;16:247–255.	74	74	AMSSM
Ashbaugh, A., & McGrew, C. (2016). The Role of Nutritional Supplements in			
Sports Concussion Treatment. Current Sports Medicine Reports, 15(1), 16–19.			
http://doi.org/10.1249/JSR.0000000000000219	75	75	AMSSM
Oliver JM, Jones MT, Kirk KM, et al. Effect of docosahexaenoic acid on a	-	-	
biomarker of head trauma in American football. Med Sci Sports Exerc.			
2016;48:974–982.	76	76	AMSSM
Makdissi M, Schneider KJ, Feddermann-Demont N, et al. Approach to	-	-	
investigation and treatment of persistent symptoms following sport-related			
concussion: a systematic review. Br J Sports Med. 2017;51:958–968.	77	77	AMSSM

Leddy JJ, Baker JG, Kozlowski K, et al. Reliability of a graded exercise test for			
assessing recovery from concussion. Clin J Sport Med. 2011;21:89–94.	78	78	AMSSM
Leddy JJ, Kozlowski K, Donnelly JP, et al. A preliminary study of			
subsymptom threshold exercise training for refractory post-concussion			
syndrome. Clin J Sport Med. 2010;20:21–27.	79	79	AMSSM
Ellis, M. J., Leddy, J., & Willer, B. (2016). Multi-Disciplinary Management of			
Athletes with Post-Concussion Syndrome: An Evolving Pathophysiological			
Approach. Frontiers in Neurology, 7, 136. http://doi.org/10.3389/fneur.2016.00136	80	80	AMSSM
Leddy, J. J., Haider, M. N., Ellis, M., & Willer, B. S. (2018). Exercise is Medicine for			
Concussion. Current Sports Medicine Reports, 17(8), 262–270.			
http://doi.org/10.1249/JSR.0000000000000505	81	81	AMSSM
Broglio, S. P., Collins, M. W., Williams, R. M., Mucha, A., & Kontos, A. P. (2015).			
Current and emerging rehabilitation for concussion: a review of the evidence.			
Clinics in Sports Medicine, 34(2), 213–231.			
http://doi.org/10.1016/j.csm.2014.12.005	82	82	AMSSM
Schneider KJ, Meeuwisse WH, Nettel-Aguirre A, et al. Cervicovestibular			
rehabilitation in sport-related concussion: a randomised controlled trial. Br J Sports			
Med 2014;48:1294–8.	83	83	AMSSM
Hugentobler JA, Vegh M, Janiszewski B, et al. Physical therapy intervention			
strategies for patients with prolonged mild traumatic brain injury symptoms: A case			
series. Int J Sports Phys Ther 2015;10:676–89	84	84	AMSSM
Hoffman, N. L., Weber, M. L., Broglio, S. P., McCrea, M., McAllister, T. W., &			
Schmidt, J. D. (2017). Influence of Postconcussion Sleep Duration on Concussion			
Recovery in Collegiate Athletes. Clinical Journal of Sport Medicine, Publish Ahead			
of Print, 1–7. http://doi.org/10.1097/JSM.000000000000538	85	85	AMSSM
McCarty CA, Zatzick D, Stein E, et al. Collaborative care for adolescents			
with persistent postconcussive symptoms: a randomized trial. Pediatrics			
2016:138:e20160459.	86	86	AMSSM
O'Neill, J. A., Cox, M. K., Clay, O. J., Johnston, J. M., Jr., Novack, T. A., Schwebel,			
D. C., & Dreer, L. E. (2017). A review of the literature on pediatric concussions and			
return-to-learn (RTL): Implications for RTL policy, research, and practice.			
Rehabilitation Psychology, 62(3), 300-323. https://doi.org/10.1037/rep0000155	87	87	AMSSM
Halstead, M. E., McAvoy, K., Devore, C. D., Carl, R., Lee, M., Logan, K., et al.			
(2013). Returning to learning following a concussion. Pediatrics, 132(5), 948–957.			
http://doi.org/10.1542/peds.2013-2867	88	88	AMSSM
McAvoy, K., Eagan-Johnson, B., & Halstead, M. (2018). Return to learn:			
Transitioning to school and through ascending levels of academic support for			
students following a concussion. NeuroRehabilitation, 42(3), 325–330.			
http://doi.org/10.3233/NRE-172381	89	89	AMSSM

Lucas, J. A., Moore, J. B., Davis, S., Brooks, J. O., & Miles, C. (2019). Provider			
attitudes and management regarding returning to drive after concussion. British			
Journal of Sports Medicine, 53(8), 495. http://doi.org/10.1136/bjsports-2018-	90	90	AMSSM
099118 Schmidt, J. D., Hoffman, N. L., Ranchet, M., Miller, L. S., Tomporowski, P. D.,	90	90	AIVISSIVI
Akinwuntan, A. E., & Devos, H. (2017). Driving after Concussion: Is It Safe To			
Drive after Symptoms Resolve? Journal of Neurotrauma, 34(8), 1571–1578.			
http://doi.org/10.1089/neu.2016.4668	91	91	AMSSM
Asken, B. M., Bauer, R. M., Guskiewicz, K. M., McCrea, M. A., Schmidt, J. D.,	91	91	AIVISSIVI
Giza, C. C., et al. (2018). Immediate Removal From Activity After Sport-Related			
Concussion Is Associated With Shorter Clinical Recovery and Less Severe			
Symptoms in Collegiate Student-Athletes. The American Journal of Sports			
Medicine, 46(6), 363546518757984–1474.			
http://doi.org/10.1177/0363546518757984	92	92	AMSSM
Asken, B. M., McCrea, M. A., Clugston, J. R., Snyder, A. R., Houck, Z. M., &	52	52	710000
Bauer, R. M. (2016). "Playing Through It": Delayed Reporting and Removal From			
Athletic Activity After Concussion Predicts Prolonged Recovery. Journal of Athletic			
Training, 51(4), 329–335. http://doi.org/10.4085/1062-6050-51.5.02	93	93	AMSSM
Elbin, R. J., Sufrinko, A., Schatz, P., French, J., Henry, L., Burkhart, S., et al.	00	00	740000
(2016). Removal From Play After Concussion and Recovery Time. Pediatrics,			
138(3). http://doi.org/10.1542/peds.2016-0910	94	94	AMSSM
Howell, D. R., O'Brien, M. J., Fraser, J., & Meehan, W. P. (2018). Continuing Play,			
Symptom Severity, and Symptom Duration After Concussion in Youth Athletes.			
Clinical Journal of Sport Medicine, Publish Ahead of Print, 1–5.			
http://doi.org/10.1097/JSM.000000000000570	95	95	AMSSM
McCrea, M., Guskiewicz, K., Randolph, C., Barr, W. B., Hammeke, T. A., Marshall,			
S. W., & Kelly, J. P. (2009). Effects of a symptom-free waiting period on clinical			
outcome and risk of reinjury after sport-related concussion. Neurosurgery, 65(5),			
876-82- discussion 882-3. http://doi.org/10.1227/01.NEU.0000350155.89800.00	96	96	AMSSM
Brooks, M. A., Peterson, K., Biese, K., Sanfilippo, J., Heiderscheit, B. C., & Bell, D.			
R. (2016). Concussion Increases Odds of Sustaining a Lower Extremity			
Musculoskeletal Injury After Return to Play Among Collegiate Athletes. The			
American Journal of Sports Medicine, 44(3), 742–747.			
http://doi.org/10.1177/0363546515622387	97	97	AMSSM
Herman, D. C., Jones, D., Harrison, A., Moser, M., Tillman, S., Farmer, K., et al.			
(2017). Concussion May Increase the Risk of Subsequent Lower Extremity			
Musculoskeletal Injury in Collegiate Athletes. Sports Medicine, 47(5), 1003–1010.			
http://doi.org/10.1007/s40279-016-0607-9	98	98	AMSSM
Stovitz, S. D., Weseman, J. D., Hooks, M. C., Schmidt, R. J., Koffel, J. B., &			
Patricios, J. S. (2017). What Definition Is Used to Describe Second Impact	99	99	AMSSM

Syndrome in Sports? A Systematic and Critical Review. Current Sports Medicine Reports, 16(1), 50–55. http://doi.org/10.1249/JSR.00000000000326			
Cooney, G., Dwan, K., & Mead, G. (2014). Exercise for depression. JAMA : the			
Journal of the American Medical Association, 311(23), 2432–2433.			
http://doi.org/10.1001/jama.2014.4930	100	100	AMSSM
Kerr, Z. Y., Evenson, K. R., Rosamond, W. D., Mihalik, J. P., Guskiewicz, K. M., &			
Marshall, S. W. (2014). Association between concussion and mental health in			
former collegiate athletes. Injury Epidemiology, 1(1), 28.			
http://doi.org/10.1186/s40621-014-0028-x	101	101	AMSSM
Guskiewicz KM, Marshall SW, Bailes J, et al. Recurrent concussion and			
risk of depression in retired professional football players. Med Sci Sports	100	100	4140014
Exerc. 2007;39:903–909.	102	102	AMSSM
Lehman EJ, Hein MJ, Gersic CM. Suicide mortality among retired National Football League players who played 5 or more seasons. Am J Sports			
Med. 2016;44:2486–2491.	103	103	AMSSM
Deshpande, S. K., Hasegawa, R. B., Rabinowitz, A. R., Whyte, J., Roan, C. L.,	103	103	AIVISSIVI
Tabatabaei, A., et al. (2017). Association of Playing High School Football With			
Cognition and Mental Health Later in Life. JAMA Neurology, 74(8), 909–918.			
http://doi.org/10.1001/jamaneurol.2017.1317	104	104	AMSSM
Iverson GL, Keene CD, Perry G, Castellani RJ. The Need to Separate Chronic	101		741100111
Traumatic Encephalopathy Neuropathology from Clinical Features. J Alzheimers			
Dis. 2018;61(1):17-28. doi:10.3233/JAD-170654.	105	105	AMSSM
McKee AC, Stein TD, Nowinski CJ, et al. The spectrum of disease in chronic			
traumatic encephalopathy. Brain. 2013;136:43-64.	106	106	AMSSM
Stein TD, Alvarez VE, McKee AC. Chronic traumatic encephalopathy: a spectrum			
of neuropathological changes following repetitive brain trauma in athletes and			
military personnel. Alzheimers Res Ther. 2014;6(1):4-11. doi:10.1186/alzrt234.	107	107	AMSSM
Savica R, Parisi JE, Wold LE, et al. High school football and risk of			
neurodegeneration: a community-based study. Mayo Clin Proc. 2012; 87:335–340.	108	108	AMSSM
Janssen PH, Mandrekar J, Mielke MM, et al. High school football and late-life risk			
of neurodegenerative syndromes, 1956–1970. Mayo Clin Proc. 2017;92:66–71.	109	109	AMSSM
Asken BM, Sullan MJ, DeKosky ST, Jaffee MS, Bauer RM. Research Gaps and			
Controversies in Chronic Traumatic Encephalopathy: A Review. JAMA Neurol.			
2017;74(10):1255-1262. doi:10.1001/jamaneurol.2017.2396.	110	110	AMSSM
Asken BM, Sullan MJ, Snyder AR, et al. Factors Influencing Clinical Correlates of			
Chronic Traumatic Encephalopathy (CTE): a Review. Neuropsychol Rev.			4140.014
2016;26(4):340-363. doi:10.1007/s11065-016-9327-z.	111	111	AMSSM
Manley G, Gardner AJ, Schneider KJ, et al. A systematic review of potential long-	110	110	
term effects of sport-related concussion. Br J Sports Med. 2017;51:969–977.	112	112	AMSSM

		1	
Mainwaring L, Ferdinand Pennock KM, Mylabathula S, Alavie BZ. Subconcussive			
head impacts in sport: A systematic review of the evidence. International journal of			
psychophysiology : official journal of the International Organization of	110	110	4140014
Psychophysiology. 2018;132(Pt A):39-54. doi:10.1016/j.ijpsycho.2018.01.007.	113	113	AMSSM
Davis-Hayes C, Baker DR, Bottiglieri TS, et al. Medical retirement from sport after			
concussions: A practical guide for a difficult discussion. Neurology: Clinical			
Practice. 2018;8(1):40-47. doi:10.1212/CPJ.00000000000424.	114	114	AMSSM
Black AM, Macpherson AK, Hagel BE, et al. Policy change eliminating body			
checking in non-elite ice hockey leads to a threefold reduction in injury and			
concussion risk in 11- and 12-year-old players. British Journal of Sports Medicine.			
2016;50(1):55-61. doi:10.1136/bjsports-2015-095103.	115	115	AMSSM
Krolikowski MP, Black AM, Palacios-Derflingher L, Blake TA, Schneider KJ, Emery			
CA. The Effect of the "Zero Tolerance for Head Contact" Rule Change on the Risk			
of Concussions in Youth Ice Hockey Players. Am J Sports Med. 2017;45(2):468-			
473. doi:10.1177/0363546516669701.	116	116	AMSSM
Emery CA, Black AM, Kolstad A, et al. What strategies can be used to effectively			
reduce the risk of concussion in sport? A systematic review. British Journal of			
Sports Medicine. 2017;51(12):978-984. doi:10.1136/bjsports-2016-097452.	117	117	AMSSM
Kerr ZY, Yeargin S, Valovich McLeod TC, et al. Comprehensive Coach Education			
and Practice Contact Restriction Guidelines Result in Lower Injury Rates in Youth			
American Football. Orthop J Sports Med. 2015;3(7):232596711559457-			
232596711559458. doi:10.1177/2325967115594578.	118	118	AMSSM
Kerr ZY, Yeargin SW, Valovich McLeod TC, Mensch J, Hayden R, Dompier TP.			
Comprehensive Coach Education Reduces Head Impact Exposure in American			
Youth Football. Orthop J Sports Med. 2015;3(10):2325967115610545.			
doi:10.1177/2325967115610545.	119	119	AMSSM
Resch JE, Brown CN, Schmidt J, et al. The sensitivity and specificity of clinical			
measures of sport concussion: three tests are better than one. BMJ Open Sport			
Exerc Med. 2016;2:e000012.	120	120	AMSSM
Echlin PS, Tator CH, Cusimano MD, et al. A prospective study of physician-			
observed concussions during junior ice hockey: implications for incidence rates.			
Neurosurg Focus. 2010;29(5):E4. doi:10.3171/2010.9.FOCUS10186.	121	121	AMSSM
Broglio SP, Sosnoff JJ, Ferrara MS. The relationship of athlete-reported			
concussion symptoms and objective measures of neurocognitive function and			
postural control. Clin J Sport Med. 2009;19(5):377-382.			
doi:10.1097/JSM.0b013e3181b625fe.	122	122	AMSSM
Leong DF, Balcer LJ, Galetta SL, Liu Z, Master CL. The King-Devick test as a			
concussion screening tool administered by sports parents. J Sports Med Phys			
Fitness. 2014;54(1):70-77.	123	123	AMSSM
1 101000. 201-7,07(1).10-11.	120	120	

King, D., Gissane, C., Hume, P. A., & Flaws, M. (2015). The King–Devick test was useful in management of concussion in amateur rugby union and rugby league in	104	101	4140014
New Zealand. <i>Journal of the neurological sciences</i> , 351(1-2), 58-64.	124	124	AMSSM
Fuller GW, Cross MJ, Stokes KA, et al. King-Devick concussion test performs			
poorly as a screening tool in elite rugby union players: a prospective cohort study			
of two screening tests versus a clinical reference standard. Br J Sports Med. 2018.	105	105	
doi:10.1136/bjsports-2017-098560.	125	125	AMSSM
Hecimovich M, King D, Dempsey AR, Murphy M. The King-Devick test is a valid			
and reliable tool for assessing sport-related concussion in Australian football: A			
prospective cohort study. J Sci Med Sport. 2018;21(10):1004-1007.	100	100	
doi:10.1016/j.jsams.2018.03.011.	126	126	AMSSM
Eddy R, Goetschius J, Hertel J, Resch J. Test-Retest Reliability and the Effects of			
Exercise on the King-Devick Test. Clin J Sport Med. 2020;30(3):239-244.			
doi:10.1097/JSM.000000000000586.	127	127	AMSSM
Eckner JT, Chandran S, Richardson JK. Investigating the role of feedback and			
motivation in clinical reaction time assessment. PM R. 2011;3(12):1092-1097.			
doi:10.1016/j.pmrj.2011.04.022.	128	128	AMSSM
Aubry, M., Cantu, R., Dvorak, J., Graf-Baumann, T., Johnston, K., Kelly, J., et al.			
(2002). Summary and agreement statement of the First International Conference			
on Concussion in Sport, Vienna 2001. Recommendations for the improvement of			
safety and health of athletes who may suffer concussive injuries. (Vol. 36, pp. 6-			
10). Presented at the British journal of sports medicine.	1	129	ICCCS
McCrory P Johnston K, Meeuwisse W, et al. Summary and agreement statement			
of the 2nd international conference on concussion in sport, Prague 2004. Br J			
Sports Med 2005;39:i78–i86.	2	130	ICCCS
McCrory P, Meeuwisse W, Johnston K, et al. Consensus statement on concussion			
in sport - the third international conference on concussion in sport held in Zurich,			
November 2008. Phys Sportsmed 2009;37:141–59	3	131	ICCCS
McCrory P, Meeuwisse WH, Aubry M, et al. Consensus statement on concussion			
in sport: the 4th international conference on concussion in sport held in Zurich,			
november 2012. Br J Sports Med 2013;47:250–8.	4	132	ICCCS
Meeuwisse W, Schneider K, Dvorak J, et al. The berlin 2016 process: a summary			
of methodology for the 5th international consensus conference on concussion in			
sport.Br J Med 2017. (accepted and in press 22/1/2017).	5	133	ICCCS
Maddocks D, Dicker G. An objective measure of recovery from concussion in	0	100	10000
Australian rules footballers. Sport Health 1989;7:6–7.	6	134	ICCCS
Maddocks DL, Dicker GD, Saling MM. The assessment of orientation following	0		10000
concussion in athletes. Clin J Sport Med 1995;5:32–5.	7	135	ICCCS
McCrea, M. (2001). Standardized mental status assessment of sports concussion.	1	100	10000
Clinical Journal of Sport Medicine, 11(3), 176-181.	8	136	ICCCS
	U	100	10003

AcCrea, M., Kelly, J. P., Randolph, C., Kluge, J., Bartolic, E., Finn, G., & Baxter, B.			
1998). Standardized assessment of concussion (SAC): on-site mental status			
evaluation of the athlete. The Journal of head trauma rehabilitation, 13(2), 27-35.	9	137	ICCCS
AcCrea M, Randolph C, Kelly J. The Standardized Assessment of Concussion	0	107	10000
SAC): Manual for Administration, Scoring and Interpretation. 2nd ed. Waukesha:			
VI, 2000.	10	138	ICCCS
AcCrea, M., Kelly, J. P., Kluge, J., Ackley, B., & Randolph, C. (1997).	-		
Standardized assessment of concussion in football players. Neurology, 48(3), 586-			
88.	11	139	ICCCS
Collie A, Darby D, Maruff P. Computerised cognitive assessment of athletes with			
ports related head injury. Br J Sports Med 2001;35:297–302.	12	140	ICCCS
Collie A, Maruff P. Computerised neuropsychological testing. Br J Sports Med			
2003;37:2–3.	13	141	ICCCS
Collie A, Maruff P, McStephen M, et al. Psychometric issues associated with			
computerised neuropsychological assessment of concussed athletes. Br J Sports			
Ned			
2003;37:556–9.	14	142	ICCCS
Collins MW, Grindel SH, Lovell MR, et al. Relationship between concussion			
and neuropsychological performance in college football players. Jama			
999;282:964–70	15	143	ICCCS
ovell MR. The relevance of neuropsychologic testing for sports-related head			
njuries.	10		10000
Curr Sports Med Rep 2002;1:7–11.	16	144	ICCCS
ovell MR, Collins MW. Neuropsychological assessment of the college football			
player.	17	145	ICCCS
I Head Trauma Rehabil 1998;13:9–26. Bleiberg J, Cernich AN, Cameron K, et al. Duration of cognitive impairment after	17	145	10005
ports concussion. Neurosurgery 2004;54:1073–78–78–80.	18	146	ICCCS
Bleiberg J, Warden D. Duration of cognitive impairment after sports concussion.	10	140	10003
Veurosurgery 2005;56:E1166.	19	147	ICCCS
Broglio SP, Macciocchi SN, Ferrara MS. Neurocognitive performance of	15	147	10000
concussed			
thletes when symptom free. J Athl Train 2007;42:504–8.	20	148	ICCCS
Broglio SP, Macciocchi SN, Ferrara MS. Sensitivity of the concussion assessment	20		10000
pattery. Neurosurgery 2007;60:1050–7–7–8.	21	149	ICCCS
Gioia G, Janusz J, Gilstein K, et al. Neuropsychological management of			
consussion			
n children and adolescents: effects of age and gender on ImPact. abstract). Br J			
Sp			
Ned 2004;38:657.	22	150	ICCCS

McCrory P, Collie A, Anderson V, et al. Can we manage sport related concussion			
in children the same as in adults? Br J Sports Med 2004;38:516–9.	23	151	ICCCS
Makdissi M, Schneider K, Feddermann-Demont N, et al. Approach to investigation			
and treatment of persistent symptoms following sport-related concussion: a			
systematic review. Br J Sports Med. In Press. 2017.	24	152	ICCCS
Manley, Geoff, Andrew J. Gardner, Kathryn J. Schneider, Kevin M. Guskiewicz, Julian Bailes, Robert C. Cantu, Rudolph J. Castellani et al. "A systematic review of			
potential long-term effects of sport-related concussion." British journal of sports medicine 51, no. 12 (2017): 969-977. (Updated ref)	25	153	ICCCS
McCrory P. Preparticipation assessment for head injury. Clin J Sport Med			
2004;14:139–44.	26	154	ICCCS
Johnston KM, Lassonde M, Ptito A. A contemporary neurosurgical approach to			
sport-related head injury: the McGill concussion protocol. J Am Coll Surg2001;192:515–24.	27	155	ICCCS
Delaney J, Lacroix V, Leclerc S, et al. Canadian football league season Clin J	L/	100	10000
Sport Med 1997;2000:9–14.	28	156	ICCCS
Delaney JS, Lacroix VJ, Leclerc S, et al. Concussions among university football			
and soccer players. Clin J Sport Med 2002;12:331-8.	29	157	ICCCS
Johnston KM, Bloom GA, Ramsay J, et al. Current concepts in concussion			
rehabilitation. Curr Sports Med Rep 2004;3:316–23.	30	158	ICCCS
Denke NJ. Brain injury in sports. J Emerg Nurs 2008;34:363-4.	31	159	ICCCS
Gianotti S, Hume PA. Concussion sideline management intervention for rugby			
union leads to reduced concussion claims. NeuroRehabilitation	00	100	10000
2007;22:181–9.	32	160	ICCCS
Guilmette TJ, Malia LA, McQuiggan MD. Concussion understanding and management among new England high school football coaches. Brain Inj			
2007;21:1039–47.	33	161	ICCCS
Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports:	0	101	10000
summary and recommendations for injury prevention initiatives. J Athl Train			
2007;42:311–9.	34	162	ICCCS
Valovich McLeod TC, Schwartz C, Bay RC. Sport-related concussion			
misunderstandings among youth coaches. Clin J Sport Med 2007;17:140–2.	35	163	ICCCS
Sye G, Sullivan SJ, McCrory P. High school rugby players' understanding of			
concussion and return to play guidelines. Br J Sports Med			10000
2006;40:1003–5.	36	164	ICCCS
Theye F, Mueller KA. "Heads up": concussions in high school sports. Clin Med Res	07	105	10000
2004;2:165–71.	37	165	ICCCS

Kashluba S, Paniak C, Blake T, et al. A longitudinal, controlled study of patient complaints following treated mild traumatic brain injury. Arch Clin Neuropsychol	20	100	10000
2004;19:805–16.	38	166	ICCCS
Gabbe B, Finch CF, Wajswelner H, et al. Does community-level Australian football support injury prevention research? J Sci Med Sport 2003;6:231–6.	39	167	ICCCS
Kaut KP, DePompei R, Kerr J, et al. Reports of head injury and symptom			
knowledge among college athletes: implications for assessment and educational intervention.			
Clin J Sport Med 2003;13:213–21.	40	168	ICCCS
Davidhizar R, Cramer C. "The best thing about the hospitalization was that the			
nurses kept me well informed" Issues and strategies of client education. Accid			
Emerg Nurs 2002;10:149–54	41	169	ICCCS
McCrory P. What advice should we give to athletes postconcussion? Br J Sports			
Med			
2002;36:316–8.	42	170	ICCCS
Bazarian JJ, Veenema T, Brayer AF, et al. Knowledge of concussion guidelines			
among			
practitioners caring for children. Clin Pediatr 2001;40:207–12.	43	171	ICCCS
Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of			
traumatic brain injury: a brief overview. J Head Trauma Rehabil 2006;21:375-8.	44	172	ICCCS
Langlois JA, Sattin RW. Traumatic brain injury in the United States: research and			
programs of the centers for disease control and prevention (CDC). J Head Trauma			
Rehabil 2005;20:187–8.	45	173	ICCCS
Kelly JP, Rosenberg JH. The development of guidelines for the management of			
concussion in sports. J Head Trauma Rehabil 1998;13:53-65.	46	174	ICCCS
Giza CC, Hovda DA. The neurometabolic cascade of concussion.J Athl Train.			
2001;36(3):228–235	1	175	NATA
Vagnozzi R, Signoretti S, Cristofori L, et al. Assessment of metabolic brain			
damage and recovery following mild traumatic brain injury: a multicentre, proton			
magnetic resonance spectro- scopic study in concussed patients. Brain.			
2010;133(11):3232-3242	2	176	NATA
Centers for Disease Control and Prevention. Nonfatal traumatic brain injuries			
related to sports and recreation activities among persons aged 19 years, United			
States, 2001–2009. MMWR Morb Mortal Wkly Rep. 2011;60(39):1337–1342	3	177	NATA
Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of			
traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375-			
378.	4	178	NATA
Guskiewicz KM, Bruce SL, Cantu RC, et al. National Athletic Trainers' Association			
position statement: management of sport- related concussion. J Athl Train.			
2004;39(3):280–297.	5	179	NATA

American Academy of Neurology. Practice parameter: the management of			
concussion in sports (summary statement). Report of the Quality Standards			
Subcommittee. Neurology. 1997;48(3):581–585.	6	180	NATA
McCrory, Paul, et al. "Consensus statement on concussion in sport—the 4th	•		
International Conference on Concussion in Sport held in Zurich, November			
2012." <i>PM&R</i> 5.4 (2013): 255-279.	7	181	NATA
Ebell MH, Siwek J, Weiss BD, et al. Strength of recommendation taxonomy	,	101	
(SORT): a patient-centered approach to grading evidence in the medical literature.			
Am Fam Physician. 2004;69(3):548–556.	8	182	NATA
Lovell MR, Collins MW, Iverson GL, Johnston KM, Bradley JP. Grade 1 or "ding"	0	102	11/11/1
concussions in high school athletes. Am J Sports Med. 2004;32(1):47–54.	9	183	NATA
Valovich Mcleod TC, Schwartz C, Bay RC. Sport-related concussion	5	100	
misunderstandings among youth coaches. Clin J Sport Med. 2007;17(2):140–142.	10	184	NATA
Sarmiento K, Mitchko J, Klein C, Wong S. Evaluation of the Centers for Disease	10	104	
Control and Prevention's concussion initiative for high school coaches: "Heads Up:			
Concussion in High School Sports." J Sch Health. 2010;80(3):112–118.	11	185	NATA
Glang A, Koester MC, Beaver SV, Clay JE, McLaughlin KA. Online training in	11	100	NATA
sports concussion for youth sports coaches. Int J Sports Sci Coach. 2010;5(1):1–			
12.	12	186	NATA
Schmidt JD, Register-Mihalik JK, Mihalik JP, Kerr ZY, Guskiewicz KM. Identifying	12	100	INATA
impairments after concussion: normative data versus individualized baselines. Med	10	107	ΝΙΑΤΑ
Sci Sports Exerc. 2012;44(9):1621–1628.	13	187	NATA
Randolph C. Baseline neuropsychological testing in managing sport-related	4.4	100	
concussion: does it modify risk? Curr Sports Med Rep. 2011;10(1):21–26.	14	188	NATA
Yakovlev PI, Lecours AR. The myelogenetic cycles of regional maturation of the			
brain. In: Minkowski A, ed. Regional Development of the Brain in Early Life.			
Philadelphia, PA: FA		100	
Davis; 1967:3–70	15	189	NATA
Hunt TN, Ferrara MS. Age-related differences in neuropsycho-logical testing	10	100	
among high school athletes. J Athl Train 2009;44(4):405–409.	16	190	NATA
Fields RD. White matter in learning, cognition and psychiatric		1.01	
disorders. Trends Neurosci. 2008;31(7):361–370.	17	191	NATA
Broglio SP, Puetz TW. The effect of sport concussion on neurocognitive function,			
self-report symptoms, and postural			
control: a meta-analysis. Sports Med. 2008;38(1):53-67.	18	192	NATA
Broglio SP, Macciocchi SN, Ferrara MS. Sensitivity of the concussion assessment			
battery. Neurosurgery. 2007;60(6):1050–	19	193	NATA
McCrea M, Barr WB, Guskiewicz K, et al. Standard regression-			
based methods for measuring recovery after sport-related			
concussion. J Int Neuropsychol Soc. 2005;11(1):58–69.	20	194	NATA

Moser, R. S., Schatz, P., Neidzwski, K., & Ott, S. D. (2011). Group versus			
individual administration affects baseline neurocognitive test performance. The			
American Journal of Sports Medicine, 39(11), 2325–2330.			
http://doi.org/10.1177/0363546511417114	21	195	NATA
McCrea M. Standardized mental status testing on the sideline after			
sport-related concussion. J Athl Train. 2001;36(3):274–279.	22	196	NATA
McCrea, M. (2001). Standardized mental status assessment of sports concussion.			
Clinical Journal of Sport Medicine, 11(3), 176–181.			
http://doi.org/10.1097/00042752-200107000-00008	23	197	NATA
Ragan BG, Kang M. Measurement issues in concussion testing.			
Athl Ther Today. 2007;12(5):2–6.	24	198	NATA
Moser RS, Iverson GL, Echemendia RJ, et al. Neuropsychological			
evaluation in the diagnosis and management of sports-related			
concussion. Arch Clin Neuropsychol. 2007;22(8):909–916.	25	199	NATA
Oliaro S, Anderson S, Hooker D. Management of cerebral concussion in sports:			
the athletic trainer's perspective. J Athl			
Train. 2001;36(3):257–262.	26	200	NATA
Halstead DP. Performance testing updates in head, face, and eye			
protection. J Athl Train. 2001;36(3):322–327	27	201	NATA
Herring SA, Cantu RC, Guskiewicz KM, et al; American College			
of Sports Medicine. Concussion (mild traumatic brain injury) and the team			
physician: a consensus statement. 2011 update. Med Sci Sports Exerc.			
2011;43(12):2412–2422.	28	202	NATA
Benson BW, Hamilton GM, Meeuwisse WH, McCrory P, Dvorak J. Is protective			
equipment useful in preventing concussion? A systematic review of the literature.			
Br J Sports Med. 2009;43(suppl 1):i56–i67.	29	203	NATA
Hagel BE, Pless IB, Goulet C, Platt RW, Robitaille Y. Effectiveness of helmets in			
skiers and snowboarders: case-control and case crossover study. BMJ.			
2005;330(7486):281.	30	204	NATA
Mueller BA, Cummings P, Rivara FP, Brooks MA, Terasaki RD. Injuries of the			
head, face, and neck in relation to ski helmet use.Epidemiology. 2008;19(2):270-			
276.	31	205	NATA
Mueller, B. A., Cummings, P., Rivara, F. P., Brooks, M. A., & Terasaki, R. D.			
(2008). Injuries of the head, face, and neck in relation to ski helmet use.			
Epidemiology (Cambridge, Mass.), 19(2), 270–276.			
http://doi.org/10.1097/EDE.0b013e318163567c	32	206	NATA
Curnow WJ. Bicycle helmets and public health in Australia.Health Promot J Austr.			
2008;19(1):10–15.	33	207	NATA
Hewson PJ. Cycle helmets and road casualties in the UK. Traffic Inj Prev.			
2005;6(2):127–134.	34	208	NATA

Davidson JA. Epidemiology and outcome of bicycle injuries presenting to an emergency department in the United Kingdom.Eur J Emerg Med. 2005;12(1):24–			
29.	35	209	NATA
Field M, Collins MW, Lovell MR, Maroon J. Does age play a role in recovery from			
sports-related concussion? A comparison of high school and collegiate athletes. J			
Pediatr. 2003;142(5):546–553.	36	210	NATA
Pellman EJ, Lovell MR, Viano DC, Casson IR. Concussion in professional football:			
recovery of NFL and high school athletes assessed by computerized			
neuropsychological testing—part 12.Neurosurgery. 2006;58(2):263–274.	37	211	NATA
Gioia GA, Schneider JC, Vaughan CG, Isquith PK. Which symptom assessments			
and approaches are uniquely appropriate for paediatric concussion? Br J Sports			
Med. 2009;43(suppl 1):i13	38	212	NATA
Gioia GA, Schneider JC, Vaughan CG, Isquith PK. Which symptom assessments			
and approaches are uniquely appropriate for paediatric concussion? Br J Sports			
Med. 2009;43(suppl 1):i13	39	213	NATA
Yeates KO, Kaizer E, Rusin J, et al. Reliable change in postconcussive symptoms			
and its functional consequences among children with mild traumatic brain injury.			
Arch Pediatr Adolesc Med. 2012;166(7):615–622.	40	214	NATA
Valovich-Mcleod TC, Bay RC, Lam KC, Chhabra A. Represen- tative baseline			
values on the Sport Concussion Assessment Tool 2 (SCAT2) in adolescent			
athletes vary by gender, grade, and concussion history. Am J Sports Med.			
2012;40(4):927–933.	41	215	NATA
Valovich McLeod TC, Gioia GA. Cognitive rest: the often neglected aspect of			
concussion management. Athl Ther Today. 2010;15(2):1–3.	42	216	NATA
Casa DJ, Guskiewicz KM, Anderson SA, et al. National Athletic Trainers'			
Association position statement: preventing sudden death in sports. J Athl Train.			
2012;47(1):96–118.	43	217	NATA
McCrory P. Should we treat concussion pharmacologically? The need for evidence			
based pharmacological treatment for the concussed athlete. Br J Sports Med.			
2002;36(1):3–5.	44	218	NATA
Meehan WP. Medical therapies for concussion. Clin Sports Med. 2011;30(1):115-			
-124.	45	219	NATA
Guskiewicz KM, McCrea M, Marshall SW, et al. Cumulative effects associated with			
recurrent concussion in collegiate football players: the NCAA concussion study.			
JAMA. 2003;290(19):2549– 2555.	46	220	NATA
Guskiewicz KM, Marshall SW, Bailes J, et al. Recurrent concussion and risk of			
depression in retired professional football players. Med Sci Sports Exerc.			
2007;39(6):9	51	221	NATA
Saunders RL, Harbaugh RE. The second impact in catastrophic contact-sports			
head trauma. JAMA. 1984;252(4):538–539.	48	222	NATA

Cantu RC, Voy R. Second impact syndrome: a risk in any contact sport. Phys			
Sportsmed. 1995;23(6):27–28, 31.	49	223	NATA
Bruce DA, Alavi A, Bilaniuk L, Dolinskas C, Obrist W, Uzzell B. Diffuse cerebral			
swelling following head injuries in children: the syndrome of "malignant brain			
edema." J Neurosurg. 1981;54(2):170–178.	50	224	NATA
Guskiewicz KM, Marshall SW, Bailes J, et al. Recurrent concussion and risk of			
depression in retired professional football players. Med Sci Sports Exerc.			
2007;39(6):903–909.	51	225	NATA
Guskiewicz KM, Marshall SW, Bailes J, et al. Association between recurrent			
concussion and late-life cognitive impairment in retired professional football			
players. Neurosurgery. 2005;57(4):719–726.	52	226	NATA
McKee AC, Cantu RC, Nowinski CJ, et al. Chronic traumatic encephalopathy in			
athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp			
Neurol. 2009;68(7):709–735.	53	227	NATA
Covassin T, Elbin RJ, Sarmiento K. Educating coaches about concussion in			
sports: evaluation of the CDC's "Heads Up: Concussion in Youth Sports" initiative.			
J Sch Health. 2012;82(5):233–238.	54	228	NATA
Chrisman SP, Schiff MA, Rivara FP. Physician concussion knowledge and the			
effect of mailing the CDC's "Heads Up"toolkit. Clin Pediatr (Phila).			
2011;50(11):1031–1039.	55	229	NATA
Sawyer RJ, Hamdallah M, White D, Pruzan M, Mitchko J, Huitric M. High school			
coaches' assessments, intentions to use, and use of a concussion prevention			
toolkit: Centers for Disease Control and Prevention's "Heads Up: Concussion In			
High School Sports."Health Promot Pract. 2010;11(1):34–43.	56	230	NATA
McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in			
high school football players: implica- tions for prevention. Clin J Sport Med.			
2004;14(1):13–17.	57	231	NATA
Sefton JM, Pirog K, Capitao A, Harackiewicz D, Cordova ML. An examination of			
factors that influence knowledge and reporting of mild brain injuries in collegiate			
football. J Athl Train. 2004;39(suppl):S52–S53.	58	232	NATA
Sye G, Sullivan SJ, McCrory P. High school rugby players' understanding of			
concussion and return to play guidelines. Br J Sports Med. 2006;40(12):1003-			
1005.	59	233	NATA
Goodman D, Bradley NL, Paras B, Williamson IJ, Bizzochi J. Video gaming			
promotes concussion knowledge acquisition in youth hockey players. J Adolesc.			
2006;29(3):351–360.	60	234	NATA
Bramley H, Patrick K, Lehman E, Silvis M. High school soccer players with			
concussion education are more likely to notify their coach of a suspected			
concussion. Clin Pediatr (Phila). 2012;51(4):332–336.	61	235	NATA

Coghlin CJ, Myles BD, Howitt SD. The ability of parents to accurately report			
concussion occurrence in their bantam-aged minor hockey league children. J Can			
Chiropr Assoc. 2009;53(4):233–250.	62	236	NATA
Sullivan SJ, Bourne L, Choie S, et al. Understanding of sport concussion by the			
parents of young rugby players: a pilot study.Clin J Sport Med. 2009;19(3):228-			
230.	63	237	NATA
O'Donoghue EM, Onate JA, Van Lunen B, Peterson CL. Assessment of high			
school coaches' knowledge of sport-related concussions. Athl Train Sports Health.			
2009;1(3):120–132.	64	238	NATA
McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time			
following concussion in collegiate football players: the NCAA concussion study.			
JAMA. 2003;290(19):2556– 2563.	65	239	NATA
O'Donoghue EM, Onate JA, Van Lunen B, Peterson CL. Assessment of high			
school coaches' knowledge of sport-related concussions. Athl Train Sports Health.			
2009;1(3):120–132.	66	240	NATA
Gessel LM, Fields SK, Collins CL, Dick RW, Comstock RD. Concussions among			
United States high school and collegiate athletes. J Athl Train. 2007;42(4):495-			
503.	67	241	NATA
Wood RL, McCabe M, Dawkins J. The role of anxiety sensitivity in symptom			
perception after minor head injury: an exploratory study. Brain Inj. 2011;25(13-			
14):1296–1299.	68	242	NATA
Plevretes v La Salle University, 07–5186 (ED PA 2007).	69	243	NATA
Kampmeier v Nyquist, 553 F2d 296 (2nd Cir 1997).	70	244	NATA
Grube v Bethlehem Area School District, 550 F Supp 418 (ED PA	71	245	NATA
Wright v Columbia University, 520 F Supp 789 (ED PA 1981).	72	246	NATA
Poole v South Plainfield Board of Education, 490 F Supp 948 (D			
NJ 1980).	73	247	NATA
Quandt EF, Mitten MJ, Black JS. Legal liability in covering			
athletic events. Sports Health. 2009;1(1):84–90.	74	248	NATA
Osborne B. Principles of liability for athletic trainers: managing			
sport-related concussion. J Athl Train. 2001;36(3):316–321.	75	249	NATA
Dobbs DB. Torts and Compensation. 2nd ed. St Paul, MN: West Publishing Co;			
1993.	76	250	NATA
Guskiewicz KM, Pachman SE. Management of sport-related brain			
injuries: preventing poor outcomes and minimizing the risk for			
legal liabilities. Athl Train Sports Health. 2010;2(6):248-252.	77	251	NATA
Ray R. Management Strategies in Athletic Training. 3rd ed.			
Champaign, IL: Human Kinetics; 2005.	78	252	NATA

Gill v Tamalpais Union High School District, 2008 A112705 (Cal			
Ct App).	79	253	NATA
Pinson v Tennessee, 1995 WL 739820 (Tenn Ct App).	80	254	NATA
Melka v Orthopaedic Associates of Wisconsin, 06CV2136 (Wisc			
Cir Ct 2008).	81	255	NATA
National Collegiate Athletic Association Injury Surveillance Summary for 15 sports:			
1988–1989 through 2003–2004. J Athl Train. 2007;42(2):165–319.	82	256	NATA
Elbin RJ, Schatz P, Covassin T. One-year test-retest reliability of the online version			
of ImPACT in high school athletes. Am J Sports Med. 2011;39(11):2319–2324.	83	257	NATA
Collie A, Maruff P, Makdissi M, McCrory P, McStephen M, Darby D. CogSport:			
reliability and correlation with conventional cognitive tests used in postconcussion			
medical evaluations. Clin J Sport Med. 2003;13(1):28–32	84	258	NATA
Iverson GL, Lovell MR, Podell K, Collins MW. Reliability and validity of ImPACT.			
Paper presented at: 31st Annual Conference of the International			
Neuropsychological Society; February 5–8, 2003; Honolulu, HI.	85	259	NATA
Broglio SP, Ferrara MS, Macciocchi SN, Baumgartner TA, Elliott R. Test-retest			
reliability of computerized concussion assessment programs. J Athl Train.			
2007;42(4):509–514.	86	260	NATA
Schatz P. Long-term test-retest reliability of baseline cognitive assessments using			
ImPACT. Am J Sports Med. 2009;38(1):47–53.	87	261	NATA
Grindel SH. The use, abuse, and future of neuropsychologic testing in mild			
traumatic brain injury. Curr Sports Med Rep.			
2006;5(1):9–14.	88	262	NATA
Echemendia RJ, Herring S, Bailes J. Who should conduct and			
interpret the neuropsychological assessment in sports-related			
concussion? Br J Sports Med. 2009;43(suppl 1):i32–i35.	89	263	NATA
Iverson GL, Brooks BL, Ashton VL, Lange RT. Interview versus questionnaire			
symptom reporting in people with the postconcus-		004	
sion syndrome. J Head Trauma Rehabil. 2010;25(1):23–30.	90	264	NATA
Patel AV, Mihalik JP, Notebaert AJ, Guskiewicz KM, Prentice WE.			
Neuropsychological performance, postural stability, and	04	005	
symptoms after dehydration. J Athl Train. 2007;42(1):66–75.	91	265	NATA
Williams SJ, Nukada H. Sport and exercise headache, part 2: diagnosis and	00	000	
classification. Br J Sports Med. 1994;28(2):96–100.	92	266	NATA
Sabin MJ, Van Boxtel BA, Nohren MW, Broglio SP. Presence of headache does			
not influence sideline neurostatus or balance in high school football athletes. Clin J	93	267	ΝΑΤΑ
Sport Med. 2011;21(5):411-	93	20/	INATA

Diland OO Matt DW Formers MO Determine OL Friday of faith a		г	
Piland SG, Motl RW, Ferrara MS, Peterson CL. Evidence for the			
factorial and construct validity of a self-report concussion	0.4	000	
symptoms scale. J Athl Train. 2003;38(2):104–112.	94	268	NATA
Randolph C, Millis S, Barr WB, et al. Concussion symptom inventory: an			
empirically derived scale for monitoring resolution of symptoms following sport-			
related concussion. Arch Clin			
Neuropsychol. 2009;24(3):219–229.	95	269	NATA
Catena RD, Van Donkelaar P, Chou LS. Cognitive task effects on			
gait stability following concussion. Exp Brain Res.			
2007;176(1):23–31.	96	270	NATA
Parker TM, Osternig LR, Van Donkelaar P, Chou LS. Gait			
stability following concussion. Med Sci Sports Exerc.			
2006;38(6):1032–1040.	97	271	NATA
Guskiewicz KM, Riemann BL, Perrin DH, Nashner LM.			
Alternative approaches to the assessment of mild head injury in			
athletes. Med Sci Sports Exerc. 1997;29(suppl 7):S213-S221.	98	272	NATA
Peterson CL, Ferrara MS, Mrazik M, Piland S, Elliot R. Evaluation of			
neuropsychological domain scores and postural stability following cerebral			
concussion in sports. Clin J Sport			
Med. 2003;13(4):230–237.	99	273	NATA
Guskiewicz KM, Ross SE, Marshall SW. Postural stability and			
neuropsychological deficits after concussion in collegiate athletes.			
J Athl Train. 2001;36(3):263-273	100	274	NATA
De Monte VE, Geffen GM, May CR, McFarland K, Heath P,			
Neralic M. The acute effects of mild traumatic brain injury on finger tapping with			
and without word repetition. J Clin Exp Neuropsychol. 2005;27(2):224-239.	101	275	NATA
Broglio SP, Ferrara MS, Sopiarz K, Kelly MS. Reliable change of the sensory			
organization test. Clin J Sport Med. 2008;18(2):148-154.	102	276	NATA
Riemann BL, Guskiewicz KM. Effects of mild head injury on postural stability as			
measured through clinical balance testing. J Athl Train. 2000;35(1):19–25.	103	277	NATA
Riemann BL, Guskiewicz KM, Shields EW. Relationship between clinical and			
forceplate measures of postural stability. J Sport Rehabil. 1999;8(2):71–82.	104	278	NATA
Broglio SP, Zhu W, Sopiarz K, Park Y. Generalizability theory analysis of balance			
error scoring system reliability in healthy young adults. J Athl Train.			
2009;44(5):497–502.	105	279	NATA
Valovich TC, Perrin DH, Gansneder BM. Repeat administration elicits a practice			
effect with the Balance Error Scoring System but not with the Standardized			
Assessment of Concussion in high school athletes. J Athl Train. 2003;38(1):51–56.	106	280	NATA
	100	200	1.0.1171

Fox ZG, Mihalik JP, Blackburn JT, Battaglini CL, Guskiewicz KM. Return of			
postural control to baseline after anaerobic and aerobic exercise protocols. J Athl			
Train. 2008;43(5):456–463.	107	281	NATA
Broglio SP, Monk A, Sopiarz K, Cooper ER. The influence of ankle support on	107	201	1
postural control. J Sci Med Sport. 2009;12(3):388–392.	108	282	NATA
Susco TM, Valovich McLeod TC, Gansneder BM, Shultz SJ. Balance recovers		202	
within 20 minutes after exertion as measured by the Balance Error Scoring			
System. J Athl Train. 2004;39(3):241–246.	109	283	NATA
Wilkins JC, Valovich McLeod TC, Perrin DH, Gansneder BM. Performance on the		200	
Balance Error Scoring System decreases after fatigue. J Athl Train.			
2004;39(2):156–161.	110	284	NATA
Maddocks DL, Dicker GD, Saling MM. The assessment of orientation following		201	1
concussion in athletes. Clin J Sport Med. 1995;5(1):32–35.	111	285	NATA
Aubry M, Cantu R, Dvorak J, et al. Summary and agreement statement of the first		200	11/11/1
International Conference on Concussion in Sport, Vienna 2001: recommendations			
for the improvement of safety and health of athletes who may suffer concussive			
injuries.Br J Sports Med. 2002;36(1):6–10.	112	286	NATA
Schatz P, Pardini JE, Lovell MR, Collins MW, Podell K. Sensitivity and specificity	112	200	
of the ImPACT test battery for concussion in athletes. Arch Clin Neuropsychol.			
2006;21(1):91– 99.	113	287	NATA
Randolph C, McCrea M, Barr WB. Is neuropsychological testing useful in the	110	207	11/11/1
management of sport-related concussion? J Athl Train. 2005;40(3):139–152.	114	288	NATA
Van Kampen DA, Lovell MR, Pardini JE, Collins MW, Fu FH. The "value added" of		200	
neurocognitive testing after sports-related concussion. Am J Sports Med.			
2006;34(10):1630–1635.	115	289	NATA
Maruff P, Thomas E, Cysique L, et al. Validity of the CogState brief battery:	115	203	
relationship to standardized tests and sensitivity to cognitive impairment in mild			
traumatic brain injury, schizophre- nia, and AIDS dementia complex. Arch Clin			
Neuropsychol. 2009;24(2):165–178.	116	290	NATA
Schatz P, Moser RS, Solomon GS, Ott SD, Karpf R. Prevalence of invalid	110	200	
computerized baseline neurocognitive test results in high school and collegiate			
athletes. J Athl Train. 2012;47(3):289–296.	117	291	NATA
Broglio SP, Macciocchi SN, Ferrara MS. Neurocognitive		201	11/11/1
performance of concussed athletes when symptom free. J Athl			
Train. 2007;42(4):504–508.	118	292	NATA
Fazio VC, Lovell MR, Pardini JE, Collins MW. The relation between post		202	1 1/ 1 / 1
concussion symptoms and neurocognitive perfor- mance in concussed athletes.			
NeuroRehabilitation. 2007;22(3):207–216.	119	293	NATA
Broglio SP, Guskiewicz KM. Concussion in sports: the sideline assessment. Sports		200	11/1/1
Health. 2009;1(5):361–369.	120	294	NATA
Houlin 2000, (0):001 000.	120	204	1 1 / / 1 / /

Guskiewicz KM, Broglio SP. Sport-related concussion: on-field and sideline			
assessment. Phys Med Rehabil Clin N Am. 2011;22(4):603-617.	121	295	NATA
Gonzalez PG, Walker MT. Imaging modalities in mild traumatic brain injury and			
sports concussion. PM R. 2011;3(10 suppl 2):S413–S424.	122	296	NATA
Vagnozzi R, Signoretti S, Tavazzi B, et al. Temporal window of metabolic brain			
vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopy study in			
concussed athletes, part III. Neurosurgery. 2008;62(6):1286–1295.	123	297	NATA
Unde n J, Romner B. Can low serum levels of S100B predict normal CT findings			
after minor head injury in adults? An evidence-based review and meta-analysis. J			
Head Trauma Rehabil. 2010;25(4):228–240.	124	298	NATA
Greenwald RM, Gwin JT, Chu JJ, Crisco JJ. Head impact severity measures for			
evaluating mild traumatic brain injury risk exposure.Neurosurgery. 2008;62(4):789-			
798.	125	299	NATA
Broglio SP, Schnebel B, Sosnoff JJ, et al. Biomechanical properties of			
concussions in high school football. Med Sci Sports Exerc. 2010;42(11):2064-			
2071.	126	300	NATA
Guskiewicz KM, Mihalik JP, Shankar V, et al. Measurement of head impacts in			
collegiate football players: relationship between head impact biomechanics and			
acute clinical outcome after concussion. Neurosurgery. 2007;61(6):1244–1252.	127	301	NATA
Broglio SP, Eckner JT, Surma T, Kutcher JS. Post-concussion cognitive declines			
and symptomatology are not related to concussion biomechanics in high school			
football players. J Neurotrauma. 2011;28(10):2061–2068.	128	302	NATA
Hinton-Bayre AD, Geffen G. Severity of sports-related concussion and	.=0		
neuropsychological test performance. Neurology. 2002;59(7):1068–1070.	129	303	NATA
Majerske CW, Mihalik JP, Ren D, et al. Concussion in sports: postconcussive	120	000	
activity levels, symptoms, and neurocognitive performance. J Athl Train.			
2008;43(3):265–274.	130	304	NATA
Silverberg ND, Iverson GL. Is rest after concussion "the best medicine"?:	100	001	
recommendations for activity resumption following concussion in athletes, civilians,			
and military service members. J Head Trauma Rehabil. 2013;28(4):250–259.	131	305	NATA
Covassin T, Elbin RJ, Harris W, Parker T, Kontos A. The role of age and sex in	101	505	
symptoms, neurocognitive performance, and postural stability in athletes after			
concussion. Am J Sports Med. 2012;40(6):1303–1312.	132	306	NATA
World Health Organisation. ICD-10 classifications of mental and behavioural	152	500	
disorder: clinical descriptions and diagnostic guide- lines.			
http://www.who.int/classifications/icd/en/bluebook.pdf. Published January 1992.			
Accessed August 29, 2013.	133	307	NATA
McGrath N, Dinn WM, Collins MW, Lovell MR, Elbin RJ, Kontos AP. Post-exertion	100	307	
neurocognitive test failure among student-athletes following concussion. Brain Inj.			
	134	308	NATA
2013;27(1):103–113.	104	300	INATA

Wisniewski JF, Guskiewicz KM, Trope M, Sigurdsson A. Incidence of cerebral			
concussions associated with type of mouthguard used in college football. Dent			
Traumatol. 2004;20(3):143–149.	135	309	NATA
Barbic D, Pater J, Brison RJ. Comparison of mouth guard designs and concussion			
prevention in contact sports: a multicenter randomized controlled trial. Clin J Sport			
Med. 2005;15(5):294–298	136	310	NATA
Finch C, Braham R, McIntosh A, McCrory P, Wolfe R. Should football players wear			
custom fitted mouthguards? Results from a group randomised controlled trial. Inj			
Prev. 2005;11(4):242–246.	137	311	NATA
Blignaut JB, Carstens IL, Lombard CJ. Injuries sustained in rugby by wearers and			
non-wearers of mouthguards. Br J Sports Med. 1987;21(2):5-7.	138	312	NATA
Marshall SW, Loomis DP, Waller AE, et al. Evaluation of protective equipment for			
prevention of injuries in rugby union. Int J Epidemiol. 2005;34(1):113–118.	139	313	NATA
Benson BW, Meeuwisse WH. Ice hockey injuries. Med Sport Sci. 2005;49:86–119.	140	314	NATA
Labella CR, Smith BW, Sigurdsson A. Effect of mouthguards on dental injuries and			
concussions in college basketball. Med Sci Sports Exerc. 2002;34(1):41-44.	141	315	NATA
Mihalik JP, McCaffrey MA, Rivera EM, et al. Effectiveness of mouthguards in			
reducing neurocognitive deficits following sports- related cerebral concussion. Dent			
Traumatol. 2007;23(1):14–20.	142	316	NATA
Kemp SP, Hudson Z, Brooks JH, Fuller CW. The epidemiology of head injuries in			
English professional rugby union. Clin J Sport Med. 2008;18(3):227–234.	143	317	NATA
McIntosh AS, McCrory P. Effectiveness of headgear in a pilot study of under 15			
rugby union football. Br J Sports Med. 2001;35(3):167–169.	144	318	NATA
Kahanov L, Dusa MJ, Wilkinson S, Roberts J. Self-reported headgear use and			
concussions among collegiate men's rugby union players. Res Sports Med.			
2005;13(2):77–89.	145	319	NATA
Broglio SP, Ju YY, Broglio MD, Sell TC. The efficacy of soccer 36.			
headgear. J Athl Train. 2003;38(3):220–224.	146	320	NATA
Withnall C, Shewchenko N, Wonnacott M, Dvorak J. Effective-			
ness of headgear in football. Br J Sports Med. 2005;39(suppl			
1):i40–i48.	147	321	NATA
Hrysomallis C. Impact energy attentuation of protective football			
headgear against a yielding surface. J Sci Med Sport.			
2004;7(2):156–164.	148	322	NATA
Delaney JS, Al-Kashmiri A, Drummond R, Correa JA. The effect			
of protective headgear on head injuries and concussions in adolescent football			
(soccer) players. Br J Sports Med. 2008;42(2):110–115.	149	323	NATA
Bakhos LL, Lockhart GR, Myers R, Linakis JG. Emergency department visits for			
concussion in young child athletes.Pediatrics. 2010;126(3):e550-e556.	150	324	NATA

Powell JW, Barber-Foss KD. Traumatic brain injury in high school athletes. JAMA.			
1999;282(10):958–963.	151	325	NATA
Giedd JN. The teen brain: insights from neuroimaging. J Adolesc Health.	150	226	ΝΑΤΑ
2008;42(4):335–343. Giedd JN, Blumenthal J, Jefferies NO, et al. Brain development during childhood	152	326	NATA
and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2(10):861–863.	153	327	ΝΑΤΑ
Webbe FM, Barth JT. Short-term and long-term outcome of athletic closed head			
injuries. Clin Sports Med. 2003;22(3):577– 592.	154	328	NATA
McKeever CK, Schatz P. Current issues in the identification, assessment, and			
management of concussions in sports-related injuries. Appl Neuropsychol.			
2003;10(1):4–11.	155	329	NATA
Buzzini SR, Guskiewicz KM. Sport-related concussion in the young athlete. Curr			
Opin Pediatr. 2006;18(4):376–382.	156	330	NATA
Shaw NA. The neurophysiology of concussion. Prog Neurobiol. 2002;67(4):281-			
344.	157	331	NATA
Fischer KW, Rose SP. Dynamic growth cycles of brain and cognitive development.			
In: Thatcher RW, Lyon GR, Rumsey J, Krasnegor N, eds. Developmental			
Neuroimaging: Mapping the Development of Brain and Behavior. New York, NY:			
Academic Press; 1996:263–279.	158	332	NATA
Thomas R, Taylor K. Assessing head injuries in children. MCN Am J Matern Child			
Nurs. 1997;22(4):198–202.	159	333	NATA
Levin HS. Neuroplasticity following non-penetrating traumatic brain injury. Brain Inj.			
2003;17(8):665–674.	160	334	NATA
Ewing-Cobbs L, Barnes MA, Fletcher JM. Early brain injury in children:			
development and reorganization of cognitive function. Dev Neuropsychol.			
2003;24(2-3):669-704.	161	335	NATA
Kirkwood MW, Yeates KO, Wilson PE. Pediatric sport-related concussion: a review			
of the clinical management of an oft- neglected population. Pediatrics.			
2006;117(4):1359–1371.	162	336	NATA
Moser RS, Schatz P, Jordan BD. Prolonged effects of concussion in high school			
athletes. Neurosurgery. 2005;57(2):300-306.	163	337	NATA
Sim A, Terrberry-Spohr L, Wilson KR. Prolonged recovery of			
memory functioning after mild traumatic brain injury in			
adolescent athletes. J Neurosurg. 2008;108(3):511-516.	164	338	NATA
McCrory PR. Does second impact syndrome exist? Clin J Sport			
Med. 2001;11(3):144–149.	165	339	NATA
Cassidy JD, Carroll LJ, Peloso PM, et al; WHO Collaborating			
Centre Task Force on Mild Traumatic Brain Injury. Incidence, risk factors, and	166	340	NATA

prevention of mild traumatic brain injury: results of the WHO Collaborating Centre			
Task Force on Mild Traumatic Brain Injury. J Rehabil Med. 2004;(suppl 43):28–60.			
Bruce DA. Delayed deterioration of consciousness after trivial head injury in			
childhood. Br Med J (Clin Res Ed). 1984;289(6447):715–716	167	341	NATA
Snoek JW, Minderhound JM, Wilmink JT. Delayed deterioration following mild			
head injury in children. Brain. 1984;107(pt 1):15–16	168	342	NATA
Halstead ME, Walter KD; Council on Sports Medicine and Fitness, American			
Academy of Pediatrics. Clinical report: sport- related concussion in children and			
adolescents. Pediactrics. 2010;126(3):597–615.	169	343	NATA
Alla S, Sullivan SJ, Hale L, McCrory PR. Self-report scales/ checklists for the			
measurement of concussion symptoms: a systematic review. Br J Sports Med.			
2009;43(suppl 1):i3–i12.	170	344	NATA
Mailer BJ, Valovich-Mcleod TC, Bay RC. Healthy youth are reliable in reporting			
symptoms on a graded symptom scale. J Sport Rehabil. 2008;17(1):11-20.	171	345	NATA
Gioia GA, Collins MW, Isquith PK. Improving identification and diagnosis of mild			
traumatic brain injury with evidence: psycho- metric support for the acute			
concussion evaluation. J Head Trauma Rehabil. 2008;23(4):230-242.	172	346	NATA
Lovell MR, Iverson GL, Collins MW, et al. Measurement of symptoms following			
sports-related concussion: reliability and normative data for the post-concussion			
scale. Appl Neuropsychol. 2006;13(3):166–174.	173	347	NATA
Yeates KO, Luria J, Bartkowski H, Rusin J, Martin L, Bigler ED. Postconcussive			
symptoms in children with mild closed head injuries. J Head Trauma Rehabil.			
1999;14(4):337–350.	174	348	NATA
Valovich McLeod TC, Barr WB, McCrea M, Guskiewicz KM. Psychometric and			
measurement properties of concussion assess- ment tools in youth sports. J Athl			
Train. 2006;41(4):399–408.	175	349	NATA
McCrory PR, Collie A, Anderson V, Davis G. Can we manage sport related			
concussion in children the same as in adults? Br J Sports Med. 2004;38(5):516–			
	176	350	NATA
Kirkwood MW, Randolph C, Yeates KO. Returning pediatric athletes to play after		000	
concussion: the evidence (or lack thereof) behind baseline neuropsychological			
testing. Acta Paediatr. 2009;98(9):1409–1411.	177	351	NATA
Canadian Paediatric Society. Identification and management of children with sport-	177	001	
related concussion. Paediatr Child Health. 2006;11(7):420–428.	178	352	ΝΑΤΑ
Purcell L. What are the most appropriate return-to-play guidelines for concussed	170	002	1 1/ / 1 / /
child athletes? Br J Sports Med. 2009;43(suppl 1):i51–i55.	179	353	ΝΑΤΑ
Valovich-Mcleod TC, Bay RC, Lam KC, Chhabra A. Represen- tative baseline	175	000	
values on the Sport Concussion Assessment Tool 2 (SCAT2) in adolescent			
athletes vary by gender, grade, and concussion history. Am J Sports Med.			
2012;40(4):927–933.	180	354	NATA
2012,40(4).327-303.	100	554	

McCrory P, Johnston K, Meeuwisse W, et al. Summary and agreement statement		075	
of the 2nd International Conference on	181	355	NATA
Schulz MR, Marshall SW, Mueller FO, et al. Incidence and risk factors for			
concussion in high school athletes, North Carolina, 996–1999. Am J Epidemiol.			
2004;160(10):937–944.	182	356	NATA
Cantu RC, Register-Mihalik JK. Considerations for return-to-play and retirement			
decisions after concussion. PM R. 2011;3(10 suppl			
2):S440–S444.	183	357	NATA
Broglio SP, Ferrara MS, Piland SG, Anderson RB, Collie A.			
Concussion history is not a predictor of computerized neurocog-			
nitive performance. Br J Sports Med. 2006;40(9):802-805.	184	358	NATA
Collie A, McCrory P, Makdissi M. Does history of concussion affect current			
cognitive status? Br J Sports Med. 2006;40(6):550-			
551.	185	359	NATA
Iverson GL, Brooks BL, Lovell MR, Collins MW. No cumulative			
effects for one or two previous concussions. Br J Sports Med.			
2006;40(1):72–75.	186	360	NATA
De Beaumont L, Theoret H, Mongeon D, et al. Brain function			
decline in healthy retired athletes who sustained their last sports			
concussion in early adulthood. Brain. 2009;132(pt 3):695–708.	187	361	NATA
Ellemberg D, Leclerc S, Couture S, Daigle C. Prolonged neuropsychological			
impairments following a first concussion in female university soccer athletes. Clin J			
Sport Med.			
2007;17(5):369–374.	188	362	NATA
Breedlove EL, Robinson M, Talavage TM, et al. Biomechanical	100	002	
correlates of symptomatic and asymptomatic neurophysiological impairment in			
high school football. J Biomech. 2012;45(7):1265–1272.	189	363	NATA
Talavage TM, Nauman E, Breedlove EL, et al. Functionally- detected cognitive	103	505	
impairment in high school football players without clinically-diagnosed concussion.			
J Neurotrauma. http:// online.liebertpub.com/doi/full/10.1089/neu.2010.1512.			
	190	364	NATA
Published online ahead of print April 11, 2013. Accessed August 30, 2013.	190	304	INATA
Bazarian JJ, Zhu T, Blyth B, Borrino A, Zhong J. Subject-specific changes in brain			
white matter on diffusion tensor imaging after sports-related concussion. Magn	101	265	ΝΑΤΑ
Reson Imaging. 2012;30(2):171–	191	365	NATA
Broglio SP, Pontifex MB, O'Connor P, Hillman CH. The persistent effects of			
concussion on neuroelectic indices of attention. J Neurotrauma. 2009;26(9):1463–	100	000	
	192	366	NATA
Pontifex MB, O'Connor PM, Broglio SP, Hillman CH. The association between mild			
traumatic brain injury history and cognitive control. Neuropsychologia.	100	0.07	
2009;47(14):3210–3216.	193	367	NATA

Gaetz M, Goodman D, Weinberg H. Electrophysiological evidence for the cumulative effects of concussion. Brain Inj. 2000;14(12):1077–1088.	194	368	NATA
Dupuis F, Johnston KM, Lavoie M, Lepore F, Lassonde M. Concussion in athletes			
produce brain dysfunction as revealed by event-related potentials. Neuroreport. 2000;11(18):4087–4092.	195	369	NATA
Sosnoff JJ, Broglio SP, Shin S, Ferrara MS. Previous mild traumatic brain injury	100	000	
and postural control dynamics. J Athl Train. 2011;46(1):85–91.	196	370	NATA
Martini DN, Sabin MJ, DePesa SA, et al. The chronic effects of concussion on gait.			
Arch Phys Med Rehabil. 2011;92(4):585–589.	197	371	NATA
Gavett BE, Stern RA, McKee AC. Chronic traumatic encepha- lopathy: a potential			
late effect of sport-related concussive and subconcussive head trauma. Clin Sports			
Med. 2011;30(1):179–	100		
188	198	372	NATA
Omalu BI, DeKosky ST, Hamilton RL, et al. Chronic traumatic			
encephalopathy in a National Football League player, part II.			
Neurosurgery. 2006;59(5):1086—1092.	199	373	NATA
Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL,			
Wecht CH. Chronic traumatic encephalopathy in a National			
Football League player. Neurosurgery. 2005;57(1):128–134.	200	374	NATA
Broglio SP, Eckner JT, Paulson H, Kutcher JS. Cognitive decline and aging: the			
role of concussive and sub-concussive impacts.			
Exerc Sport Sci Rev. 2012;40(3):138–144.	201	375	NATA

BJSM Multiple Choice Questions:

Multiple Choice Questions

- 1.)The three organizations with the most cited consensus and position statements on concussion are in their most current edition:
- a) International Conference on Concussion in Sport (ICCS, 2017)
- b) National Athletic Trainers' Association (NATA, 2014)
- c) American Medical Society for Sports Medicine (AMSSM, 2019)
- d) All of the above.

2.) The consensus and position statements from these three organizations currently cite 171 studies that use human subjects data. Roughly what percentage of these studies use ALL MALE data:

- a) 20%
- b) 25%
- c) 30%
- d) 35%
- e) 40%

3.) The consensus and position statements from these three organizations currently cite 171 studies that use human subjects data. Roughly what percentage of these studies use ALL FEMALE data:

- a) 0%
- b) 1%
- c) 2%
- d) 3%
- e) 4%

4.) Which of the following are recommendations from the authorship group on how to foster greater inclusivity of women in concussion research data:

- a) Balancing the representation of females and males on consensus and position statement voting and authorship teams as well as within editorial boards and program management.
- b) Female athlete-focused sections of consensus and position statements should be included until the literature is robust enough for a standalone document for this population.
- c) Consensus and position statements should acknowledge when predominantly male samples inform recommendations.
- d) Include a checkpoint within consensus/position statement processes for ensuring that cited research is as balanced as possible (similar to NIH's "Inclusion of Women & Minorities" requirements).
- e) All of the above

5.) Which of the three concussion consensus and position statements included studies that *showed a statistically-significant skew* to represent fewer women in concussion data?

- a) International Conference on Concussion in Sport (ICCS, 2017),
- b) National Athletic Trainers' Association (NATA, 2014)
- c) American Medical Society for Sports Medicine (AMSSM, 2019)

d) All of the above.