Supplementary Appendix 1. Complete search strategy, exemplified for MEDLINE Ovid.

The full search strategy is available on the Open Science Framework https://osf.io/bkhr5/.

Field labels

- After an index term indicates a subject heading were selected. 1
- Indicates a search for a term in title or abstract .tw.
- .kw. = keyword heading
- = keyword heading word .kf.
- At the end of a term indicates that this term has been truncated.
- Adj3 Indicates a search for two terms next to each other, in any order, up to 3 words in between.

MEDLINE (Ovid) ALL 1949 to May 05, 2022

Advanced search

Dates of search: 2020-06-16, 2021-07-07, and 2022-05-05 No search restrictions by publication or language.

Searches

#	Searches
1	Athletic Injuries/ or Rupture/ or "Sprains and Strains"/
2	Anterior Cruciate Ligament/ or Menisci, Tibial/
3	1 and 2
4	Anterior Cruciate Ligament Injuries/ or Tibial Meniscus Injuries/
5	3 or 4
6	(menisc* adj3 (resect* or injur* or tear* or rupture* or repair* or reconstruct* or shav* or surg*)).tw,kf.
7	((ACL* or anterior cruciate ligament*) adj4 (injur* or tear* or sprain* or rupture* or reconstruct* or surg* or
	repair* or rupture*)).tw,kf.
8	Meniscectomy/
9	exp Anterior Cruciate Ligament Reconstruction/
10	meniscectom*.tw,kf.
11	or/6-10
12	Arthroscopy/
13	arthroscop*.tw,kf.
14	or/12-13
15	(ACL* or anterior cruciate ligament* or menisc*).tw,kf.
16	2 or 15
17	14 and 16
18	5 or 11 or 17
19	Muscle strength/
20	((muscle* or lower extremity or quadriceps or knee or knees or lower limb or leg) adj3 (strength or force or
	weakness or power or performance or function or deficit or development)).tw,kw,kf.
21	or/19-20
22	(instrumentation or methods).fs.
23	(Validation Studies or Comparative Study).pt.
24	exp Psychometrics/
25	psychometr*.ti,ab.
26	(clinimetr* or clinometr*).tw.
27	exp Outcome Assessment, Health Care/
28	outcome assessment.ti,ab.
29	outcome measure*.tw.
30	exp Observer Variation/
31	observer variation.ti,ab.
32	exp Health Status Indicators/
33	exp Reproducibility of Results/
34	reproducib*.ti,ab.

- 34 reproducib*.ti,ab.
- exp Discriminant Analysis/ 35
- (reliab* or unreliab* or valid* or coefficient or homogeneity or homogeneous or internal consistency).ti,ab. 36
- 37 (cronbach* adj3 (alpha or alphas)).ti,ab.
- 38 (item adj3 (correlation* or selection* or reduction*)).ti,ab.

- 39 (agreement or precision or imprecision or precise values or test-retest).ti,ab.
- 40 (test adj3 retest).ti,ab.
- 41 (reliab* adj3 (test or retest)).ti,ab.
- 42 (stability or interrater or inter-rater or intraater or intra-rater or intertester or inter-tester or intratester or intra-tester or inter-tester or inter-tester or inter-tester or inter-technician or
- 43 ((replicab* or repeated) adj3 (measure or measures or findings or result or results or test or tests)).ti,ab.
- 44 (generaliza* or generalisa* or concordance).ti,ab.
- 45 (intraclass adj3 correlation*).ti,ab.
- 46 (discriminative or known group or factor analysis or factor analyses or dimension* or subscale*).ti,ab.
- 47 (multitrait scaling adj3 (analysis or analyses)).ti,ab.
- 48 (item discriminant or interscale correlation* or error or errors or individual variability).ti,ab.
- 49 (variability adj3 (analysis or values)).ti,ab.
- 50 (uncertainty adj3 (measurement or measuring)).ti,ab.
- 51 (standard error of measurement or sensitiv* or responsive*).ti,ab.
- 52 (((minimal or minimally or clinical or clinically) adj3 (important or significant or detectable)) and (change or difference)).ti,ab.
- 53 (small* adj3 (real or detectable) adj3 (change or difference)).ti,ab.
- 54 (meaningful change or ceiling effect or floor effect or Item response model or IRT or Rasch or Differential item functioning or DIF or computer adaptive testing or item bank or cross-cultural equivalence).ti,ab.
- 55 or/22-54
- 56 (addresses or biography or case reports or comment or directory or editorial or festschrift or interview or lectures or legal cases or legislation or letter or news or newspaper article or patient education handout or popular works or congresses or consensus development conference or consensus development conference, nih or practice guideline or randomized controlled trial or randomized controlled trial, veterinary or "systematic review").pt.
- 57 ((veterinar* or animal or animals or rabbit or rabbits or rodent or rodents or rat or rats or mouse or mice or hamster or hamsters or pig or pigs or piglet or piglets or porcine or pigeon* or horse* or equine or cow or cows or bovine or goat or goats or sheep or lamb or lambs or monkey or monkeys or murine or ovine or dog or dogs or canine or cat or cats or feline or dolphin*) not (patient or patients or human or humans)).ti.
- 58 (Animal Experimentation/ or exp Animals/ or exp Models, Animal/) not Humans/
- 59 systematic review/ or exp randomized controlled trial/ or (systematic review or randomi?ed controlled trial).ti.
- 60 or/56-59
- 61 18 and 21 and 55
- 62 61 not 60

Supplementary Appendix 2. A priori hypotheses used in data synthesis for construct validity

Sstrength tests	Data management	Hypotheses	Interpretation
Isokinetic concentric and	Qualitative synthesis: Weighted mean correlation coefficients	Correlation ≥ 0.50 with neural activity and hopping.	Considered sufficient if correlation with hopping ≥0.50 OR correlation
isometric extensor	(95% CI) between the strength	Correlation 0.30-0.50 with running,	with running, dynamic balance and
strength	test and comparator	dynamic balance, and patient-reported	patient-related outcomes 0.30-0.50
	instruments.	outcomes (related, but dissimilar	AND at least 75% of the results
		constructs).	are in accordance with hypotheses
Isokinetic concentric	Qualitative synthesis: Weighted	Correlation ≥ 0.40 with hopping.	Considered sufficient if correlation
and	mean correlation coefficients	Correlation 0.30-0.50 with running,	with hopping ≥0.40 OR correlation
isometric flexor	(95% CI) between the strength	dynamic balance, and patient-reported	with running, dynamic balance and
strength	test and comparator	outcomes (related, but dissimilar	patient-related outcomes 0.30-0.50
	instruments.	constructs).	AND at least 75% of the results are in accordance with hypotheses
Isokinetic eccentric	Qualitative synthesis:	Correlation ≥ 0.50 with hopping.	Considered sufficient if at least
and	Individual study results of	Correlation 0.30-0.50 with running,	75% of the results are in
isotonic extensor	correlation between the	dynamic balance, and patient-reported	accordance with hypotheses
strength	strength test and comparator	outcomes (related, but dissimilar	
	instruments	constructs).	
Isokinetic eccentric	Qualitative synthesis:	Correlation ≥ 0.40 with hopping.	Considered sufficient if at least
flexor strength	Individual study results of	Correlation 0.30-0.50 with running,	75% of the results are in
	correlation between the	dynamic balance, and patient-reported	accordance with hypotheses
	strength test and comparator	outcomes (related, but dissimilar	
	instruments.	constructs).	

Supplementary Appendix 3. Excluded references and reason of exclusion based on full-text screening

References excluded for population

- 1 Andrade MS, Cohen M, Picarro IC, et al. Knee performance after anterior cruciate ligament reconstruction. Isokinetics and Exercise Science 2002;10:81-86
- 2 Bozic P, Suzovic D, Nedeljkovic A, et al. Alternating consecutive maximum contractions as a test of muscle function. J Strength Cond Res 2011;25:1605-15
- 3 Bozic PR, Pazin N, Berjan B, et al. Evaluation of alternating consecutive maximum contractions as an alternative test of neuromuscular function. Eur J Appl Physiol 2012;112:1445-56
- 4 Brasileiro JS, Pinto OMSF, ávila MA, et al. Functional and morphological changes in the quadriceps muscle induced by eccentric training after ACL reconstruction. Alterações funcionais e morfológicas do quadríceps induzidas pelo treinamento excêntrico após reconstrução do LCA. Brazilian Journal of Physical Therapy / Revista Brasileira de Fisioterapia 2011;15:284-90
- 5 Bryant AL, Pua YH and Clark RA. Morphology of knee extension torque-time curves following anterior cruciate ligament injury and reconstruction. Journal of Bone & Joint Surgery - American Volume 2009;91:1424-31
- 6 Casartelli NC, Item-Glatthorn JF, Friesenbichler B, et al. Quadriceps neuromuscular impairments after arthroscopic knee surgery: Comparison between procedures. Journal of Clinical Medicine 2019;8
- 7 de Vasconcelos RA, Bevilaqua-Grossi D, Shimano AC, et al. Reliability and Validity of a Modified Isometric Dynamometer in the Assessment of Muscular Performance in Individuals with Anterior Cruciate Ligament Reconstruction. Revista Brasileira de Ortopedia 2009;44:214-24
- 8 Dobija L, Reynaud V, Pereira B, et al. Measurement properties of the Star Excursion Balance Test in patients with ACL deficiency. Physical Therapy in Sport 2019;36:7-13
- 9 Iossifidou A, Baltzopoulos V and Giakas G. Isokinetic knee extension and vertical jumping: are they related? J Sports Sci 2005;23:1121-7
- 10 Kim DK, Geon P, Yu JH, et al. Relationship between knee extensor strength and dynamic balance ability using a flexible platform in partial anterior cruciate ligament injury. Research Journal of Pharmacy and Technology 2017;10:2285-88
- 11 Kollock R, Van Lunen BL, Ringleb SI, et al. Measures of functional performance and their association with hip and thigh strength. J Athl Train 2015;50:14-22
- 12 Kovaleski JE, Heitman RJ, Andrew DPS, et al. Relationship Between Closed-Linear-Kinetic- and Open-Kinetic-Chain Isokinetic Strength and Lower Extremity Functional Performance. Journal of Sport Rehabilitation 2001;10:196-204
- 13 Lee DK, Kim GM, Ha SM, et al. Correlation of the Y-Balance Test with Lower-limb Strength of Adult Women. J Phys Ther Sci 2014;26:641-3
- 14 Maffiuletti NA, Barbero M, Cescon C, et al. Validity of the twitch interpolation technique for the assessment of quadriceps neuromuscular asymmetries. Journal of Electromyography & Kinesiology 2016;28:31-36
- 15 Neeter C, Gustavsson A, Thomee P, et al. Development of a strength test battery for evaluating leg muscle power after anterior cruciate ligament injury and reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy 2006;14:571-80
- 16 Reichard LB, Croisier JL, Malnati M, et al. Testing knee extension and flexion strength at different ranges of motion: an isokinetic and electromyographic study. Eur J Appl Physiol 2005;95:371-6
- 17 Sinacore JA, Evans AM, Lynch BN, et al. Diagnostic Accuracy of Handheld Dynamometry and 1-Repetition-Maximum Tests for Identifying Meaningful Quadriceps Strength Asymmetries. J Orthop Sports Phys Ther 2017;47:97-107
- 18 Suzovic D, Nedeljkovic A, Pazin N, et al. Evaluation of Consecutive Maximum Contractions as a Test of Neuromuscular Function. Journal of Human Kinetics - J HUM KINET 2008;20:51-61

19 Tomioka M, Owings T and Grabiner MD. Lower Extremity Strength and Coordination Are Independent Contributors to Maximum Vertical Jump Height. Journal of Applied Biomechanics 2001;17:181-87

References excluded for strength measure

- 1 Batty LM, Feller JA, Hartwig T, et al. Single-Leg Squat Performance and Its Relationship to Extensor Mechanism Strength After Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine 2019;47:3423-28
- 2 DiFabio M, Slater LV, Norte G, et al. Relationships of Functional Tests Following ACL Reconstruction: Exploratory Factor Analyses of the Lower Extremity Assessment Protocol. Journal of Sport Rehabilitation 2018;27:144-50
- 3 Ernst GP, Saliba E, Diduch DR, et al. Lower-extremity compensations following anterior cruciate ligament reconstruction. Physical Therapy 2000;80:251-60
- 4 Goradia VK, Grana WA and Pearson SE. Factors associated with decreased muscle strength after anterior cruciate ligament reconstruction with hamstring tendon grafts. Arthroscopy 2006;22:80
- 5 Lee HM, Cheng CK and Liau JJ. Correlation between proprioception, muscle strength, knee laxity, and dynamic standing balance in patients with chronic anterior cruciate ligament deficiency. Knee 2009;16:387-91
- 6 Lee DH, Lee JH, Jeong HJ, et al. Lack of Correlation between Dynamic Balance and Hamstring-to-Quadriceps Ratio in Patients with Chronic Anterior Cruciate Ligament Tears. Knee Surgery & Related Research 2015;27:101-07
- 7 O'Connor RF, King E, Richter C, et al. No Relationship Between Strength and Power Scores and Anterior Cruciate Ligament Return to Sport After Injury Scale 9 Months After Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine 2020;48:78-84
- 8 Park WH, Kim DK, Yoo JC, et al. Correlation between dynamic postural stability and muscle strength, anterior instability, and knee scale in anterior cruciate ligament deficient knees. Archives of Orthopaedic & Trauma Surgery 2010;130:1013-18
- 9 Piussi R, Beischer S, Thomee R, et al. Hop tests and psychological PROs provide a demanding and clinician-friendly RTS assessment of patients after ACL reconstruction, a registry study. BMC Sports Science, Medicine and Rehabilitation 2020;12:32

References excluded for study type

- 1 Almosnino S, Brandon SC, Day AG, et al. Principal component modeling of isokinetic moment curves for discriminating between the injured and healthy knees of unilateral ACL deficient patients. Journal of Electromyography & Kinesiology 2014;24:134-43
- 2 Almosnino S, Dvir Z and Bardana DD. Consistency of strength curves for determining maximal effort production during isokinetic knee testing of anterior cruciate ligament-deficient patients. Physiotherapy Theory & Practice 2016;32:202-08
- 3 Anderson JL, Lamb SE, Barker KL, et al. Changes in muscle torque following anterior cruciate ligament reconstruction: a comparison between hamstrings and patella tendon graft procedures on 45 patients. Acta Orthop Scand 2002;73:546-52
- 4 Baumgart C, Welling W, Hoppe MW, et al. Angle-specific analysis of isokinetic quadriceps and hamstring torques and ratios in patients after ACL-reconstruction. BMC Sports Science, Medicine & Rehabilitation 2018;10:N.PAG-N.PAG
- 5 Bryant AL, Kelly J and Hohmann E. Neuromuscular adaptations and correlates of knee functionality following ACL reconstruction. J Orthop Res 2008;26:126-35
- 6 Bryant AL, Clark RA and Pua YH. Morphology of hamstring torque-time curves following ACL injury and reconstruction: mechanisms and implications. J Orthop Res 2011;29:907-14
- 7 Cervenka JJ, Decker MN, Ruhde LA, et al. Strength and Stability Analysis of Rehabilitated Anterior Cruciate Ligament Individuals. International Journal of Exercise Science 2018;11:817-26

- 8 Christensen JC, Goldfine LR, Barker T, et al. What can the first 2 months tell us about outcomes after anterior cruciate ligament reconstruction? Journal of Athletic Training 2015;50:508-15
- 9 Duckett T, Fox CM, Hart JM, et al. Rationale for a Parsimonious Measure of Subjective Knee Function Among Individuals With Anterior Cruciate Ligament Reconstruction: A Rasch Analysis. Journal of athletic training 2021;56:1340-48
- 10 Garcia SA, Moffit TJ, Vakula MN, et al. Quadriceps Muscle Size, Quality, and Strength and Self-Reported Function in Individuals With Anterior Cruciate Ligament Reconstruction. Journal of athletic training 2020;55:246-54
- 11 Garrison JC, Bothwell JM, Wolf G, et al. Y Balance Test Tm Anterior Reach Symmetry at Three Months Is Related to Single Leg Functional Performance at Time of Return to Sports Following Anterior Cruciate Ligament Reconstruction. International Journal of Sports Physical Therapy 2015;10:602-11
- 12 Hartigan EH, Lynch AD, Logerstedt DS, et al. Kinesiophobia after anterior cruciate ligament rupture and reconstruction: noncopers versus potential copers. Journal of Orthopaedic & Sports Physical Therapy 2013;43:821-32 doi:https://dx.doi.org/10.2519/jospt.2013.4514
- 13 Hetsroni I, Wiener Y, Ben-Sira D, et al. Symmetries in Muscle Torque and Landing Kinematics Are Associated With Maintenance of Sports Participation at 5 to 10 Years After ACL Reconstruction in Young Men. Orthopaedic Journal of Sports Medicine 2020;8:1-9
- 14 Holm I, Risberg MA, Aune AK, et al. Muscle strength recovery following anterior cruciate ligament reconstruction: a prospective study of 151 patients with a two-year follow-up. Isokinetics & Exercise Science 2000;8:57-63
- 15 Jarvela T, Kannus P, Latvala K, et al. Simple measurements in assessing muscle performance after an ACL reconstruction. International Journal of Sports Medicine 2002;23:196-201
- 16 Kadija M, Knezevic OM, Milovanovic D, et al. The effect of anterior cruciate ligament reconstruction on hamstring and quadriceps muscle function outcome ratios in male athletes. Srpski Arhiv Za Celokupno Lekarstvo 2016;144:151-57
- 17 Knezevic OM, Mirkov DM, Kadija M, et al. Evaluation of isokinetic and isometric strength measures for monitoring muscle function recovery after anterior cruciate ligament reconstruction. Journal of Strength & Conditioning Research 2014;28:1722-31
- 18 Konrath JM, Vertullo CJ, Kennedy BA, et al. Morphologic Characteristics and Strength of the Hamstring Muscles Remain Altered at 2 Years After Use of a Hamstring Tendon Graft in Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine 2016;44:2589-98
- 19 Koutras G, Bernard M, Terzidis IP, et al. Comparison of knee flexion isokinetic deficits between seated and prone positions after ACL reconstruction with hamstrings graft: Implications for rehabilitation and return to sports decisions. Journal of Science & Medicine in Sport 2016;19:559-62
- 20 Lentz TA, Tillman SM, Indelicato PA, et al. Factors associated with function after anterior cruciate ligament reconstruction. Sports Health 2009;1:47-53
- 21 Lepley LK and Palmieri-Smith RM. Quadriceps Strength, Muscle Activation Failure, and Patient-Reported Function at the Time of Return to Activity in Patients Following Anterior Cruciate Ligament Reconstruction: A Cross-sectional Study. Journal of Orthopaedic & Sports Physical Therapy 2015;45:1017-25
- 22 McHugh MP, Tyler TF, Nicholas SJ, et al. Electromyographic analysis of quadriceps fatigue after anterior cruciate ligament reconstruction. Journal of Orthopaedic & Sports Physical Therapy 2001;31:25-32
- 23 Moisala AS, Jarvela T, Kannus P, et al. Muscle strength evaluations after ACL reconstruction. International Journal of Sports Medicine 2007;28:868-72
- 24 Norte GE, Hertel JN, Saliba SA, et al. Quadriceps and Patient-Reported Function in ACL-Reconstructed Patients: A Principal Component Analysis. J Sport Rehabil 2018:1-9
- 25 Oberlander KD, Bruggemann GP, Hoher J, et al. Altered landing mechanics in ACL-reconstructed patients. Medicine & Science in Sports & Exercise 2013;45:506-13

- 26 Santos HH, de Oliveira Sousa C, Medeiros CLP, et al. Correlation between Eccentric Training and Functional Tests in Subjects with Reconstructed Acl. Correlación Entre Entrenamiento ExcÉntrico Y Pruebas Funcionales En Sujetos Con Lca Reconstruido. Revista Brasileira de Medicina do Esporte 2018;24:471-76
- 27 Schmitt LC, Paterno MV and Hewett TE. The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 2012;42:750-9 doi:10.2519/jospt.2012.4194 [published Online First: 2012/07/21]
- 28 Skurvydas A, Masiulis N, Gudas R, et al. Extension and flexion torque variability in ACL deficiency. Knee Surgery, Sports Traumatology, Arthroscopy 2011;19:1307-13
- 29 Thomas AC, Wojtys EM, Brandon C, et al. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport 2016;19:7-11
- 30 Van Wyngaarden JJ, Jacobs C, Thompson K, et al. Quadriceps Strength and Kinesiophobia Predict Long-Term Function After ACL Reconstruction: A Cross-Sectional Pilot Study. Sports health 2021;13:251-57
- 31 Woodhouse LJ, Whittaker JL, Toomey CM, et al. Health-related Outcomes after a Youth Sport– related Knee Injury. Medicine & Science in Sports & Exercise 2019;51:255-63
- 32 Yoon T and Hwang J. Comparison of eccentric and concentric isokinetic exercise testing after anterior cruciate ligament reconstruction. Yonsei Medical Journal 2000;41:584-92
- 33 Woon E-L, Low J, Sng Y-L, et al. Feasibility, correlates, and validity of the one-leg sit-tostand test in individuals following anterior cruciate ligament reconstruction. *Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine* 2021;52:280-86

References excluded for publication type

- 1 Flosadottir V, Roos EM and Ageberg E. Muscle function at 3 years following ACL injury is associated with 5-year patient-reported outcomes. Osteoarthritis and Cartilage 2016;24:S25-S26
- 2 Holsgaard-Larsen A, Jensen C and Aagaard P. Patient reported outcomes are associated with lowerlimb muscle strength and functional performance in ACL-patients-a cross-sectional study. Osteoarthritis and Cartilage 2014;22:S121-S22:
- 3 Kim JG, Kim SB, Chung KS, et al. Vertical jump test as a functional test after anterior cruciate ligament reconstruction. Orthopaedic Journal of Sports Medicine. Conference 2016;4
- 4 Harput G, Ulusoy B, ÖZer H, et al. Ön Çapraz BaĞ Cerrahİsİ Sonrasi Subjektİf Ve Performans Temellİ SonuÇlar Arasindakİ İlİŞkİ. Associations between Self-Reported and Performance-Based Outcomes in Individuals Who Have Undergone Acl Reconstruction. Journal of Exercise Therapy & Rehabilitation 2017;4:S57-S57

References excluded for language

- 1 Baltaci G, Yilmaz G and Atay AO. The outcomes of anterior cruciate ligament reconstructed and rehabilitated knees versus healthy knees: a functional comparison. Acta Orthopaedica et Traumatologica Turcica 2012;46:186-95
- 2 Laboute E, Vignerot V, Puig PL, et al. 2D videographic analysis of knee function after anterior cruciate ligament repair: Vertical displacement and isokinetic strength. Journal de Traumatologie du Sport 2018;35:210-17
- 3 Xie D, Chen HF, Qi JH, et al. Validity of kinetic factors on evaluating the vertical jumping ability after anterior cruciate ligament reconstruction. Chinese. Chinese Journal of Tissue Engineering Research 2016;20:7648-53

References excluded for publication year prior 2000

- 1 Borsa PA, Lephart SM and Irrgang JJ. Comparison of performance-based and patient reported measures of function in anterior-cruciate-ligament-deficient individuals. Journal of Orthopaedic and Sports Physical Therapy 1998;28:392-99
- 2 Petschnig R and Baron R. Assessment of quadriceps strength and functional limitations determined by hop tests for distance and a newly designed vertical jump test after anterior cruciate ligament reconstruction. European Journal of Physical Medicine & Rehabilitation 1997;7:81-86
- 3 Petschnig R, Baron R and Albrecht M. The relationship between isokinetic quadriceps strength test and hop tests for distance and one-legged vertical jump test following anterior cruciate ligament reconstruction. Journal of Orthopaedic & Sports Physical Therapy 1998;28:23-31
- 4 Seikiya I, Muneta T, Ogiuchi T, et al. Significance of the single-legged hop test to the anterior cruciate ligament-reconstructed knee in relation to muscle strength and anterior laxity. American Journal of Sports Medicine 1998;26:384-88
- 5 Stratford P. Reliability of a peak knee extensor and flexor torque protocol: A study of post ACL reconstructed knees. Physiotherapy Canada 1991;43:27-30
- 6 Wilk KE, Romaniello WT, Soscia SM, et al. The relationship between subjective knee scores, isokinetic testing, and functional testing in the ACL-reconstructed knee. Journal of Orthopaedic & Sports Physical Therapy 1994;20:60-73

Supplementary Appendix 4. Detailed description of the included strength tests

Instrument	References	Equipement	Muscle group	Position	Contraction mode	Range of motion (°)	Speed (°/s)	Duration (s)	Repetitions	Variables reported
Computerised dynamometry	1-26	Biodex, Contrex, Cybex, IsoMed, Isosport, KinCom	Extensors, flexors	Seated	Isokinetic concentric slow-speed	90 to 0	60, 90, 120	-	3, 4, 5, or 8	PT, PT/BW, LSI
	3, 4, 11, 15, 17, 20, 22, 27-29	Biodex, Cybex, IsoMed, Isosport, KinCom	Extensors, flexors	Seated	Isokinetic concentric high-speed	90 to 0	180, 300	-	3, 5, 8, 10, or 15	PT, PT/BW, LSI
	10, 11, 15	Biodex, IsoMed2000	Extensors, flexors	Seated	Isokinetic eccentric slow-speed	90 to 0	60, 90, 120	-	3, 5	PT/BW, LSI
	11, 15	Biodex	Extensors, flexors	Seated	Isokinetic eccentric high-speed	90 to 0	180	-	5	PT/BW
	11, 14, 20, 30-32	Biodex, Cybex	Extensors	Seated	Isometric	At 30, 60, 90	-	3, or ns	2, 3	PT/BW, LSI
	17	KinCom	Extensors, flexors	Seated	Isometric (alternating)	At 45	-	ns (to max)	5	РТ
Handheld	33-35	Hoggan Health, Lafayette	Extensors, flexors	Seated	Isometric	At 60, 90	-	5, or ns (to	2,3	PT, PT/BW, LSI
dynamometry	34	Hoggan Health	Extensors	Prone	Isometric	At 90	-	5	3	LSI
	35	Hoggan Health	Flexors	Prone	Isometric	At 3	-	ns (to max)	3	PT
Leg extension	36	Cybex knee extension	Extensors	Seated	Isotonic	90 to 40	-	-	1RM	PT
Leg curl	36	Cybex prone leg curl	Flexors	Prone	Isotonic	90 to 0	-	-	1RM	PT
Leg press	22	Keiser Air 300 Leg Press	Extensors	Seated	Isotonic	100 to 0	Max	-	5 at 70% of 1RM	Watt/BW

(BW) bodyweight; (LSI) limb symmetry index; (max) maximum; (ns) not specified; (PT) peak torque; (s) second; (1RM) one-repetition maximum; (°) degrees

Supplementary Appendix 5. Elements included in studies on reliability and measurement error.

Almeida 2019

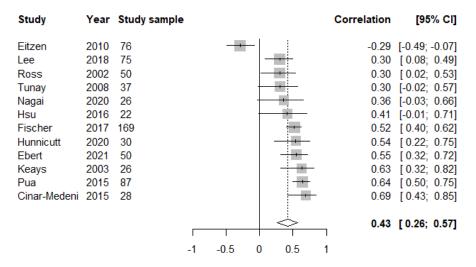
Elements	Study 1 Isometric extensor strength test
1. Instrument	Handheld dynamometer (HHD)
2. Equipment, test	Equipment: Lafayette Instrument Company HHD
protocol and variables reported	Test personnel: Two raters. Five years of work experience. Blinded to the result.
variables reported	Test procedures: Two practice trials and 30-sec rest period before the test. Two test trials consisted of maximal isometric contractions for 5s, 1-min rest
	between legs. Verbal encouragement was given. The test was repeated if difference between the contractions >10%
	Positioning procedures: Seated position with 90° hip and knee flexion, and thigh and malleoli straps. Hands crossed over the trunk. HHD was positioned 2 cm proximal to the lateral malleolus midpoint.
	Variables reported: Variables of both test trials were calculated as normalised peak torque multiplied by the lever arm.
3. Construct	Isometric extensor strength.
4. Measurement	Reliability (rater n=2, intra-rater) and measurement error.
property	
5. Components that will be repeated	The measurement was repeated.
6. Source of variation	The measurement of two test trials.
7. Patient population	ACL reconstruction (25 ± 3 mo. postop.), n=70 (9% females), without knee pain.
	arch question: What is the intra-rater reliability (normalised peak torque) of isometric th test at 90° knee flexion based on two trials in ACL reconstructed individuals.

Knezevic 2012

Elements	Study 1 Isokinetic	Study 2 Isokinetic	Study 3 Alternating isometric						
Litentents	concentric slow-speed	concentric high-speed	extensor and flexor strength test						
	extensor and flexor	extensor and flexor	extensor and nexer strength test						
	strength test	strength test							
1. Instrument	strength test	U	nometer						
	Computerised dynamometer Equipment: Kinetic Communication isokinetic dynamometer (KinCom)								
2. Equipment, test protocol and			-						
variables reported	Test personn	el: One rater. No inform	ation on work experience.						
variables reported	Test procedures: Warn	n-up consisted of 5 min	Test procedures: Warm-up and						
	of stationary cycling a		two isokinetic concentric strength						
	Five submaximal prac		tests preceded (cf. Study 1 and 2).						
	consisted of two ser		Five submaximal practice trials,						
	repetitions at 60°/s and	l at 180°/s. 1-min rest	followed by test trials, consisting						
	between trails, 2-min		of two series of five maximal						
	Verbal encouragement		alternating isometric contractions.						
	were given. The unin		Instructions given were "to						
	0	0	consecutively exert the alternating						
			maximum contractions of						
			quadriceps and hamstrings as						
			strong and as quickly as possible".						
			Verbal encouragement and real-						
			time feedback were given. The						
			uninvolved leg was first.						
	Positioning procedu	res: Seated position.	Positioning procedures: Seated						
	Pelvis, thigh, and ma		position. Pelvis, thigh, and malleoli						
	holding the sides of the		straps. Tightly holding the sides of						
	The axis of rotation of		the dynamometer chair. The axis of						
	aligned with the axis of		rotation of the dynamometer was						
	motion was limited fro		aligned with the axis of the knee.						
	flexi		Knee flexion angle was fixed at						
	next		45°.						
	Variables reported	: The trial with the high	est peak torque was used for data						
	analysis, and calculated as mean peak torque multiplied by the lever arm.								
3. Construct	Isokinetic concentric	Isokinetic concentric	Isometric extensor and flexor						
	slow-speed extensor	high-speed extensor	strength.						
	and flexor strength.	and flexor strength.	6						
4. Measurement		r reliability (rater n=1) and	nd measurement error.						
property									
5. Components	7	The entire test procedure	was repeated.						
that will be		r in r in r	r						
repeated									
6. Source of		Occasion (time interval	of 48 hours).						
variation		contraction (unite inter fur)							
7. Patient	ACL reconstruction (4)	mo, postop.) $n=15$ (0% f	females). No knee pain was reported						
population		prior or during the							
	arch question. What is the		peak torque) of isokinetic concentric						
			of five trials in ACL reconstructed						
extensor and next	strengen test at 00 78 and 1	individuals.	of five datas in rich reconstructed						
L		mai viuuno.							

Ross 2002

RU55 2002	
Elements	Study 1 Isokinetic concentric slow-speed extensor strength test
1. Instrument	Computerised dynamometer
2. Equipment, test	Equipment: Kinetic Communication isokinetic dynamometer (KinCom)
protocol and	Test personnel: One rater. No information on the rater's work experience.
variables reported	Test procedures: Warm-up consisted of 5 min of self-paced stationary cycling, followed by quadriceps, hamstring, and calf muscle stretching three times 30-s. Three submaximal practice trials and 1-min rest period before five test trials at 60°/s. The uninvolved leg was first.
	Positioning procedures: Seated position, with waist and thigh straps. The tibial pad was placed 2.5 cm proximal to the lateral malleolus. The axis of rotation of the dynamometer was aligned with the lateral femoral epicondyle. Range of motion was limited from 90° to 0° of knee flexion.
	Variables reported: Limb symmetry index was calculated using the mean peak torque.
3. Construct	Isokinetic concentric slow-speed extensor strength.
4. Measurement property	Reliability (rater n=1, intra-rater) and measurement error.
5. Components that will be repeated	The entire test procedure was repeated.
6. Source of variation	Occasion (time interval of 5 days).
7. Patient	ACL reconstruction $(27 \pm 13 \text{ mo. postop.})$, n=10 (30% females). The knee condition
population	had reached a plateau and remained unchanged between tests.
-	search question: What is the intra-rater reliability (leg symmetry index) of isokinetic trength test at 60°/s based on the mean of five trials in ACL reconstructed individuals.


Wongcharoenwatana 2019

Elements	Study 1 Isometric extensor strength test	Study 2 Isometric extensor strength						
	(seated)	test prone						
1. Instrument	Handheld dynamometer (HHD)							
2. Equipment, test	Equipment: Hoggan Health Industries HHD Test personnel: Two raters. One female and male athletic trainers with HHD training. Blinded to the result.							
protocol and variables reported								
	Test procedures: A maximal isokinetic stre	ength test was performed first, followed						
	by 10-min rest. Three submaximal practi-	ce trials and three maximal test trials						
	consisting of isometric contractions for 5s. 10-min rest between legs.							
	Positioning procedures: Seated position.	Positioning procedures: Prone						
	Trunk, waist, and thigh straps. 90° hip and	position, fixed with thigh straps. No						
	knee flexion. HHD device on the anterior	hip flexion, 90° knee flexion. HHD						
	aspect of the tibia 3 cm above the lateral	device on the anterior aspect of the						
	malleolus.	tibia 3 cm above the lateral malleolus.						
	Variables reported: Mean limb symmetry index.							
3. Construct	Isometric extensor strength. Isometric extensor strength, prone.							
4. Measurement	Intra-rater and inter-rater reliability (rater n=2).							
property								
5. Components that	Intra-rater relability: The me							
will be repeated	Intra-rater relability: The e	ntire test was repeated.						
6. Source of	Intra-rater relability: The measure							
variation	Inter-rater relability: The end							
7. Patient	ACL reconstruction (10 [3-70] mo. postop	o.), n=60 (12% females), without knee						
population	pain							
	esearch question: What is the intra-rater relia							
symmetry index) of i	sometric extensor test at 90° based on the mea	in of three trials in ACL reconstructed						
	individuals.							

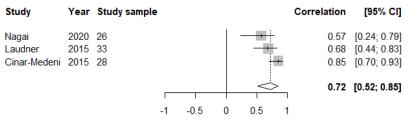
Supplementary Appendix 6. Forest plots for meta-analyses on qualitatively pooled correlation coefficients between strength tests and categorised comparator instruments

<u>Isokinetic concentric slow-speed extensor strength test</u> Comparator instrument: Hop tests

Supplemental material

Comparator instrument: Running tests

Study	Year	Study sample					Correlation	[95% CI]
Keays Kong	2003 2012				-	 -		[0.04; 0.65] [0.16; 0.72]
		-	۱ 1	-0.5	0	 1	0.44	[0.20; 0.63]


Comparator instrument: Balance tests

Study	Year	Study sample					C	Correlation	[95% CI]
Domingues Hallagin Kim Myers	2018 2017 2022 2018	39 59				-		0.10 0.26	[-0.42; 0.39] [-0.23; 0.40] [0.00; 0.48] [0.15; 0.64]
			-1	-0.5	0	> 0.5		0.23	[0.05; 0.39]

Comparator instrument: PROMS

Study	Year	Study sample	•				Co	rrelation	[95% CI]
Bodkin	2017	51			+	•		0.24	[-0.04; 0.48]
Menzer	2017	88				•		0.29	[0.09; 0.47]
Burland	2018	50						0.32	[0.05; 0.55]
Hunnicutt	2020	30						0.36	[0.00; 0.64]
Harput	2018	72			-			0.41	[0.20; 0.59]
Ebert	2021	50			-	•		0.45	[0.19; 0.65]
Hohmann	2016	44				<u> </u>		0.51	[0.25; 0.70]
						\diamond		0.36	[0.27; 0.45]
			Γ						
			-1	-0.5	0	0.5	1		

<u>Isokinetic concentric high-speed extensor strength test</u> Comparator instrument: Hop tests

Comparator instrument: PROMS

Study	Year	Study sample					Co	orrelation	[95% CI]	
Burland Menzer Hohmann	2018 2017 2016	88			1-			0.30	[-0.05; 0.48] [0.10; 0.48] [0.36; 0.76]	
					-			0.38	[0.14; 0.57]	
			-1	-0.5	0	0.5	1			

Isokinetic concentric slow-speed flexor strength test Comparator instrument: Hop tests

Study	Year	Study sample					Co	rrelation	[95% CI]
Lee	2018	75			+•			0.16	[-0.07; 0.37]
Keays	2003	26			+	+		0.31	[-0.09; 0.62]
Cinar-Medeni	2015	28			—			0.41	[0.04; 0.68]
Pua	2015	87				•		0.52	[0.35; 0.66]
		Γ		1	<	<u></u>	_	0.36	[0.16; 0.53]
		-1	1	-0.5	0	0.5	1		

Comparator instrument: Running tests

Study	Year	Study sample					С	orrelation	[95% CI]
Keays Kong	2003 2012				-	+			[-0.22; 0.48] [0.06; 0.67]
			1	-0.5		0.5	1	0.28	[0.01; 0.51]
			-1	-0.5	0	0.5	1		

Comparator instrument: Balance tests

Study	Year	Study sample					C	orrelation	[95% CI]
Domingues	2018	24				÷		0.22	[-0.20; 0.57]
Kim	2022	59						0.30	[0.05; 0.52]
Myers	2018	45			.			0.48	[0.21; 0.68]
					-	Ś		0.35	[0.19; 0.50]
			-1	-0.5	0	0.5	1		

Comparator instrument: PROMS

Study	Year	Study sample					С	orrelation	[95% CI]	
Burland Bodkin Hohmann	2018 2017 2016	51		-		÷ 		0.24	[-0.22; 0.33] [-0.03; 0.49] [0.30; 0.72]	
		-	۰ 1	-0.5	0	0.5	 1	0.29	[-0.01; 0.55]	

Isokinetic concentric high-speed flexor strength test Comparator instrument: Hop tests

Study	Year	Study sample					C	Correlation	[95% CI]
Laudner Cinar-Medeni	2015 2015					+			[0.19; 0.72] [0.28; 0.79]
			-1	-0.5	0	0.5	 1	0.54	[0.33; 0.70]

Comparator instrument: PROMS

Study	Year	Study sample	Correlation	[95% CI]
Menzer Hohmann Burland	2017 2016 2018	44	0.54	[-0.07; 0.34] [0.28; 0.72] [0.60; 0.85]
		-1 -0.5 0	0.5 1 0.51	[0.08; 0.78]

<u>Isometric extensor strength test</u> Comparator instrument: Hop tests

Study	Year	Study sample					Correlation	[95% CI]
Chaput Hunnicutt	2021 2020					-		[0.32; 0.72] [0.26; 0.77]
			-1	-0.5	0	0.5	0.56	[0.38; 0.70]

Comparator instrument: PROMS

Study	Year	Study sample				Co	orrelation	[95% CI]
Hunnicutt	2020	30	-		_		0.07	[-0.29; 0.42]
Menzer	2017	88		-			0.29	[0.09; 0.47]
Hohmann	2016	44		-	+		0.37	[0.09; 0.60]
Burland	2018	50		-	<u> </u>		0.41	[0.15; 0.62]
Davis	2017	39		-			0.44	[0.15; 0.67]
Chaput	2021	48					0.55	[0.32; 0.72]
Lepley	2018	20				-	0.72	[0.41; 0.88]
		Г			$\dot{\diamond}$		0.41	[0.28; 0.52]
		-1	-0.5	0	0.5	1		

Isometric flexor strength test Comparator instrument: PROMS

Study	Year	Study sample					(Correlation	[95% CI]
Menzer	2017				+	_			[-0.08; 0.33]
Burland	2018	50				•		0.27	[-0.01; 0.51]
Hohmann	2016	44				•		0.27	[-0.03; 0.53]
					Ċ	>		0.20	[0.06; 0.34]
			-1	-0.5	0	0.5	1		

Strength tests	Study	n	COSMIN score	Neural activity	Hop tests	Running tests	Balance tests	PROMS
Isokinetic	Bodkin 2017	51	Very good	-	-	-	-	0.24
concentric	Bodkin 2019	29	Inadequate	-0.50	-	-	-	-
slow-speed	Burland 2018	50	Very good	-	-	-	-	0.32
extensor	Cinar-Medeni 2015	28	Very good	-	0.69	-	-	-
strength	Domingues 2018	24	Adequate	-	-	-	-0.02	-
	Ebert 2021	50	Very good	-	0.57	0.34	-	0.51
	Eitzen 2010	76	Very good	-	-0.29	-	-	-
	Fischer 2017	169	Very good	-	0.52	-	-	-
	Hallagin 2017	39	Very good	-	-	-	0.10	-
	Harput 2018	72	Doubtful	-	-	-	-	0.41
	Hohmann 2016	44	Very good	-	-	-	-	0.51
	Hsieh 2015	28	Very good	-	-	-	-	ns
	Hsu 2016	22	Very good	-	0.41	-	-	-
	Hunnicutt 2020	30	Very good	-	0.54	-	-	0.36
	Jamshidi 2005	11	Doubtful	-	ns	-	-	-
	Keays 2003	26	Very good	-	0.63	-	-	-
		31	Very good	-	-	0.39	-	-
	Kim 2022	59	Adequate	-	-	-	0.03	-
	Kong 2012	30	Adequate	-	-	0.49	-	-
	Lee 2018	75	Adequate	-	0.30	-	-	-
	Menzer 2017	88	Very good	-	-	-	-	0.29
	Myers 2018	45	Adequate	-	-	-	0.42	0.22
	Nagai 2020	26	Very good	-	0.36	-	-	_
	Pua 2015	87	Very good	-	0.64			_
	Ross 2002	50	Very good	-	0.30	_	_	_
	Tunay 2008	37	Very good	_	0.30		-	-
Isokinetic	Burland 2018	50	Very good	_	-	-	-	0.23
concentric	Cinar-Medeni 2015	28	Very good	-	0.85	_	-	-
high-speed	Clagg 2015	28 66	Doubtful	-	-	-	ns	-
extensor	Hohmann 2016	44	Very good	_	-	-	-	0.60
strength	Jamshidi 2005	11	Doubtful	_	- ns	-	-	-
-	Laudner 2015	33	Very good	-	0.68	-	-	-
	Menzer 2017	88	Very good	_	-	-	-	0.30
					- 0.57	-	-	-
	Nagai 2020	26 20	Very good	-		-		
Isokinetic	Sueyoshi 2017 Bodkin 2017	29 51	Very good	-	ns -	-	-	- 0.25
concentric			Very good		-	-	-	
slow-speed	Burland 2018	50 28	Very good	-		-		0.06
flexor	Cinar-Medeni 2015	28	Very good	-	0.41	-	- 0.22	-
strength	Domingues 2018 Hohmann 2016	24	Adequate	-		-		-
0		44	Very good	-	-	-	-	0.55
	Jamshidi 2005	11	Doubtful	-	ns 0.21	-	-	-
	Keays 2003	26	Very good	-	0.31	-	-	-
	V 0010	31	Very good	-	-	0.15	-	-
	Kong 2012	30	Adequate	-	-	0.41	-	-
	Lee 2018	75	Adequate	-	0.16	-	-	-
	Myers 2018	45	Adequate	-	-	-	0.48	-
	Pua 2015	87	Very good	-	0.52	-	-	-
Isokinetic	Burland 2018	50	Very good	-	-	-	-	0.08
concentric	Cinar-Medeni 2015	28	Very good	-	0.59	-	-	-
high-speed flexor	Clagg 2015	66	Doubtful	-	-	-	ns	-
strength	Hohmann 2016	44	Very good	-	-	-	-	0.54
sucingui	Jamshidi 2005	11	Doubtful	-	ns	-	-	-
	Laudner 2015	33	Very good	-	0.50	-	-	-
	Menzer 2017	88	Very good	-	-	-	-	0.14
	Sueyoshi 2017	29	Very good	-	ns	-	-	-
	Burland 2018	50	Very good	-	-	-	-	0.41

Supplementary Appendix 7. COSMIN methodological quality ratings and correlation coefficients for studies included in the meta-analyses on construct validity

Isometric	Chaput 2021	48	Very good	-	0.55	-	-	0.55
extensor	Davis 2017	39	Very good	-	-	-	-	0.44
strength	Hohmann 2016	44	Very good	-	-	-	-	0.37
	Hunnicutt 2020	30	Very good	-	0.57	-	-	0.08
	Lepley 2018	20	Very good	-	-	-	-	0.72
	Menzer 2017	88	Very good	-	-	-	-	0.29
Isometric	Burland 2018	50	Very good	-	-	-	-	0.27
flexor	Hohmann 2016	44	Very good	-	-	-	-	0.27
strength	Menzer 2017	88	Very good	-	-	-	-	0.13

(n) sample size; (ns) not specified; (slow-speed) 60 to 120 degrees/second; (high-speed) 180 to 300 degrees/second; Negative associations due to time-based variables (running tests) were removed for consistent presentation of the results. *Included PROMS (patient-related outcome measures) were Knee Documentation Committee Subjective Knee Form, Knee injury and Osteoarthritis Outcome Score sport and recreation and knee-related quality of life subscales, and Cincinnati Knee Rating System

Supplementary Appendix 8. COSMIN methodological quality ratings and correlation coefficients for studies included in the qualitative syntheses on construct validity

Strength test	Instrument	Study	n	COSMIN score	Hop tests	PROMS*	Results (rating)
Isokinetic eccentric slow-speed	Com. dyn.	Harput 2018	72	Doubtful	-	ns	1+
extensor strength	Com. dyn.	Hohmann 2016	44	Very good	-	0.43	
	Com. dyn.	Jamshidi 2005	11	Doubtful	ns	-	
Isokinetic eccentric high-speed	Com. dyn.	Hohmann 2016	44	Very good	-	0.43	1+
extensor strength	Com. dyn.	Jamshidi 2005	11	Doubtful	ns	-	
Isokinetic eccentric slow-speed	Com. dyn.	Harput 2018	72	Doubtful	-	0.46	2+
flexor strength	Com. dyn.	Hohmann 2016	44	Very good	-	0.32	
	Com. dyn.	Jamshidi 2005	11	Doubtful	ns	-	
Isokinetic eccentric high-speed	Com. dyn.	Hohmann 2016	44	Very good	-	0.40	1+
flexor strength	Com. dyn.	Jamshidi 2005	11	Doubtful	ns	-	
Isotonic extensor strength	Leg press	Nagai 2020	26	Very good	0.34	-	1-
Isometric extensor strength	HHD	Manchado 2021	194	Very good	-	0.20	1-
Isometric flexor strength, prone	HHD	Manchado 2021	194	Very good	-	0.18	1-

(com. dyn.) computerised dynamometry; (HHD) handheld dynamometry; (n) sample size; (ns) not specified; (slow-speed) 60 to 120 degrees/second; (high-speed) 180 to 300 degrees/second

*Included PROMS (patient-related outcome measures) were Knee Documentation Committee Subjective Knee Form, Knee injury and Osteoarthritis Outcome Score sport and recreation and knee-related quality of life subscales, and Cincinnati Knee Rating System

Supplementary Appendix 9. COSMIN methodological quality ratings and correlation coefficient for studies on criterion validity

Strength tests	Instruments	Variables reported	Study	n	COSMIN score	Summary result (rating)
Isokinetic concentric high-speed extensor strength	Computerized dynamometry	PT/BW	Nagai 2020	26	Very good	r=0.82-0.83 (+)
Isometric extensor strength	HHD	PT/BW	Almeida 2019	70	Very good	r=0.62 (-)
	HHD	LSI	Wongcharoenwatana 2019	60	Very good	r=0.36-0.52 (-)
Isometric extensor strength, prone	HHD	LSI	Wongcharoenwatana 2019	60	Very good	r=0.17-0.36 (-)
Isotonic extensor strength	Leg extension	PT	Pua 2017	106	Very good	<i>r</i> =0.91 (+)
	Leg press	PT/BW	Nagai 2020	26	Very good	r=0.57 (-)
Isotonic flexor strength, prone	Leg curl	PT	Pua 2017	106	Very good	r=0.80 (+)

(BW) body weight; (HHD) handheld dynamometry; (LSI) limb symmetry index; (n) sample size; (PT) peak torque; (r) correlation coefficient; (high-speed) 180 to 300 degrees/second

Appendix 10. Modified GRADE table

Strength tests	Studies,	Individuals,	Graded factor (level of downgrading)	Quality of
	number	number		evidence
Reliability				
Intra-rater				
Isokinetic concentric 60°/s extensor strength	2	25	Inconsistency (one); imprecision (two)	Very low
Isokinetic concentric 180°/s extensor strength	1	15	Risk of bias (one); imprecision (two)	Very low
Isokinetic concentric 60°/s flexor strength	1	15	Risk of bias (one); imprecision (two)	Very low
Isokinetic concentric 180°/s flexor strength	1	15	Risk of bias (one); imprecision (two)	Very low
Isometric extensor strength	2	130	Inconsistency (one)	Moderate
Isometric extensor strength, prone	1	60	Risk of bias (two); imprecision (one)	Very low
Alternating isometric extensor strength	1	15	Risk of bias (two); imprecision (one)	Very low
Alternating isometric flexor strength	1	15	Risk of bias (two); imprecision (one)	Very low
Inter-rater				
Isometric extensor strength	1	60	Risk of bias (two); imprecision (one)	Very low
Isometric extensor strength, prone	1	60	Risk of bias (two) imprecision (one)	Very low
Measurement error				
Isokinetic concentric 60°/s extensor strength	2	25	-	-
Isokinetic concentric 180°/s extensor strength	1	15	-	-
Isokinetic concentric 60°/s flexor strength	1	15	-	-
Isokinetic concentric 180°/s flexor strength	1	15	-	-
Isometric extensor strength	1	130	-	-
Alternating isometric extensor strength	1	15	-	-
Alternating isometric extensor strength	1	15	-	-
Construct validity				
Isokinetic concentric slow-speed extensor strength	26	1277	Inconsistency (one)	Moderate
Isokinetic concentric high-speed extensor strength	9	375	Inconsistency (one)	Moderate
Isokinetic concentric slow-speed flexor strength	12	502	Inconsistency (one)	Moderate
Isokinetic concentric high-speed flexor strength	8	349	Inconsistency (one)	Moderate
Isokinetic eccentric slow-speed extensor strength	1	44	Imprecision (two)	Low
Isokinetic eccentric high-speed extensor strength	1	44	Imprecision (two)	Low
Isokinetic eccentric slow-speed flexor strength	2	116	-	High
Isokinetic eccentric high-speed flexor strength	1	44	Imprecision (two)	Low
Isometric extensor strength	7	319	Inconsistency (one)	Moderate
Isometric flexor strength	3	182	Inconsistency (one)	Moderate
Isometric extensor strength (HHD)	1	194	-	High
Isometric flexor strength, prone (HHD)	1	194	-	High
Isotonic extensor strength (leg press)	1	26	Imprecision (two)	Low
Criterion validity			• • • •	
Isokinetic concentric high-speed extensor strength	1	26	Imprecision (two)	Low
Isometric extensor strength (HHD)	2	130	-	High
Isometric extensor strength, prone (HHD)	1	60	Imprecision (one)	Moderate
Isotonic extensor strength (leg extension)	1	106	-	High
Isotonic extensor strength (leg press)	1	26	Imprecision (two)	Low
Isotonic flexor strength, prone (leg curl)	1	106	-	High

(HHD) handheld dynamometry; (slow-speed) 60 to 120 degrees/second; (high-speed) 180 to 300 degrees/second

Unless otherwise stated, strength tests were performed using computerised dynamometry

Four factors (risk of bias, inconsistency, imprecision, and indirectness) were evaluated for grading quality of evidence: starting point at high quality; downgraded for risk of bias by one level if there is one study of adequate quality available, two levels if there is one study of doubtful quality available; downgraded for inconsistency by one level if serious; downgraded for imprecision by one level if total sample size = 50-100, two levels if total sample size ≤ 50

Appendix 11. Summary of Findings

Strength tests (variable)	Instrument	Summary or pooled result	Overall rating	Quality of evidence
Reliability				
Intra-rater				
Isokinetic concentric 60°/s extensor strength (LSI, PT)	Com. dyn.	ICC: 0.95; n: 25	Sufficient	Very low
Isokinetic concentric 180°/s extensor strength (PT)	Com. dyn.	ICC: 0.99; n: 15	Sufficient	Very low
Isokinetic concentric 60°/s flexor strength (PT)	Com. dyn.	ICC: 0.99; n: 15	Sufficient	Very low
Isokinetic concentric 180°/s flexor strength (PT)	Com. dyn.	ICC: 0.99; n: 15	Sufficient	Very low
Isometric extensor strength (PT/BW, LSI)	Com. dyn.	ICC: 0.91-98; n: 130	Sufficient	Moderate
Isometric extensor strength prone (LSI)	Com. dyn.	ICC: 0.90; n: 60	Sufficient	Very low
Alternating isometric extensor strength (LSI)	Com. dyn.	ICC: 0.95; n: 60	Sufficient	Very low
Alternating isometric flexor strength (LSI)	Com. dyn.	ICC: 0.89; n: 60	Sufficient	Very low
Inter-rater	5			
Isometric extensor strength (LSI)	Com. dyn.	ICC: 0.60; n: 60	Insufficient	Very low
Isometric extensor prone strength (LSI)	Com. dyn.	ICC: 0.43; n: 60	Insufficient	Very low
Measurement error	5			
Isokinetic concentric 60°/s extensor strength (PT, LSI)	Com. dyn.	SEM: 3.8; CV 8.3%; n: 25	Indeterminate	-
Isokinetic concentric 180°/s extensor strength (PT)	Com. dyn.	CV: 2.9%; n: 15	Indeterminate	-
Isokinetic concentric 60°/s flexor strength (PT)	Com. dyn.	CV: 3.4%; n: 15	Indeterminate	-
Isokinetic concentric 180°/s flexor strength (PT)	Com. dyn.	CV: 3.3%; n: 15	Indeterminate	-
Isometric extensor strength (PT/BW)	Com. dyn.	SEM: 0.6%; SDC 95%: 1.7%; LOA: -18.7,17.9; n: 70	Indeterminate	-
Alternating isometric extensor strength (PT)	Com. dyn.	CV: 9.2%; n: 60	Indeterminate	-
Alternating isometric extensor strength (PT)	Com. dyn.	CV: 10.3%; n: 60	Indeterminate	-
Construct validity	,			
Isokinetic concentric slow-speed extensor strength	Com. dyn.	3 of 5 hypotheses confirmed	Sufficient	Moderate
Isokinetic concentric high-speed extensor strength	Com. dyn.	2 of 2 hypotheses confirmed	Sufficient	Moderate
Isokinetic concentric slow-speed flexor strength	Com. dyn.	1 of 4 hypotheses confirmed	Insufficient	Moderate
Isokinetic concentric high-speed flexor strength	Com. dyn.	2 of 2 hypotheses confirmed	Sufficient	Moderate
Isokinetic eccentric slow-speed extensor strength	Com. dyn.	1 of 1 hypotheses confirmed	Sufficient	Low
Isokinetic eccentric high-speed extensor strength	Com. dyn.	1 of 1 hypotheses confirmed	Sufficient	Low
Isokinetic eccentric slow-speed flexor strength	Com. dyn.	2 of 2 hypotheses confirmed	Sufficient	High
Isokinetic eccentric high-speed flexor strength	Com. dyn.	1 of 1 hypotheses confirmed	Sufficient	Low
Isometric extensor strength	Com. dyn.	2 of 2 hypotheses confirmed	Sufficient	Moderate
Isometric flexor strength	Com. dyn.	0 of 1 hypotheses confirmed	Insufficient	Moderate
Isometric extensor strength	HHD	0 of 1 hypotheses confirmed	Insufficient	High
Isometric flexor strength, prone	HHD	0 of 1 hypotheses confirmed	Insufficient	High
Isotonic extensor strength	Leg press	0 of 1 hypotheses confirmed	Insufficient	Low
Criterion validity	01	× .		
Isokinetic concentric high-speed extensor strength	Com. dyn.	2 of 2 hypotheses confirmed	Suficient	Low
Isometric extensor strength	HHD	0 of 1 hypotheses confirmed	Insufficient	High
Isometric extensor strength, prone	HHD	0 of 2 hypotheses confirmed	Insufficient	Moderate
Isotonic extensor strength	Leg extension	1 of 1 hypotheses confirmed	Sufficient	High
Isotonic extensor strength	Leg press	0 of 1 hypotheses confirmed	Insufficient	Low
Isotonic flexor strength, prone	Leg curl	1 of 1 hypotheses confirmed	Sufficient	High

 Instance
 Leg current
 For Thypotheses confirmed
 Sufficient
 High

 (BW) body weight; (com. dyn.) computerised dynamometry; (CV) coefficient of variation; (HHD) handheld dynamometry; (ICC) intraclass correlation coefficient; (LOA) limits of agreement; (LSI) limb symmetry index; (n) sample size; (PT) peak torque; (SDC) smallest detectable change; (SEM) standard error of measurement; (°/s) degrees/second; (slow-speed) 60 to 120 degrees/second; (high-speed) 180 to 300 degrees/second

References

- Bodkin S, Goetschius J, Hertel J, et al. Relationships of Muscle Function and Subjective Knee Function in Patients After ACL Reconstruction. *Orthop J Sports Med* 2017;5:2325967117719041 doi:10.1177/2325967117719041 [published Online First: 2017/08/15]
- 2 Bodkin SG, Norte GE and Hart JM. Corticospinal excitability can discriminate quadriceps strength indicative of knee function after ACL-reconstruction. *Scand J Med Sci Sports* 2019;29:716-24 doi:10.1111/sms.13394 [published Online First: 2019/01/24]
- 3 Burland JP, Kostyun RO, Kostyun KJ, et al. Clinical Outcome Measures and Returnto-Sport Timing in Adolescent Athletes After Anterior Cruciate Ligament Reconstruction. *J Athl Train* 2018;53:442-51 doi:10.4085/1062-6050-302-16 [published Online First: 2018/05/31]
- 4 Cinar-Medeni O, Baltaci G, Bayramlar K, et al. Core stability, knee muscle strength, and anterior translation are correlated with postural stability in anterior cruciate ligament-reconstructed patients. *Am J Phys Med Rehabil* 2015;94:280-7 doi:10.1097/PHM.00000000000177 [published Online First: 2014/08/15]
- 5 Domingues PC, Serenza FS, Muniz TB, et al. The relationship between performance on the modified star excursion balance test and the knee muscle strength before and after anterior cruciate ligament reconstruction. *Knee* 2018;25:588-94 doi:10.1016/j.knee.2018.05.010 [published Online First: 2018/06/11]
- 6 Ebert JR, Edwards P, Preez LD, et al. Knee extensor strength, hop performance, patient-reported outcome and inter-test correlation in patients 9-12 months after anterior cruciate ligament reconstruction. *Knee* 2021;30:176-84 doi:10.1016/j.knee.2021.04.012 [published Online First: 2021/05/04]
- Eitzen I, Eitzen TJ, Holm I, et al. Anterior Cruciate Ligament-Deficient Potential Coper's and Noncopers Reveal Different Isokinetic Quadriceps Strength Profiles in the Early Stage After Injury. *American Journal of Sports Medicine* 2010;38:586-930nline First: 2010/01/08]
- Fischer F, Blank C, Dunnwald T, et al. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height. *Orthop J Sports Med* 2017;5:2325967117736766 doi:10.1177/2325967117736766 [published Online First: 2017/11/18]
- 9 Hallagin C, Garrison JC, Creed K, et al. The Relationship between Pre-Operative and Twelve-Week Post-Operative Y-Balance and Quadriceps Strength in Athletes with an Anterior Cruciate Ligament Tear. *Int J Sports Phys Ther* 2017;12:986-93Online First: 2017/11/22]
- 10 Harput G, Ozer H, Baltaci G, et al. Self-reported outcomes are associated with knee strength and functional symmetry in individuals who have undergone anterior cruciate ligament reconstruction with hamstring tendon autograft. *Knee* 2018;25:757-64 doi:10.1016/j.knee.2018.06.007 [published Online First: 2018/07/26]
- 11 Hohmann E, Bryant A and Tetsworth K. Strength does not influence knee function in the ACL-deficient knee but is a correlate of knee function in the and ACLreconstructed knee. *Arch Orthop Trauma Surg* 2016;136:477-83 doi:10.1007/s00402-015-2392-6 [published Online First: 2016/01/01]
- 12 Hsieh CJ, Dominguez JA, Moser MW, et al. Gait Asymmetry after Meniscal Tear Is Associated with Knee Pain Intensity and Fear of Movement/Re-Injury. *Osteoarthritis and Cartilage* 2011;19:S90-S91 doi:Doi 10.1016/S1063-4584(11)60208-2 [published Online First: 2011/09]

- Hsu CJ, George SZ and Chmielewski TL. Association of Quadriceps Strength and Psychosocial Factors With Single-Leg Hop Performance in Patients With Meniscectomy. *Orthop J Sports Med* 2016;4:2325967116676078 doi:10.1177/2325967116676078 [published Online First: 2017/02/18]
- Hunnicutt JL, McLeod MM, Slone HS, et al. Quadriceps Neuromuscular and Physical Function After Anterior Cruciate Ligament Reconstruction. *J Athl Train* 2020;55:238-45 doi:10.4085/1062-6050-516-18 [published Online First: 2020/01/30]
- 15 Jamshidi AA, Olyaei GR, Heydarian K, et al. Isokinetic and functional parameters in patients following reconstruction of the anterior cruciate ligament. *Isokinetics and Exercise Science* 2005;13:267-72 doi:10.3233/Ies-2005-0213 [published Online First: 2005/12/09]
- 16 Keays SL, Bullock-Saxton JE, Newcombe P, et al. The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. J Orthop Res 2003;21:231-7 doi:10.1016/s0736-0266(02)00160-2 [published Online First: 2003/02/06]
- 17 Knezevic OM, Mirkov DM, Kadija M, et al. Alternating Consecutive Maximum Contraction as a Test of Muscle Function in Athletes Following ACL Reconstruction. *J Hum Kinet* 2012;35:5-13 doi:10.2478/v10078-012-0074-9 [published Online First: 2013/03/15]
- 18 Kong DH, Yang SJ, Ha JK, et al. Validation of functional performance tests after anterior cruciate ligament reconstruction. *Knee Surg Relat Res* 2012;24:40-5 doi:10.5792/ksrr.2012.24.1.40 [published Online First: 2012/05/10]
- 19 Lee DW, Yang SJ, Cho SI, et al. Single-leg vertical jump test as a functional test after anterior cruciate ligament reconstruction. *Knee* 2018;25:1016-26 doi:10.1016/j.knee.2018.07.014 [published Online First: 2018/08/18]
- 20 Menzer H, Slater LV, Diduch D, et al. The Utility of Objective Strength and Functional Performance to Predict Subjective Outcomes After Anterior Cruciate Ligament Reconstruction. *Orthop J Sports Med* 2017;5:2325967117744758 doi:10.1177/2325967117744758 [published Online First: 2018/01/11]
- 21 Myers H, Christopherson Z and Butler RJ. Relationship between the Lower Quarter Y-Balance Test Scores and Isokinetic Strength Testing in Patients Status Post ACL Reconstruction. *International Journal of Sports Physical Therapy* 2018;13:152-59 doi:10.26603/ijspt20180152
- 22 Nagai T, Schilaty ND, Laskowski ER, et al. Hop tests can result in higher limb symmetry index values than isokinetic strength and leg press tests in patients following ACL reconstruction. *Knee Surg Sports Traumatol Arthrosc* 2020;28:816-22 doi:10.1007/s00167-019-05513-3 [published Online First: 2019/04/27]
- Pua YH, Ong PH, Ho JY, et al. Associations of isokinetic knee steadiness with hop performance in patients with ACL deficiency. *Knee Surg Sports Traumatol Arthrosc* 2015;23:2185-95 doi:10.1007/s00167-014-2995-4 [published Online First: 2014/04/24]
- 24 Ross MD, Irrgang JJ, Denegar CR, et al. The relationship between participation restrictions and selected clinical measures following anterior cruciate ligament reconstruction. *Knee Surg Sports Traumatol Arthrosc* 2002;10:10-9 doi:10.1007/s001670100238 [published Online First: 2002/01/31]
- 25 Tunay VB, Baltaci G, Ergun N, et al. Quadriceps femoris strength and knee functions in soccer players after anterior cruciate ligament reconstruction: six month follow-up. *Turkish Journal of Physiotherapy Rehabilitation* 2008;19:10-14
- 26 Kim JS, Hwang UJ, Choi MY, et al. Correlation Between Y-Balance Test and Balance, Functional Performance, and Outcome Measures in Patients Following ACL

Reconstruction. *Int J Sports Phys Ther* 2022;17:193-200 doi:10.26603/001c.31873 [published Online First: 2022/02/10]

- 27 Clagg S, Paterno MV, Hewett TE, et al. Performance on the modified star excursion balance test at the time of return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 2015;45:444-52 doi:10.2519/jospt.2015.5040 [published Online First: 2015/04/23]
- 28 Laudner K, Evans D, Wong R, et al. Relationship between Isokinetic Knee Strength and Jump Characteristics Following Anterior Cruciate Ligament Reconstruction. *International Journal of Sports Physical Therapy* 2015;10:272-80Online First: 2015/06/01]
- 29 Sueyoshi T, Nakahata A, Emoto G, et al. Single-Leg Hop Test Performance and Isokinetic Knee Strength After Anterior Cruciate Ligament Reconstruction in Athletes. *Orthop J Sports Med* 2017;5:2325967117739811 doi:10.1177/2325967117739811 [published Online First: 2017/11/23]
- Lepley AS, Pietrosimone B and Cormier ML. Quadriceps Function, Knee Pain, and Self-Reported Outcomes in Patients With Anterior Cruciate Ligament Reconstruction. *Journal of athletic training* 2018;53:337-46 doi:10.4085/1062-6050-245-16
 [published Online First: 2018/04/18]
- 31 Chaput M, Palimenio M, Farmer B, et al. Quadriceps Strength Influences Patient Function More Than Single Leg Forward Hop During Late-Stage ACL Rehabilitation. *International Journal of Sports Physical Therapy* 2021;16:145-55 doi:10.26603/001c.18709 [published Online First: 2021/02/01]
- 32 Davis HC, Troy Blackburn J, Ryan ED, et al. Quadriceps rate of torque development and disability in individuals with anterior cruciate ligament reconstruction. *Clin Biomech (Bristol, Avon)* 2017;46:52-56 doi:10.1016/j.clinbiomech.2017.04.011 [published Online First: 2017/05/17]
- 33 Almeida GPL, Albano TR and Melo AKP. Hand-held dynamometer identifies asymmetries in torque of the quadriceps muscle after anterior cruciate ligament reconstruction. *Knee Surg Sports Traumatol Arthrosc* 2019;27:2494-501 doi:10.1007/s00167-018-5245-3 [published Online First: 2018/11/01]
- 34 Wongcharoenwatana J and Lertwanich P. Correlation of Hand-held Dynamometer and Isokinetic Dynamometer for Determining Quadriceps Index in Post-operative Anterior Cruciate Ligament Reconstruction. *Journal of the Medical Association of Thailand* 2019;102:57-61
- 35 Manchado I, Alvarez D, Motta LM, et al. Correlation among Knee Muscle Strength and Self-Reported Outcomes Score, Anterior Tibial Displacement, and Time Post-Injury in Non-Coper Anterior Cruciate Ligament Deficient Patients: A Cross-Sectional Study. *Int J Environ Res Public Health* 2021;18 doi:10.3390/ijerph182413303 [published Online First: 2021/12/25]
- 36 Pua YH, Ho JY, Chan SA, et al. Associations of isokinetic and isotonic knee strength with knee function and activity level after anterior cruciate ligament reconstruction: a prospective cohort study. *Knee* 2017;24:1067-74 doi:10.1016/j.knee.2017.06.014 [published Online First: 2017/07/26]