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ABSTRACT
Objective To estimate the dose–response associations 
between non- occupational physical activity and several 
chronic disease and mortality outcomes in the general 
adult population.
Design Systematic review and cohort- level dose- 
response meta- analysis.
Data sources PubMed, Scopus, Web of Science and 
reference lists of published studies.
Eligibility criteria Prospective cohort studies with 
(1) general population samples >10 000 adults, (2) ≥3 
physical activity categories, and (3) risk measures and 
CIs for all- cause mortality or incident total cardiovascular 
disease, coronary heart disease, stroke, heart failure, 
total cancer and site- specific cancers (head and neck, 
myeloid leukaemia, myeloma, gastric cardia, lung, 
liver, endometrium, colon, breast, bladder, rectum, 
oesophagus, prostate, kidney).
Results 196 articles were included, covering 94 
cohorts with >30 million participants. The evidence 
base was largest for all- cause mortality (50 separate 
results; 163 415 543 person- years, 811 616 events), 
and incidence of cardiovascular disease (37 results; 28 
884 209 person- years, 74 757 events) and cancer (31 
results; 35 500 867 person- years, 185 870 events). In 
general, higher activity levels were associated with lower 
risk of all outcomes. Differences in risk were greater 
between 0 and 8.75 marginal metabolic equivalent of 
task- hours per week (mMET- hours/week) (equivalent 
to the recommended 150 min/week of moderate- to- 
vigorous aerobic physical activity), with smaller marginal 
differences in risk above this level to 17.5 mMET- hours/
week, beyond which additional differences were small 
and uncertain. Associations were stronger for all- cause 
(relative risk (RR) at 8.75 mMET- hours/week: 0.69, 95% 
CI 0.65 to 0.73) and cardiovascular disease (RR at 8.75 
mMET- hours/week: 0.71, 95% CI 0.66 to 0.77) mortality 
than for cancer mortality (RR at 8.75 mMET- hours/week: 
0.85, 95% CI 0.81 to 0.89). If all insufficiently active 
individuals had achieved 8.75 mMET- hours/week, 15.7% 
(95% CI 13.1 to 18.2) of all premature deaths would 
have been averted.
Conclusions Inverse non- linear dose–response 
associations suggest substantial protection against a 
range of chronic disease outcomes from small increases 
in non- occupational physical activity in inactive adults.

PROSPERO registration number CRD42018095481.

INTRODUCTION
Cardiovascular disease (CVD) is the leading cause of 
death globally, responsible for 17.9 million annual 
deaths in 2019,1 whereas cancers were responsible 
for 9.6 million deaths in 2017.1 Both conditions top 
the global disease burden with respect to disability- 
adjusted life- years.2 The relative contribution 
of various risk and protective factors to the inci-
dence of, and mortality from, these conditions is an 
ongoing debate.

Higher levels of physical activity (PA) are associ-
ated with lower risk of all- cause mortality, CVD and 
some site- specific cancers.2–8 The highest quality 
evidence for these associations and the population 
impact of low PA levels comes from disease- specific 
meta- analyses. However, differing methods used in 
previous meta- analyses limit comparability of rela-
tive risks across different outcomes. The only initia-
tive to consistently consider the population impact 
across diseases (five in total) is the Global Burden of 
Disease (GBD) study, which uses estimates of total 
PA, including occupational activity.9 This is prob-
lematic as occupational activity is generally poorly 
measured compared with non- occupational activity 
and estimates of activity at work often dwarf the 
non- occupational component. One reason for this 
is the use of gross metabolic equivalent of task 
(MET)- hour/week to quantify PA volume. Seden-
tary office work may be considered to cost approx-
imately 1.25 METs, of which 1 MET represents 
resting metabolic rate. Non- occupational activity 
is typically more intense (eg, walking at 4.0 km/
hour is approximately 3 METs), meaning the rela-
tive contribution of the resting metabolic rate is 
smaller. Including low- intensity high- duration 
activities such as occupational activity without 
marginalising the resting component can therefore 
distort the PA exposure dramatically. Furthermore, 
even when occupational PA is well measured, it 
remains unclear whether it has similar health bene-
fits to non- occupational activity.10 These factors 
add statistical noise, decreasing the accuracy of the 
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estimated associations, and may underestimate the contribution 
of non- occupational PA.

Accurate estimation of the dose–response association between 
PA and disease outcomes, combined with prevalence estimates, 
is a prerequisite to assessing the population disease burden of 
insufficient PA and the potential impact of changes to population 
levels of PA. Modelling studies that evaluate public health strat-
egies aimed at increasing population activity levels have found 
that the shape of the dose–response association makes a signif-
icant difference when quantifying population health impacts.6

Our objective was to quantify dose–response associations 
between non- occupational PA and several CVD, cancer and 
mortality outcomes using a novel harmonisation framework 
to overcome the challenges posed by different PA measure-
ment methods. This framework allowed us to compare studies 
measuring and reporting PA in a wide variety of ways on the 
same activity exposure scale of marginal MET- hours per week 
(mMET- hours/week). This meant we could be more inclusive 
of the available evidence than previous meta- analyses and we 
could explore the dose–response relationships between non- 
occupational PA and nine site- specific cancers for the first time. 
To contextualise our results for public health promotion, we 
generated potential population impact fractions (PIFs) to esti-
mate the proportion of preventable deaths and disease outcomes 
at different non- occupational PA levels.

METHODS
The study protocol is available at PROSPERO (registration 
number CRD42018095481).

Eligibility criteria
Online supplemental eMethods 1 shows the study inclusion and 
exclusion criteria. We included prospective cohort studies that 
followed adults (≥18 years) without pre- existing conditions, 
reported PA at baseline in at least three ordinal exposure levels 
and reported risk estimates for the examined outcomes. We 
excluded studies with <10 000 participants to limit potential bias 
from small study sizes with positive results; this is the required 
cohort sample size for outcomes with up to 70% of subjects in 
the unexposed group (ie, no or less physically active), expected 
incidence rate in the unexposed group around 15% or more, and 
assumed relative risk of 0.85, when type I and type II errors are 
0.05 and 0.20, respectively. These are reasonable parameters for 
the investigated populations, exposure and endpoints. We also 
excluded studies where the follow- up period was <3 years to 
minimise reverse causality bias, which is in accordance with the 
findings of Lee et al.11

Only articles that examined leisure- time PA, alone or in 
combination with other domains or specific types of activity, 
were included. We excluded articles whose measures of PA 
contained occupational activity that could not be factored out 
and that investigated individual domains of PA that did not 
include leisure- time activity (eg, transport- related PA only).

The outcomes of interest were the following:
 ► All- cause, total CVD and total cancer mortality.
 ► Total CVD, coronary heart disease, stroke and heart failure 

incidence (fatal and non- fatal events combined).
 ► Total and site- specific (head and neck, myeloid leukaemia, 

myeloma, gastric cardia, lung, liver, endometrial, colon, 
breast, bladder, rectum, oesophageal, prostate, and kidney) 
cancer incidence (fatal and non- fatal events combined). 
These site- specific cancers were selected based on previously 
reported associations with PA.8

Search and selection process
We searched PubMed, Scopus, Web of Science and the reference 
lists of reviews retrieved from our systematic review, known to 
the authors or cited in the 2018 US Physical Activity Guidelines 
Advisory Committee Scientific Report.12 Online supplemental 
eMethods 2 details the systematic search strategy. We considered 
peer- reviewed articles in any language published in academic 
journals until February 2019.

Titles and abstracts, and subsequently full texts, were screened 
independently twice for eligibility (online supplemental eFigure 
1). Disagreements were resolved by discussion.

If multiple articles reported results on the same cohort and 
outcome, we followed specific criteria (online supplemental 
eMethods 3) to select one.

Data extraction
Data from each paper were extracted by one reviewer and double- 
checked independently by a second reviewer. Disagreements 
were checked against the full text and resolved by discussion.

We extracted data on publication (first author, year of publi-
cation), study characteristics (country, cohort name, sample size, 
age and sex of participants, and duration of follow- up), PA expo-
sure assessment (instrument, domains of activity and exposure 
categories) and outcome assessment (defined using the Interna-
tional Classification of Disease 10th revision (ICD- 10) codes 
as reported in the PROSPERO registration and online supple-
mental eMethods 1). We extracted whether fatal, non- fatal or 
the combination of fatal and non- fatal events was tallied. We 
also identified how original study analyses had considered base-
line morbidity (exclusion at baseline or statistical adjustment in 
multivariable regression models) and early incident cases during 
follow- up.

For each exposure category, we extracted information to quan-
tify PA volume, number of cases, number of participants and/
or person- years of follow- up, and risk estimates with 95% CIs. 
Risk estimates from the most adjusted model were used. When 
available, risk estimates of the most adjusted model without 
adiposity- related covariates (eg, body mass index (BMI), waist 
circumference) were retrieved and used in sensitivity analyses. 
Exposure data were extracted to the level of precision reported 
in the published study before being harmonised to PA volume 
in mMET- hours/week. Risk estimates were extracted exactly as 
reported. Results reported separately by sex or other attributes 
(eg, age, ethnicity) or for multiple cohorts within an article were 
treated as separate associations. If the original publication did 
not fully report information required for the meta- analysis, data 
were obtained from other publications using the same cohort, 
imputation procedures (online supplemental eMethods 4) or by 
contacting the authors. We had no control over the methods used 
to handle confounders and missing data in the original analyses.

PA exposure harmonisation
Overview of harmonisation
A comprehensive data harmonisation was conducted to combine 
PA data from different sources. We harmonised reported PA 
exposure levels from all included studies into a common metric 
of non- occupational PA volume in mMET- hours/week, reflecting 
the rate of energy expenditure outside of work, above the 
resting metabolic rate (1 MET). This allows correct equating of 
PA volume of time spent at different PA intensity levels.13 The 
principles of each aspect of our harmonisation procedure are 
described in the following sections and presented in a flow chart 
available in our OSF repository. The last columns of the table on 
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‘Details of included articles and original and harmonized expo-
sures’ in the same OSF repository contain the details of how the 
original PA exposure categories of each study were harmonised 
to mMET- hours/week values.

Frequency, duration and intensity assumptions
PA exposures described in studies as frequency and duration 
measures were converted to weekly duration. If session duration 
was not provided, we assumed a duration of 0.75 hours/session 
(0.5 hours/session in sensitivity analyses). Categorical frequency 
data (eg, never, sometimes and often) were converted to weekly 
duration using assumptions for both frequency (eg, 0, 2 and 5 
sessions per week) and duration of sessions. When PA intensity 
was not explicitly described, we considered the reported activ-
ities as light, moderate or vigorous based on the description 
provided and using the Compendium of Physical Activities.14 We 
assigned mMET values of 1.5 for light, 3.5 for moderate and 
moderate- to- vigorous, and 7.0 for vigorous PA (1 mMET less in 
sensitivity analyses).

Converting absolute energy expenditure to MET values
For studies reporting energy expenditure without adjustment 
for body weight (eg, kJ/day, kcal/week), energy expenditure 
was divided by reported weights to derive MET equivalents (1 
MET=1 kcal/kg/hour). If unavailable, body weight was calcu-
lated from reported BMI and height. If BMI was reported 
without height, a mean value from national survey data was used 
for height.

Subtracting resting energy expenditure from estimates of PA
To marginalise studies reporting volume of PA in gross units, 
1 MET- hour was subtracted for each hour of activity. If the 
mean duration was not available, we used a conversion equation 
derived from all remaining studies where both volume and dura-
tion were available (online supplemental eMethods 5).

Isolating the non-occupational component of aggregate PA 
estimates
Some articles provided aggregated exposures of non- 
occupational and occupational PA alongside other behaviours, 
such as sleep or sedentary time. When quantified information 
about these behaviours was available, this was subtracted from 
the point estimate of each exposure category. If no quantifiable 
data were available, we assumed occupational activity to be 40 
hours/week at 1.25 MET (or 0.25 mMET) or the value of the 
lowest exposure category and subtracted this from all exposure 
categories.

Meta-analytical methods
We conducted a meta- analysis for any outcome with results 
from at least four cohorts. Where necessary, risk estimates were 
recalculated to set the least active category as the referent.15 For 
studies reporting only stratified results (eg, sex or ethnicity), 
we combined stratum- specific risks into overall population esti-
mates using fixed- effect meta- analysis.

We performed a two- stage random- effects meta- analysis. In 
the first stage, we estimated study- specific dose–response coeffi-
cients using generalised least squares to incorporate the correla-
tion within each set of log- relative risks.16 17 In the second stage, 
we estimated the pooled coefficients by combining study- specific 
dose–response coefficients using restricted maximum likeli-
hood,18 19 with cohorts weighted by the inverse of their variance. 
We assumed non- linearity of dose–response associations,2–4 7 9 13 

and thus modelled them by fitting restricted cubic splines. Given 
that the volumes of PA reported in most studies were at the 
lower end of the exposure range and that there is greater uncer-
tainty about the reliability of very high levels of self- reported 
PA, we set three knots at the 0th, 37.5th and 75th percentiles of 
person- years rather than persons (0th, 42.5th and 85th percen-
tiles in sensitivity analyses). The slope was fixed at the last knot. 
If the statistical model was unable to converge, we progressively 
increased the percentile for the upper knot by 1% until model 
convergence. Dose–response curves were drawn from 1000 
points evenly distributed between 0 mMET- hour/week and the 
largest PA dose observed in the cohorts included for the outcome 
of interest.

To investigate the potential effect of study- level confounders 
on the pooled results across outcomes, we conducted subgroup 
analyses with the 11 studies that reported results for all all- cause, 
CVD and cancer mortality outcomes and contrasted them with 
results from the corresponding main analysis. We also conducted 
subgroup analysis by sex using studies that reported separate 
results for men and women.

Estimation of population health impact
PIFs were calculated for all outcomes based on PA exposure levels 
in the population of all included cohorts for a given outcome 
(see formula in online supplemental eMethods 6).20 PIFs were 
calculated for three exposure levels based on the equivalents of 
the WHO moderate- to- vigorous aerobic PA recommendations 
for adults21: 8.75 mMET- hours/week (the minimum recom-
mended level, equivalent to 2.5 hours/week of PA at an inten-
sity of 3.5 mMET, such as brisk walking), 17.5 mMET- hours/
week (upper bound of recommended levels for health benefits) 
and 4.375 mMET- hours/week (half the minimum recommended 
level). The risk estimates used to calculate PIFs were taken from 
the dose–response curves, which pooled the most adjusted asso-
ciations provided by the individual studies.

Risk of bias assessment
We explored the impact of six potential sources of bias in indi-
vidual articles and our meta- analytical procedures: how studies 
had analysed participants with other morbidities, whether 
they excluded early incident cases during follow- up, duration 
of follow- up, imputation procedures for missing data, aspects 
of our approach to exposure harmonisation and separation of 
occupational PA. For each of these, we contrasted the overall 
risk estimates between groups of studies with different charac-
teristics. This was done for the five outcomes with the largest 
number of separate results (all- cause mortality, and total CVD 
and cancer mortality and incidence), using a fixed PA level of 
8.75 mMET- hours/week, relevant to the six sources of bias.

Software, data and code availability
Analyses were performed using R V.4.0.5 and the dosresmeta 
package (V.2.0.1).19 An interactive interface to visualise the dose–
response associations was developed using the Shiny package 
(V.1.0.5). Syntax for all analyses and the interactive interface are 
available at https://github.com/meta-analyses/.

Patient and public involvement
Patients and the public were not involved in the development of 
this work.
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RESULTS
Identified literature
We screened titles and abstracts of 48 525 articles, of which 1280 
were selected for full- text screening. A total of 196 articles2 22–216 
were included in the meta- analysis (online supplemental eFigure 
1), covering 94 cohorts and reporting 330 separate results. The 
evidence base was largest for all- cause mortality (50 results; 163 
415 543 person- years, 811 616 events), total CVD incidence (37 
results; 28 884 209 person- years, 74 757 events) and total cancer 
incidence (31 results; 35 500 867 person- years, 185 870 events). 
Details of all selected and excluded articles can be found in our 
OSF repository, and data underlying each of the dose–response 
estimations can be downloaded at https://shiny.mrc-epid.cam.ac. 
uk/meta-analyses-physical-activity/.

Primary dose–response analyses
Most study participants reported non- occupational PA levels 
below 17.5 mMET- hours/week (76% of person- years), with 
almost all data below 35 mMET- hours/week (94% of person- 
years). Figure 1 shows the exposure distribution for the 
cohorts included in the all- cause mortality analysis.

Inverse, curvilinear dose–response associations between PA 
and most outcomes were observed, with stronger associations 
at lower volumes of PA. In most cases, diminishing marginal 
differences in risk and increasing uncertainty were observed 
at high PA volumes, particularly beyond 17.5 mMET- hours/
week. Interactive dose–response curves and the exposure 
distributions are available at https://shiny.mrc-epid.cam.ac.uk/ 
meta-analyses-physical-activity/.

The association was stronger and more curvilinear for all- cause 
and CVD mortality than for cancer mortality (figure 2, table 1). 
Compared with inactive individuals, adults accumulating 8.75 
mMET- hours/week had 31% (95% CI 27 to 35) and 29% (95% 
CI 23 to 34) lower risk of all- cause and CVD mortality, respec-
tively, whereas the risk difference for total cancer mortality was 
15% (95% CI 11 to 19).

A strong curvilinear association was observed for total CVD 
incidence (27% lower risk (95% CI 21 to 31) at 8.75 mMET- 
hours/week). However, the associations were weaker and 
more linear for the incidence of specific CVD outcomes (coro-
nary heart disease, heart failure and stroke), with the strongest 
association observed for coronary heart disease (21% lower 
risk (95% CI 16 to 26) at 8.75 mMET- hours/week) (figure 3, 
table 1).

The association was weaker and more linear for total cancer 
incidence (12% lower risk (95% CI 8 to 15) at 8.75 mMET- hours/
week). For the incidence of site- specific cancers, curvilinear and 
stronger associations were observed for head and neck, myeloid 
leukaemia, myeloma, and gastric cardia (from 35% to 22% 
lower risk at 8.75 mMET- hours/week). Weaker and more linear 
associations were observed for lung, liver, endometrial, colon 
and breast (from 16% to 5% lower risk at 8.75 mMET- hours/
week). Non- significant associations were observed for bladder, 
oesophageal, prostate and rectal cancer (figure 4, table 1). No 
eligible studies were available for malignant melanoma.

Potential population impact
Assuming a causal relationship between non- occupational PA 
and the examined health outcomes, shifting the distribution 
of non- occupational PA in the cohorts towards the equivalent 
recommended level of moderate- to- vigorous aerobic activity 
(8.75 mMET- hours/week) would have averted a substantial 
fraction of the population disease burden. For example, if all 
individuals accumulated at least 8.75 mMET- hours/week, then 
15.7% (95% CI 13.2 to 18.2), 12.3% (95% CI 9.4 to 15.2) and 
7.1% (95% CI 5.1 to 9.0) of all- cause, CVD- related and cancer- 
related deaths, respectively, potentially would have been averted. 
Additionally, 10.9% (95% CI 8.4 to 13.3) and 5.2% (95% CI 3.6 
to 6.9) of all incident cases of CVD and cancer would have been 
prevented. Notably, 10.1% (95% CI 8.3 to 11.9) of all deaths 
would have been prevented if all adults achieved at least half this 
PA level (table 1).

Figure 1 Distribution of marginal MET- hours/week for cohorts included in the all- cause mortality analysis. The exposure distribution for cohorts 
included in the analysis of other outcomes is available at https://shiny.mrc-epid.cam.ac.uk/meta-analyses-physical-activity/. MET, metabolic equivalent 
of task.
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Figure 2 Dose–response association between non- occupational physical activity and mortality outcomes. Vertical dashed lines: cubic spline knots 
(0th, 37.5th and 75th percentiles of person- years); dashed line beyond the upper knot: constrained to be linear. MET, metabolic equivalent of task.
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Subgroup analysis
Pooled estimates from studies that reported results for all-cause, 
CVD and cancer mortality
The pooled analysis from the 11 studies that reported results for 
all- cause, CVD and cancer mortality showed weaker associations 
for all- cause mortality and stronger associations for CVD and 
cancer mortality (online supplemental eResults 1).

Sex-stratified results
Sex- stratified results were available for all- cause, CVD and cancer 
mortality and incidence of total CVD, coronary heart disease, 

stroke, total cancer, and cancers of the colon and rectum. There 
was some evidence of stronger associations in women than in 
men for all- cause and CVD mortality and CVD incidence, but 
the reverse for cancer mortality and incidence (online supple-
mental eResults 2).

Risk of bias
Across the five outcomes with the largest number of separate 
results (all- cause mortality, and total CVD and cancer mortality 
and incidence), 83%–93% of the studies used statistical adjust-
ments to control for other morbidities at baseline, often 

Table 1 Relative risk of mortality and incidence of cardiovascular diseases and cancers at three physical activity levels in relation to 0 mMET- 
hours/week and respective potential impact fractions

Outcomes

4.375 mMET- hours/week 8.75 mMET- hours/week 17.5 mMET- hours/week

RR (95% CI) PIF (95% CI) RR (95% CI) PIF (95% CI) RR (95% CI) PIF (95% CI)

Mortality

  All- cause mortality 0.77
(0.73 to 0.80)

10.11
(8.32 to 11.91)

0.69
(0.65 to 0.73)

15.66
(13.16 to 18.15)

0.66
(0.62 to 0.70)

18.75
(16.09 to 21.39)

  Total CVD 0.81
(0.77 to 0.85)

6.02
(4.42 to 7.69)

0.71
(0.66 to 0.77)

12.25
(9.37 to 15.17)

0.65
(0.60 to 0.71)

17.05
(13.92 to 20.19)

  Total cancer 0.90
(0.88 to 0.93)

3.68
(2.54 to 4.86)

0.85
(0.81 to 0.89)

7.05
(5.1 to 9.00)

0.82
(0.78 to 0.86)

9.29
(7.36 to 11.22)

CVD incidence (fatal and non- fatal events combined)

  Total CVD 0.83
(0.79 to 0.87)

5.29
(3.93 to 6.70)

0.73
(0.69 to 0.79)

10.86
(8.43 to 13.31)

0.67
(0.63 to 0.72)

15.42
(13.01 to 17.85)

  Coronary heart disease 0.86
(0.83 to 0.90)

5.51
(3.95 to 7.11)

0.79
(0.74 to 0.84)

10.28
(7.61 to 12.96)

0.74
(0.69 to 0.80)

13.58
(10.51 to 16.64)

  Stroke 0.86
(0.83 to 0.90)

5.53
(3.96 to 7.15)

0.80
(0.75 to 0.85)

9.77
(7.31 to 12.24)

0.77
(0.72 to 0.82)

12.37
(9.63 to 15.10)

  Heart failure 0.90
(0.85 to 0.96)

2.23
(0.80 to 3.89)

0.84
(0.75 to 0.93)

4.63
(1.90 to 7.66)

0.77
(0.68 to 0.87)

7.86
(4.31 to 11.68)

Cancer incidence (fatal and non- fatal events combined)

  Total cancer 0.93
(0.91 to 0.95)

2.53
(1.66 to 3.42)

0.88
(0.85 to 0.92)

5.22
(3.55 to 6.90)

0.85
(0.81 to 0.89)

7.80
(5.65 to 9.93)

  Head and neck 0.74
(0.59 to 0.94)

10.59
(2.10 to 19.96)

0.65
(0.46 to 0.91)

17.46
(3.68 to 30.98)

0.63
(0.42 to 0.94)

19.83
(1.23 to 36.55)

  Myeloid leukaemia 0.80
(0.66 to 0.97)

4.93
(0.68 to 9.70)

0.75
(0.60 to 0.95)

7.08
(1.65 to 12.94)

0.75
(0.60 to 0.94)

7.57
(2.23 to 13.33)

  Myeloma 0.84
(0.74 to 0.95)

3.34
(0.90 to 6.26)

0.75
(0.61 to 0.92)

6.76
(1.90 to 12.09)

0.72
(0.57 to 0.92)

8.30
(1.91 to 14.99)

  Gastric cardia 0.86
(0.78 to 0.95)

1.95
(0.58 to 3.68)

0.78
(0.66 to 0.91)

4.77
(1.58 to 8.57)

0.73
(0.60 to 0.88)

6.77
(2.55 to 11.63)

  Lung 0.89
(0.87 to 0.92)

4.39
(3.16 to 5.63)

0.84
(0.81 to 0.88)

7.26
(5.10 to 9.40)

0.83
(0.76 to 0.91)

8.54
(3.04 to 13.98)

  Liver 0.90
(0.83 to 0.98)

3.49
(0.58 to 6.71)

0.84
(0.73 to 0.96)

6.75
(1.44 to 12.31)

0.78
(0.66 to 0.93)

10.27
(3.26 to 17.31)

  Endometrial 0.94
(0.90 to 0.99)

1.10
(0.26 to 2.02)

0.90
(0.84 to 0.97)

2.62
(0.76 to 4.60)

0.87
(0.80 to 0.95)

4.54
(1.88 to 7.28)

  Colon 0.96
(0.93 to 0.99)

0.70
(0.11 to 1.33)

0.93
(0.87 to 0.99)

1.69
(0.33 to 3.12)

0.90
(0.84 to 0.97)

2.96
(0.92 to 5.05)

  Breast 0.97
(0.96 to 0.99)

0.69
(0.32 to 1.07)

0.95
(0.92 to 0.97)

1.62
(0.79 to 2.46)

0.92
(0.88 to 0.96)

3.23
(1.85 to 4.63)

  Bladder 0.93
(0.84 to 1.02)

1.91
(−0.54 to 4.52)

0.90
(0.80 to 1.02)

2.98
(−0.24 to 6.33)

0.90
(0.81 to 1.01)

3.11
(0.02 to 6.35)

  Rectum 0.96
(0.92 to 1.01)

0.77
(−0.15 to 1.75)

0.95
(0.88 to 1.02)

1.43
(−0.45 to 3.36)

0.96
(0.88 to 1.04)

0.52
(−1.74 to 2.82)

  Oesophageal 0.97
(0.89 to 1.05)

0.68
(−0.95 to 2.68)

0.95
(0.82 to 1.09)

1.38
(−2.06 to 5.32)

0.94
(0.79 to 1.12)

1.57
(−3.05 to 6.67)

  Prostate 1.00
(0.99 to 1.02)

−0.10
(−0.48 to 0.29)

1.01
(0.98 to 1.04)

−0.21
(−1.10 to 0.71)

1.01
(0.96 to 1.05)

−0.10
(−1.61 to 1.42)

  Kidney 1.02
(0.92 to 1.13)

−0.65
(−3.69 to 2.81)

1.03
(0.89 to 1.19)

−1.23
(−6.39 to 4.34)

1.04
(0.88 to 1.24)

−1.91
(−9.20 to 5.63)

CVD, cardiovascular disease; mMET, marginal metabolic equivalent of task; PIF, potential impact fraction; RR, relative risk.
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Figure 3 Dose–response association between non- occupational physical activity and incidence (fatal and non- fatal events combined) of 
cardiovascular diseases. Vertical dashed lines: cubic spline knots (0th, 37.5th and 75th percentiles of person- years); dashed line beyond the upper 
knot: constrained to be linear. MET, metabolic equivalent of task.
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Figure 4 Dose–response association between non- occupational physical activity and incidence (fatal and non- fatal events combined) of cancers. 
Vertical dashed lines: cubic spline knots (0th, 37.5th and 75th percentiles of person- years); dashed line beyond the upper knot: constrained to be 
linear. MET, metabolic equivalent of task.
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combined with exclusion of adults with more serious pre- existing 
conditions. Studies that predominantly used statistical adjust-
ments tended to report stronger associations for CVD mortality 
compared with studies that excluded adults with pre- existing 
conditions at baseline. Between 54% and 59% of the studies did 
not exclude mortality and disease events occurring within the 
first few years of follow- up, and those that did tended to report 
weaker associations for all- cause mortality and CVD mortality 
and incidence. The median follow- up time was 10 years for each 
outcome, with no evidence of bias between studies with longer 
and shorter follow- up time. Data imputation was required for 
58%–64% of the studies, but no evidence of bias was found. The 
most frequently used procedures for exposure harmonisation 
were measurement unit conversions (42%–49% of studies) and 
the assumption of standard values for the intensity and duration 
of PA reported (39%–50%), but no evidence of bias was found. 
In 75% of the studies, the original exposure assessment did not 
include occupational PA and no evidence of bias was observed 
for studies requiring domain separation (online supplemental 
eResults 3).

Sensitivity analyses
In studies that did not report the duration or intensity of PA, 
assuming (where appropriate) shorter session duration (0.5 
hours instead of 0.75 hours) and lower intensity (1 mMET 
lower for moderate and vigorous PA) did not materially alter 
the dose–response associations for most outcomes, especially 
analyses which included the largest number of separate results 
(online supplemental eResults 4). When shorter duration 
and lower intensity were used, associations were stronger for 
CVD outcomes, particularly at lower PA volumes. Placing the 
restricted cubic spline knots at the 42.5th and 85th percentiles 
resulted in less stable estimations at higher PA volumes, with 
those specific segments of the dose–response curves being based 
on less data and with a higher risk of exposure misclassification.

Sensitivity analyses using analytical models that did not include 
adjustment for adiposity showed stronger associations for all- 
cause and CVD mortality, and the incidence of total CVD, heart 
failure, and site- specific cancers of the endometrium, kidney, 
lung and rectum (online supplemental eResults 4). Notably, the 
association was significant for rectal cancer.

DISCUSSION
We present comprehensive dose–response meta- analyses of the 
associations between non- occupational PA and a wide range of 
mortality and disease outcomes. Our extensive exposure data 
harmonisation allowed inclusion of a larger evidence base than 
previous meta- analyses for 17 of 22 health outcomes investi-
gated. For instance, our meta- analysis for all- cause mortality 
includes over 160 million person- years and 810 000 deaths. 
These are 17 and 7 times larger, respectively, than what were 
included in the previously largest dose–response analysis to date 
(9.39 million person- years and 117 000 deaths).2 Our inclusive 
approach has a number of advantages. First, we were able to 
estimate dose–response associations for nine site- specific cancers 
for the first time. Second, inclusion of more data increases confi-
dence in the results beyond previous estimates. Third, it allowed 
us to include data from a larger number of countries. Fourth, 
having used consistent methods for several health outcomes 
allows the best possible comparison of the shape of the dose–
response functions across these outcomes. For example, having 
one set of dose–response results consistently estimated across 

several outcomes is particularly useful for health impact model-
ling, for example, to quantify the probable impacts of changes to 
population- level PA.

We showed inverse non- linear dose–response associations for 
all- cause mortality and a range of CVD and cancer outcomes. 
This suggests that the greatest potential benefits can be achieved 
through small increases in non- occupational PA for those with 
an inactive lifestyle, with incrementally smaller additional bene-
fits up to approximately 17.5 mMET- hours/week. Above this 
level, the evidence base was weaker. Shifting population levels 
of activity towards achieving the equivalent to 150 min/week 
of moderate- to- vigorous aerobic PA (8.75 mMET- hours/week) 
potentially would have prevented 16% of all premature deaths 
recorded.

Compared with previous studies, we found similar associa-
tions for all- cause2 3 and cancer mortality,4 and stronger associ-
ations and narrower CIs for CVD mortality,5 6 at the equivalent 
recommended levels of moderate- to- vigorous aerobic PA. For 
cancers of the bladder, breast, colon, endometrium, oesophagus, 
liver and rectum, our results were largely similar to that of a 
recent pooled analysis.7 However, we found stronger associa-
tions for cancers of the gastric cardia, head and neck, myeloid 
leukaemia, and myeloma, whereas the association for kidney 
cancer was non- significant. Contrasting with Moore et al’s8 
finding of harmful effects of PA on prostate cancer, our results 
did not show an association. Comparisons should be interpreted 
with caution as most previous studies have focused solely on 
leisure- time PA2 3 6–8 and meta- analyses by Li et al4 and Wahid et 
al5 included studies that assessed PA in any domain.

Compared with the results from the GBD,9 which has 
assessed total PA rather than non- occupational PA, we found 
stronger associations for heart disease and stroke at the equiv-
alent minimum recommended moderate- to- vigorous aerobic 
PA level. Associations reported by the GBD at approximately 
130 MET- hours/week for total PA were observed in our study 
at 17.5 mMET- hours/week for non- occupational PA, a much 
lower volume even considering that we excluded energy expen-
diture from the resting metabolic rate and occupational activity. 
Given the challenges of assessing occupational activity, esti-
mates of total PA from self- report are often implausibly high.217 
Hence, the importance of PA may have been underestimated by 
the GBD. This, combined with uncertainties around the health 
benefits of occupational PA,10 218 means our results may be more 
relevant from a public health perspective.

It is surprising that the risk difference for all- cause mortality 
(31% at the equivalent minimum recommended moderate- to- 
vigorous aerobic PA level) is similar to that for total CVD (29%) 
and much larger than for total cancer mortality (15%). Equally, 
it is surprising that the association for total CVD incidence is 
stronger than that for coronary heart disease or stroke. Weaker 
associations would be expected for more composite outcomes 
(eg, all- cause mortality and total CVD incidence) than for the 
outcomes within them for which a significant association has 
been established. Potential explanations include detection 
bias for some disease events, misclassification of causes of 
death (especially for more specific disease outcomes), differ-
ential residual confounding, reverse causality by outcome, 
and different inclusion criteria by disease outcome, such 
as the inclusion of different disease groups which may have 
stronger associations with PA.219 There may also be study- level 
confounders, and this is supported by our post- hoc subgroup 
analysis, which showed that studies reporting all three 
mortality outcomes found stronger associations for CVD than 
for all- cause mortality. Taken together, it is probable that the 
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risk estimates for all- cause mortality are more accurate than for 
specific disease outcomes.

Our risk of bias and sensitivity analyses showed that the 
methodological assumptions and decisions made for the pooled 
analyses did not significantly impact the dose–response associ-
ations observed. However, some methodological differences 
between the original studies seem to alter the magnitude of the 
pooled associations. Studies that did not exclude people with 
pre- existing conditions at baseline or mortality or disease events 
occurring within the first years of follow- up tended to observe 
stronger associations, as did studies with shorter follow- up, 
which may in part be indicative of reverse causality.11 220 For 
some outcomes, stronger associations were also observed in 
studies that did not include adjustment for adiposity in their 
analytical models, which can be interpreted as either being prone 
to residual confounding or a more inclusive estimation of the 
total causal effect, if adiposity is considered a mediator between 
PA and the investigated health outcomes.

A strength of our study was the use of comprehensive expo-
sure data harmonisation methods that enabled the inclusion of a 
larger evidence base. This also allowed us to study health asso-
ciations over a wider range of the PA exposure and increased 
the density of data in the area of the dose–response curves with 
high non- linearity. Another strength is the use of more sophis-
ticated meta- analytical methods that allow the shape of the 
dose–response association to vary across the exposure range, 
rather than linear models of transformed exposure or grouping 
doses within high versus low PA or multiple exposure intervals. 
We improved the placement of spline knots compared with 
our previous work13 by considering the distribution of person- 
years instead of non- weighted associations across the PA range, 
acknowledging the paucity of data at higher volumes of PA.

Our study also has limitations. There are levels of the PA 
exposure for which health associations are not reported in 
many of the original studies and hence there is still substan-
tial uncertainty at those levels in the meta- analyses for some 
outcomes. Many of the included studies relied on self- 
reported questionnaires without validation or calibration 
data that could be used in the exposure harmonisation. In the 
exposure data harmonisation procedures, it was also some-
times necessary to make assumptions about parameters of PA, 
such as intensity and duration, where these were not explic-
itly reported. Nonetheless, our sensitivity analyses demon-
strated the robustness of our results to the assumptions made. 
Measurement error is likely to lead to an underestimation of 
the true association between PA and the various outcomes, as 
demonstrated by the stronger associations observed in studies 
using device- based measures of PA.221 Regression dilution 
bias, particularly in studies with longer follow- up times, might 
also have affected the associations observed,220 which can be 
mitigated by repeated PA measures over time. Misclassifica-
tion of some outcomes will have occurred in original studies 
as ascertainment of outcomes may not be similarly accurate 
across all outcomes and studies. Residual confounding and 
reverse causation could remain. To mitigate confounding, the 
most comprehensively adjusted risk estimates were used in 
this meta- analysis. However, the level of covariate adjustment 
and the degree to which these covariates effectively control 
for confounding were not consistent across all studies. We 
excluded studies with less than 3 years of follow- up to miti-
gate reverse causation.220 Although the bias from reverse 
causation diminishes with longer periods of follow- up, 
changes in PA level over time could be possible.11 222 Our 
estimates of population impact are based on the assumptions 

that the dose–response relationships are causal and that the 
prevalence of PA in our cohorts is representative of the wider 
population. The time lag between searches and publication 
of our results is longer than typical due to the scale of this 
review. We did not use validated tools to assess risk of bias 
or certainty of evidence. Nonetheless, we assessed six critical 
potential sources of bias for observational studies in PA and 
health outcomes and quantified their impacts on our results. 
Aspects included in other tools but not quantified by us, such 
as methods to measure exposure and outcome and attempt 
to control for established confounding factors (eg, sex and 
age), were not materially different across the included studies 
and hence it was not possible to assess their impact. Our 
analyses also cover aspects that are important for judging the 
confidence in the evidence base, such as the dose–response 
gradient, precision of the effect estimates, risk of bias assess-
ment and subgroup analysis to investigate the effect of study- 
level confounders.

Our findings support the current PA recommendations 
of 150–300 min/week of moderate aerobic PA (or 75–150 
min/week of vigorous aerobic PA, or an equivalent combi-
nation of moderate and vigorous activities),21 in that this 
exposure level generally seems to equate to maximum or 
near- to- maximal benefits. However, the dose–response asso-
ciations also demonstrate that appreciable health benefits 
can be gained from 75 min/week or less of moderate activity 
(ie, half the recommended minimum level). Thus, our find-
ings support the recent change in public health messaging to 
‘doing some PA is better than doing none’, and suggest that 
the emphasis on threshold- based recommendations could be 
further reduced.

It should be noted that our exposure estimates are derived 
from a variety of self- reported questionnaires that capture 
mostly moderate and vigorous activities. These exposure esti-
mates differ from those derived using device- based measures, 
which also record light- intensity and intermittent activities 
that are more difficult to recall.221 223 224 Self- report and 
device- based measures are therefore complementary but not 
interchangeable,224 an important consideration when formu-
lating public health messages.

Future research should investigate the reasons for the 
apparent inconsistencies in dose–response associations 
between composite and individual disease endpoints. Although 
our risk of bias and sensitivity analyses showed robustness 
to the approaches we took during data handling and dose 
harmonisation, future studies could quantify methodological 
uncertainties (eg, inaccuracies in exposure assessment) and 
propagate them in the aetiological analyses to provide more 
realistic uncertainty ranges for the dose–response associa-
tions. The evidence base was weaker for very high volumes 
of activity and further research is required to ascertain the 
shape of associations more reliably at the higher end of the 
PA continuum.

CONCLUSION
We found evidence of dose- dependent associations between 
increasing non- occupational PA and a wide range of mortality, 
CVD and cancer outcomes. The strongest associations were 
observed for all- cause and CVD mortality, with weaker asso-
ciations for the incidence of cancer, including variation by 
site. Appreciable population health benefits might be gained 
from increasing PA levels of people who are inactive to 
just half the current health recommendations, with further 
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benefits for all reaching at least the recommended level and 
smaller additional benefits beyond that.

What is already known

 ⇒ Higher levels of physical activity are associated with lower 
rates of premature death and chronic disease outcomes.

 ⇒ The shape of the dose–response association has been more 
difficult to determine and has not been established for a 
range of chronic diseases.

 ⇒ Accurate estimation of the dose–response association 
between physical activity and disease outcomes is needed 
to assess the disease burden of physical inactivity and the 
potential impact of changes to population levels of physical 
activity.

What are the findings?

 ⇒ Our findings suggest an appreciably lower risk of mortality, 
cardiovascular diseases and cancers from the equivalent of 
75 min/week or less of moderate- intensity aerobic physical 
activity (ie, half the recommended minimum levels).

 ⇒ Our results include the first dose–response meta- analysis of 
nine site- specific cancers: bladder, esophageal, gastric cardia, 
head and neck, kidney, liver, lung, myeloid leukaemia and 
myeloma.

 ⇒ One in 10 premature deaths could have been prevented 
if everyone achieved even half the recommended level of 
physical activity.
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