| tudy or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cortic                                                                                                                                                     | costeroid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s                                                                                                        | (                                                                                      | Control                                                        |                                                                                                                                                 |                                                                         | Std. Mean Difference                                                                                                                                                                                                                                         | Std. Mean Difference |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| tudy of oungroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total                                                                                                    | Mean                                                                                   |                                                                | Total                                                                                                                                           | Weight                                                                  |                                                                                                                                                                                                                                                              | IV, Random, 95% CI   |
| .1.1 Corticosteroids vs. Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | trol                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                        | -                                                                                      |                                                                |                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                              |                      |
| debajo 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.95                                                                                                                                                      | 3.309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                       | -1.35                                                                                  | 3.309                                                          | 20                                                                                                                                              | 12.4%                                                                   | -1.07 [-1.73, -0.40]                                                                                                                                                                                                                                         |                      |
| erry 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.6                                                                                                                                                       | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                       | 22                                                                                     | 28.6                                                           | 12                                                                                                                                              | 10.6%                                                                   | 0.17 [-0.63, 0.97]                                                                                                                                                                                                                                           |                      |
| ialanella 2011 one shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.4                                                                                                                                                        | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                       | 6.8                                                                                    | 1.6                                                            | 10                                                                                                                                              | 10.8%                                                                   | -0.75 [-1.54, 0.03]                                                                                                                                                                                                                                          |                      |
| ialanella 2011 two shots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.4                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                       | 6.8                                                                                    | 1.6                                                            | 10                                                                                                                                              | 10.8%                                                                   | -0.72 [-1.51, 0.06]                                                                                                                                                                                                                                          |                      |
| long 2011 high dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                          | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                       | 4.7                                                                                    | 2.2                                                            | 13                                                                                                                                              | 11.8%                                                                   | -1.17 [-1.88, -0.45]                                                                                                                                                                                                                                         |                      |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.2                                                                                                                                                        | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                                                                                       | 4.7                                                                                    | 2.2                                                            | 14                                                                                                                                              | 12.3%                                                                   |                                                                                                                                                                                                                                                              |                      |
| long 2011 low dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                                                                                        |                                                                |                                                                                                                                                 |                                                                         | -0.73 [-1.41, -0.05]                                                                                                                                                                                                                                         |                      |
| elle 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.1                                                                                                                                                       | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45                                                                                                       | 40.8                                                                                   | 18.2                                                           | 31                                                                                                                                              | 15.0%                                                                   | -1.03 [-1.51, -0.54]                                                                                                                                                                                                                                         |                      |
| enning 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.7                                                                                                                                                        | 2.996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45<br><b>214</b>                                                                                         | 3.6                                                                                    | 3.0995                                                         | 48<br>158                                                                                                                                       | 16.2%<br>100.0%                                                         | 0.03 [-0.37, 0.44]<br>-0.65 [-1.04, -0.26]                                                                                                                                                                                                                   |                      |
| ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.20; Chi<br>est for overall effect: Z = 3.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          | 05); l² =                                                                              | 66%                                                            | 150                                                                                                                                             | 100.076                                                                 | -0.05 [-1.04, -0.26]                                                                                                                                                                                                                                         |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                                                                                        |                                                                |                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                              |                      |
| .1.2 Corticosteroids vs. Activ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |                                                                                        |                                                                |                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                              |                      |
| kgün 2004 one inject.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.81                                                                                                                                                       | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                       | 0.7                                                                                    | 0.6                                                            | 8                                                                                                                                               | 2.5%                                                                    | 0.13 [-0.72, 0.98]                                                                                                                                                                                                                                           |                      |
| kgün 2004 two inject.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.8                                                                                                                                                        | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                       | 0.7                                                                                    | 0.6                                                            | 8                                                                                                                                               | 2.5%                                                                    | 0.14 [-0.71, 0.99]                                                                                                                                                                                                                                           |                      |
| lvarez 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.2                                                                                                                                                       | 27.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                       | 42.6                                                                                   | 35.9                                                           | 28                                                                                                                                              | 4.9%                                                                    | 0.08 [-0.43, 0.60]                                                                                                                                                                                                                                           |                      |
| lvarez-Nemegyei 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39.002                                                                                                                                                     | 40.363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                       | 46.485                                                                                 | 38.776                                                         | 17                                                                                                                                              | 3.4%                                                                    | -0.18 [-0.88, 0.51]                                                                                                                                                                                                                                          |                      |
| erry 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.6                                                                                                                                                       | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                       | 41.2                                                                                   | 36.6                                                           | 12                                                                                                                                              | 2.7%                                                                    | -0.46 [-1.28, 0.35]                                                                                                                                                                                                                                          |                      |
| elik 2009 Cortico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2                                                                                                                                                        | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                       | 1.5                                                                                    | 1.3                                                            | 28                                                                                                                                              | 4.8%                                                                    | -0.20 [-0.73, 0.32]                                                                                                                                                                                                                                          |                      |
| hoi 2013 high dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -7.2                                                                                                                                                       | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                       | -3.4                                                                                   | 1.2                                                            | 5                                                                                                                                               | 1.0%                                                                    | -2.40 [-3.87, -0.93]                                                                                                                                                                                                                                         | ←────                |
| hoi 2013 low dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.8                                                                                                                                                       | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                       | -3.4                                                                                   | 1.2                                                            | 5                                                                                                                                               | 1.7%                                                                    | -0.28 [-1.36, 0.80]                                                                                                                                                                                                                                          |                      |
| rawshaw 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -14.53                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96                                                                                                       | -16.67                                                                                 | 16.225                                                         | 97                                                                                                                                              | 7.9%                                                                    | 0.13 [-0.15, 0.41]                                                                                                                                                                                                                                           | - <b> -</b>          |
| yigor 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -14.55                                                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                       | 2.1                                                                                    | 1.3                                                            | 20                                                                                                                                              | 3.7%                                                                    | -0.84 [-1.49, -0.20]                                                                                                                                                                                                                                         |                      |
| jigor 2010<br>jöksu 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35.48                                                                                                                                                      | 0.7<br>19.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20<br>31                                                                                                 | ۲. ۲<br>41.66                                                                          | 20.18                                                          | 20<br>30                                                                                                                                        | 5.0%                                                                    |                                                                                                                                                                                                                                                              |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                                                                                        |                                                                |                                                                                                                                                 |                                                                         | -0.31 [-0.81, 0.20]                                                                                                                                                                                                                                          |                      |
| ensen 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.755                                                                                                                                                      | 1.712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                                                       | 1.442                                                                                  | 1.854                                                          | 23                                                                                                                                              | 4.3%                                                                    | 0.17 [-0.41, 0.75]                                                                                                                                                                                                                                           |                      |
| elle 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.1                                                                                                                                                       | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45                                                                                                       | 25.5                                                                                   | 19.7                                                           | 38                                                                                                                                              | 5.8%                                                                    | -0.18 [-0.61, 0.25]                                                                                                                                                                                                                                          | •                    |
| im 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36.8                                                                                                                                                       | 26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42                                                                                                       | 24.6                                                                                   | 23.1                                                           | 38                                                                                                                                              | 5.7%                                                                    | 0.48 [0.04, 0.93]                                                                                                                                                                                                                                            |                      |
| ee 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.5                                                                                                                                                        | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                       | 2.9                                                                                    | 2                                                              | 31                                                                                                                                              | 4.9%                                                                    | 0.72 [0.20, 1.24]                                                                                                                                                                                                                                            | ————                 |
| enning 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.7                                                                                                                                                        | 2.996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                       | 3.6                                                                                    | 3.0995                                                         | 48                                                                                                                                              | 6.2%                                                                    | 0.03 [-0.37, 0.44]                                                                                                                                                                                                                                           |                      |
| abini 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29                                                                                                                                                         | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46                                                                                                       | 37.6                                                                                   | 30                                                             | 46                                                                                                                                              | 6.1%                                                                    | -0.35 [-0.76, 0.06]                                                                                                                                                                                                                                          |                      |
| adnovich 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.9                                                                                                                                                        | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                                       | 2.6                                                                                    | 2.7                                                            | 29                                                                                                                                              | 5.0%                                                                    | 0.11 [-0.40, 0.62]                                                                                                                                                                                                                                           | <del></del>          |
| hon 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                        | 2.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48                                                                                                       | 2.1                                                                                    | 2.021                                                          | 46                                                                                                                                              | 6.2%                                                                    | 0.19 [-0.21, 0.60]                                                                                                                                                                                                                                           |                      |
| hibata 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.138                                                                                                                                                      | 1.847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                                                                       | 5.305                                                                                  | 2.1099                                                         | 38                                                                                                                                              | 5.7%                                                                    | -0.08 [-0.53, 0.36]                                                                                                                                                                                                                                          |                      |
| ubasi 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7                                                                                                                                                        | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                                                                                                       | 2.8                                                                                    | 1.8                                                            | 35                                                                                                                                              | 5.4%                                                                    | -0.05 [-0.52, 0.42]                                                                                                                                                                                                                                          |                      |
| ecchio 1993 Corticosteroid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -8                                                                                                                                                         | 8.889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                                                                                                       | -8                                                                                     | 5.185                                                          | 27                                                                                                                                              | 4.8%                                                                    | 0.00 [-0.53, 0.53]                                                                                                                                                                                                                                           |                      |
| ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 697                                                                                                      | -                                                                                      |                                                                |                                                                                                                                                 | 100.0%                                                                  | -0.03 [-0.19, 0.12]                                                                                                                                                                                                                                          | <b>•</b>             |
| leterogeneity: Tau <sup>2</sup> = 0.06; Chi<br>est for overall effect: Z = 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (P = 0.                                                                                                  | 01); l² =                                                                              | 46%                                                            |                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                              |                      |
| .1.3 Corticosteroid vs. NSAII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DS                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                                                                                        |                                                                |                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                              |                      |
| debajo 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.95                                                                                                                                                      | 3.309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                       | -3.6                                                                                   | 2.996                                                          | 20                                                                                                                                              | 25.7%                                                                   | -0.42 [-1.05, 0.21]                                                                                                                                                                                                                                          | <b>_</b>             |
| ift 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.6                                                                                                                                                       | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                       | -5.2                                                                                   | 0.6                                                            | 20                                                                                                                                              | 24.4%                                                                   | 1.90 [1.14, 2.66]                                                                                                                                                                                                                                            |                      |
| lin 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.9                                                                                                                                                       | 1.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                       | -1.83                                                                                  | 2.25                                                           | 17                                                                                                                                              | 25.0%                                                                   | 0.44 [-0.27, 1.14]                                                                                                                                                                                                                                           |                      |
| /hite 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4.3                                                                                                                                                       | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                                       | -5.5                                                                                   | 8.3                                                            | 15                                                                                                                                              | 23.0%                                                                   | 0.17 [-0.55, 0.89]                                                                                                                                                                                                                                           |                      |
| ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -4.5                                                                                                                                                       | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70                                                                                                       | -5.5                                                                                   | 0.0                                                            | 72                                                                                                                                              | 100.0%                                                                  | 0.51 [-0.44, 1.45]                                                                                                                                                                                                                                           |                      |
| leterogeneity: $Tau^2 = 0.80$ ; Chi<br>est for overall effect: $Z = 1.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P < 0.0                                                                                                  | 001); l² =                                                                             | = 86%                                                          |                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                              |                      |
| est for overall effect. $\Sigma = 1.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                                                                                        |                                                                |                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                              |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            | temic Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rticos                                                                                                   | eroid                                                                                  |                                                                |                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                              |                      |
| .1.4 Local Corticosteroid ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rsus Sys                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                                                                                        | 0 607                                                          | 50                                                                                                                                              | 100.0%                                                                  | 0 20 1 0 76 0 043                                                                                                                                                                                                                                            |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rsus Sys                                                                                                                                                   | temic Co<br>2.627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53                                                                                                       | teroid<br>3                                                                            | 2.627                                                          |                                                                                                                                                 | 100.0%                                                                  | -0.38 [-0.76, 0.01]                                                                                                                                                                                                                                          | 1                    |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rsus Sys                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                                                                                        | 2.627                                                          |                                                                                                                                                 | 100.0%<br><b>100.0%</b>                                                 | -0.38 [-0.76, 0.01]<br>-0.38 [-0.76, 0.01]                                                                                                                                                                                                                   | -                    |
| .1.4 Local Corticosteroid ver<br>keberg 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rsus Sys<br>2                                                                                                                                              | 2.627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53                                                                                                       |                                                                                        | 2.627                                                          |                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                              | *                    |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rsus Sys<br>2<br>(P = 0.05                                                                                                                                 | 2.627<br>5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53                                                                                                       |                                                                                        | 2.627                                                          |                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                              |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Bline                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rsus Sys<br>2<br>(P = 0.05<br>d" Inject                                                                                                                    | 2.627<br>5)<br>tions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53<br>53                                                                                                 | 3                                                                                      |                                                                | 53                                                                                                                                              | 100.0%                                                                  | -0.38 [-0.76, 0.01]                                                                                                                                                                                                                                          |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Blin-<br>cole 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rsus Sys<br>2<br>(P = 0.05<br>d" Inject<br>33                                                                                                              | 2.627<br>5)<br>tions<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53<br><b>53</b><br>25                                                                                    | 3<br>39                                                                                | 30.5941                                                        | <b>53</b><br>26                                                                                                                                 | <b>100.0%</b><br>17.5%                                                  | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]                                                                                                                                                                                                                   |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Blin<br>tole 2015<br>logu 2012                                                                                                                                                                                                                                                                                                                                                                                                                                           | rsus Sys<br>2<br>(P = 0.05<br>d" Inject<br>33<br>2.65                                                                                                      | 2.627<br>5)<br>tions<br>30<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53<br><b>53</b><br>25<br>23                                                                              | 3<br>39<br>3.78                                                                        | 30.5941<br>2.26                                                | 53<br>26<br>23                                                                                                                                  | 100.0%<br>17.5%<br>16.6%                                                | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]                                                                                                                                                                                            |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Blin<br>tole 2015<br>logu 2012<br>laghighat 2016                                                                                                                                                                                                                                                                                                                                                                                                                         | rsus Sys<br>2<br>(P = 0.05<br>d" Inject<br>33<br>2.65<br>-4.85                                                                                             | 2.627<br>5)<br>tions<br>30<br>1.7<br>1.2522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53<br>53<br>25<br>23<br>20                                                                               | 3<br>39<br>3.78<br>-4.45                                                               | 30.5941<br>2.26<br>1.923                                       | 53<br>26<br>23<br>20                                                                                                                            | 100.0%<br>17.5%<br>16.6%<br>15.9%                                       | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]                                                                                                                                                                     |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Blin<br>tole 2015<br>logu 2012                                                                                                                                                                                                                                                                                                                                                                                                                                           | rsus Sys<br>2<br>(P = 0.05<br>d" Inject<br>33<br>2.65<br>-4.85                                                                                             | 2.627<br>5)<br>tions<br>30<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53<br><b>53</b><br>25<br>23                                                                              | 3<br>39<br>3.78                                                                        | 30.5941<br>2.26                                                | 53<br>26<br>23                                                                                                                                  | 100.0%<br>17.5%<br>16.6%                                                | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]                                                                                                                                                                                            |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Blin<br>tole 2015<br>logu 2012<br>laghighat 2016                                                                                                                                                                                                                                                                                                                                                                                                                         | rsus Sys<br>2<br>(P = 0.05<br>d" Inject<br>33<br>2.65<br>-4.85                                                                                             | 2.627<br>5)<br>tions<br>30<br>1.7<br>1.2522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53<br>53<br>25<br>23<br>20                                                                               | 3<br>39<br>3.78<br>-4.45                                                               | 30.5941<br>2.26<br>1.923                                       | 53<br>26<br>23<br>20                                                                                                                            | 100.0%<br>17.5%<br>16.6%<br>15.9%                                       | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]                                                                                                                                                                     |                      |
| <b>.1.4 Local Corticosteroid ver</b><br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br><b>.1.5 US-Guided versus "Blin</b><br>tole 2015<br>logu 2012<br>laghighat 2016<br>laghighat 2016                                                                                                                                                                                                                                                                                                                                                                                         | rsus Sys<br>2<br>(P = 0.05<br>d" Inject<br>33<br>2.65<br>-4.85<br>-4.85                                                                                    | 2.627<br>5)<br>ions<br>1.7<br>1.2522<br>1.2522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53<br>53<br>25<br>23<br>20<br>20                                                                         | 39<br>3.78<br>-4.45<br>-4.45                                                           | 30.5941<br>2.26<br>1.923<br>1.923                              | 53<br>26<br>23<br>20<br>20                                                                                                                      | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>15.9%                              | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]                                                                                                                                              |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Blin<br>tole 2015<br>logu 2012<br>laghighat 2016<br>laghighat 2016<br>laghighat 2016                                                                                                                                                                                                                                                                                                                                                                                     | rsus Sys<br>2<br>(P = 0.05<br>d" Inject<br>33<br>2.65<br>-4.85<br>-4.85<br>-4.85<br>-34.9                                                                  | 2.627<br>5)<br>tions<br>30<br>1.7<br>1.2522<br>1.2522<br>21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53<br>53<br>25<br>23<br>20<br>20<br>21                                                                   | 39<br>3.78<br>-4.45<br>-4.45<br>-7.1                                                   | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2                       | 53<br>26<br>23<br>20<br>20<br>20<br>39                                                                                                          | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>15.9%<br>13.9%                     | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]                                                                                                                      |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Blin-<br>iole 2015<br>logu 2012<br>laghighat 2016<br>laghighat 2016<br>laredo 2004<br>aeed 2014                                                                                                                                                                                                                                                                                                                                                                          | (P = 0.05<br>(P = 0.05<br>d" Inject<br>33<br>2.65<br>-4.85<br>-4.85<br>-4.85<br>-34.9<br>2.18<br>i <sup>2</sup> = 12.93                                    | 2.627<br>5)<br>ions<br>30<br>1.7<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53<br>53<br>25<br>23<br>20<br>20<br>21<br>41<br><b>150</b>                                               | 39<br>3.78<br>-4.45<br>-7.1<br>3.26                                                    | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97               | 53<br>26<br>23<br>20<br>20<br>20<br>39                                                                                                          | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%            | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]                                                                                               |                      |
| <b>1.4 Local Corticosteroid ver</b><br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br><b>.1.5 US-Guided versus "Blin</b><br>tole 2015<br>logu 2012<br>laghighat 2016<br>laghighat 2016<br>laghighat 2016<br>laeed 2004<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: Z = 2.63                                                                                                                                                                                                                                                   | (P = 0.05<br>(P = 0.05<br>( <b>d'' Inject</b><br>33<br>2.65<br>-4.85<br>-4.85<br>-34.9<br>2.18<br>j <sup>2</sup> = 12.93<br>(P = 0.00                      | 2.627<br>5)<br>5)<br>1.7<br>1.2522<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1<br>9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53<br>53<br>25<br>23<br>20<br>20<br>21<br>41<br>150<br>P = 0.0                                           | 39<br>3.78<br>-4.45<br>-7.1<br>3.26                                                    | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97               | 53<br>26<br>23<br>20<br>20<br>20<br>39                                                                                                          | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%            | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]                                                                                               |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Bline<br>tole 2015<br>logu 2012<br>laghighat 2016<br>laredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: Z = 2.63<br>.1.6 Corticosteroid plus NSA                                                                                                                                                                                                                                                     | (P = 0.05<br>(P = 0.05<br>(d'' Inject<br>33<br>2.65<br>-4.85<br>-4.85<br>-4.85<br>-34.9<br>2.18<br>(P = 0.00<br>(P = 0.00<br>(P = 0.00<br>(AID versu       | 2.627<br>5)<br>5)<br>1.05<br>1.2522<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1)<br>9)<br>1.55<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1)<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55 | 53<br>53<br>25<br>23<br>20<br>20<br>21<br>41<br>150<br>P = 0.0                                           | 3<br>39<br>3.78<br>-4.45<br>-4.45<br>-7.1<br>3.26<br>2); I <sup>2</sup> = 6            | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97               | 53<br>26<br>23<br>20<br>20<br>20<br>39<br>148                                                                                                   | 17.5%<br>16.6%<br>15.9%<br>13.9%<br>20.1%<br>100.0%                     | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]<br>-0.51 [-0.89, -0.13]                                                                       |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Blin-<br>iole 2015<br>logu 2012<br>laghighat 2016<br>laghighat 2016<br>laredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: Z = 2.63<br>.1.6 Corticosteroid plus NSA<br>ahin 2016                                                                                                                                                                                                                      | (P = 0.05<br>(P = 0.05<br>( <b>d'' Inject</b><br>33<br>2.65<br>-4.85<br>-4.85<br>-34.9<br>2.18<br>j <sup>2</sup> = 12.93<br>(P = 0.00                      | 2.627<br>5)<br>5)<br>1.7<br>1.2522<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1<br>9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53<br>53<br>25<br>23<br>20<br>20<br>21<br><b>150</b><br>P = 0.0                                          | 39<br>3.78<br>-4.45<br>-7.1<br>3.26                                                    | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97               | 53<br>26<br>23<br>20<br>20<br>20<br>39<br>148                                                                                                   | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>13.9%<br>20.1%<br>100.0%           | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]<br>-0.51 [-0.89, -0.13]<br>-0.76 [-1.26, -0.26]                                               |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Blin-<br>iole 2015<br>logu 2012<br>laghighat 2016<br>laghighat 2016<br>laredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: Z = 2.63<br>.1.6 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)                                                                                                                                                                                                  | (P = 0.05<br>(P = 0.05<br>(d'' Inject<br>33<br>2.65<br>-4.85<br>-4.85<br>-4.85<br>-34.9<br>2.18<br>(P = 0.00<br>(P = 0.00<br>(P = 0.00<br>(AID versu       | 2.627<br>5)<br>5)<br>1.05<br>1.2522<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1)<br>9)<br>1.55<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1)<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55 | 53<br>53<br>25<br>23<br>20<br>20<br>21<br>41<br>150<br>P = 0.0                                           | 3<br>39<br>3.78<br>-4.45<br>-4.45<br>-7.1<br>3.26<br>2); I <sup>2</sup> = 6            | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97               | 53<br>26<br>23<br>20<br>20<br>20<br>39<br>148                                                                                                   | 17.5%<br>16.6%<br>15.9%<br>13.9%<br>20.1%<br>100.0%                     | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]<br>-0.51 [-0.89, -0.13]                                                                       |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Blin-<br>iole 2015<br>logu 2012<br>laghighat 2016<br>laredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: Z = 2.63<br>.1.6 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>leterogeneity: Not applicable                                                                                                                                                                                   | rsus Sys<br>2<br>(P = 0.05<br>d" Inject<br>33<br>2.65<br>-4.85<br>-34.9<br>2.18<br>i <sup>2</sup> = 12.93<br>(P = 0.00<br>AID versu<br>-6.6                | 2.627<br>5)<br>ions<br>30<br>1.7<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (10)<br>99<br>us NSAID<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53<br>53<br>25<br>23<br>20<br>20<br>21<br><b>150</b><br>P = 0.0                                          | 3<br>39<br>3.78<br>-4.45<br>-4.45<br>-7.1<br>3.26<br>2); I <sup>2</sup> = 6            | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97               | 53<br>26<br>23<br>20<br>20<br>20<br>39<br>148                                                                                                   | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>13.9%<br>20.1%<br>100.0%           | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]<br>-0.51 [-0.89, -0.13]<br>-0.76 [-1.26, -0.26]                                               |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Blin-<br>iole 2015<br>logu 2012<br>laghighat 2016<br>laghighat 2016<br>laredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: Z = 2.63<br>.1.6 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)                                                                                                                                                                                                  | rsus Sys<br>2<br>(P = 0.05<br>d" Inject<br>33<br>2.65<br>-4.85<br>-34.9<br>2.18<br>i <sup>2</sup> = 12.93<br>(P = 0.00<br>AID versu<br>-6.6                | 2.627<br>5)<br>ions<br>30<br>1.7<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (10)<br>99<br>us NSAID<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53<br>53<br>25<br>23<br>20<br>20<br>21<br><b>150</b><br>P = 0.0                                          | 3<br>39<br>3.78<br>-4.45<br>-4.45<br>-7.1<br>3.26<br>2); I <sup>2</sup> = 6            | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97               | 53<br>26<br>23<br>20<br>20<br>20<br>39<br>148                                                                                                   | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>13.9%<br>20.1%<br>100.0%           | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]<br>-0.51 [-0.89, -0.13]<br>-0.76 [-1.26, -0.26]                                               |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Blin-<br>iole 2015<br>logu 2012<br>laghighat 2016<br>laredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: Z = 2.63<br>.1.6 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>leterogeneity: Not applicable                                                                                                                                                                                   | (P = 0.05<br>(P = 0.05<br>(d" Inject<br>33<br>2.65<br>-4.85<br>-4.85<br>-4.85<br>-34.9<br>2.18<br>(P = 0.00<br>AID versu<br>-6.6<br>(P = 0.00              | 2.627<br>5)<br>ions<br>30<br>1.7<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1<br>99)<br>2<br>2<br>03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53<br>53<br>25<br>23<br>20<br>20<br>21<br>41<br>15<br>0<br>P = 0.0                                       | 3<br>39<br>3.78<br>-4.45<br>-7.1<br>3.26<br>2); l <sup>2</sup> = 6<br>-5.1             | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97<br>31%        | 53<br>26<br>23<br>20<br>20<br>20<br>39<br>148                                                                                                   | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>13.9%<br>20.1%<br>100.0%           | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]<br>-0.51 [-0.89, -0.13]<br>-0.76 [-1.26, -0.26]                                               |                      |
| 1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: $Z = 1.93$<br>.1.5 US-Guided versus "Bline<br>isole 2015<br>logu 2012<br>laghighat 2016<br>laredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: $Z = 2.63$<br>.1.6 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: $Z = 2.97$<br>.1.7 Corticosteroid plus NSA                                                                                                         | (P = 0.05<br>(P = 0.05<br>(d" Inject<br>33<br>2.65<br>-4.85<br>-4.85<br>-4.85<br>-34.9<br>2.18<br>(P = 0.00<br>AID versu<br>-6.6<br>(P = 0.00<br>AID versu | 2.627<br>5)<br>ions<br>30<br>1.7<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1<br>99)<br>2<br>2<br>03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53<br>53<br>25<br>23<br>20<br>20<br>21<br>41<br>150<br>P = 0.0<br>33<br>33                               | 3<br>39<br>3.78<br>-4.45<br>-7.1<br>3.26<br>2); I <sup>2</sup> = 6<br>-5.1<br>g plus N | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97<br>31%<br>1.9 | <ul> <li>53</li> <li>26</li> <li>23</li> <li>20</li> <li>20</li> <li>20</li> <li>20</li> <li>39</li> <li>148</li> <li>33</li> <li>33</li> </ul> | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>13.9%<br>20.1%<br>100.0%<br>100.0% | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]<br>-0.51 [-0.89, -0.13]<br>-0.76 [-1.26, -0.26]<br>-0.76 [-1.26, -0.26]                       |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Bline<br>iole 2015<br>logu 2012<br>laghighat 2016<br>laghighat 2016<br>laredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: Z = 2.63<br>.1.6 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 2.97<br>.1.7 Corticosteroid plus NSA<br>ahin 2016                                                                                | (P = 0.05<br>(P = 0.05<br>(d" Inject<br>33<br>2.65<br>-4.85<br>-4.85<br>-4.85<br>-34.9<br>2.18<br>(P = 0.00<br>AID versu<br>-6.6<br>(P = 0.00              | 2.627<br>5)<br>ions<br>30<br>1.7<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1<br>99)<br>2<br>13<br>NSAID<br>2<br>13<br>13<br>12522<br>21.3<br>2.66<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53<br>53<br>25<br>23<br>20<br>20<br>21<br>41<br>150<br>P = 0.0                                           | 3<br>39<br>3.78<br>-4.45<br>-7.1<br>3.26<br>2); l <sup>2</sup> = 6<br>-5.1             | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97<br>31%        | 53<br>26<br>23<br>20<br>20<br>20<br>39<br>148<br>33<br>33<br>33                                                                                 | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>13.9%<br>20.1%<br>100.0%           | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]<br>-0.51 [-0.89, -0.13]<br>-0.76 [-1.26, -0.26]                                               |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Bline<br>iole 2015<br>logu 2012<br>laghighat 2016<br>laghighat 2016<br>laredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: Z = 2.63<br>.1.6 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 2.97<br>.1.7 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)                                                            | (P = 0.05<br>(P = 0.05<br>(d" Inject<br>33<br>2.65<br>-4.85<br>-4.85<br>-4.85<br>-34.9<br>2.18<br>(P = 0.00<br>AID versu<br>-6.6<br>(P = 0.00<br>AID versu | 2.627<br>5)<br>ions<br>30<br>1.7<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1<br>99)<br>2<br>13<br>NSAID<br>2<br>13<br>13<br>12522<br>21.3<br>2.66<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53<br>53<br>53<br>20<br>20<br>21<br>41<br>150<br>P = 0.0<br>33<br>33<br>0<br>000000000000000000000000000 | 3<br>39<br>3.78<br>-4.45<br>-7.1<br>3.26<br>2); I <sup>2</sup> = 6<br>-5.1<br>g plus N | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97<br>31%<br>1.9 | 53<br>26<br>23<br>20<br>20<br>20<br>39<br>148<br>33<br>33<br>33                                                                                 | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>13.9%<br>20.1%<br>100.0%           | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]<br>-0.51 [-0.89, -0.13]<br>-0.76 [-1.26, -0.26]<br>-0.76 [-1.26, -0.26]<br>0.00 [-0.48, 0.48] |                      |
| 1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: $Z = 1.93$<br>.1.5 US-Guided versus "Blin<br>iole 2015<br>logu 2012<br>laghighat 2016<br>laredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: $Z = 2.63$<br>.1.6 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: $Z = 2.97$<br>.1.7 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 2.97     | rsus Sys:<br>2<br>(P = 0.05<br>d" Inject<br>33<br>2.65<br>-4.85<br>-34.9<br>2.18<br>$i^2 = 12.93$<br>(P = 0.00<br>AID versu<br>-6.6<br>(P = 0.00           | 2.627<br>5)<br>ions<br>30<br>1.7<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1)<br>9)<br>us NSAID<br>2<br>03)<br>us Kinesi<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53<br>53<br>53<br>20<br>20<br>21<br>41<br>150<br>P = 0.0<br>33<br>33<br>0<br>000000000000000000000000000 | 3<br>39<br>3.78<br>-4.45<br>-7.1<br>3.26<br>2); I <sup>2</sup> = 6<br>-5.1<br>g plus N | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97<br>31%<br>1.9 | 53<br>26<br>23<br>20<br>20<br>20<br>39<br>148<br>33<br>33<br>33                                                                                 | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>13.9%<br>20.1%<br>100.0%           | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]<br>-0.51 [-0.89, -0.13]<br>-0.76 [-1.26, -0.26]<br>-0.76 [-1.26, -0.26]<br>0.00 [-0.48, 0.48] |                      |
| .1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 1.93<br>.1.5 US-Guided versus "Bline<br>iole 2015<br>logu 2012<br>laghighat 2016<br>laghighat 2016<br>laredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: Z = 2.63<br>.1.6 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 2.97<br>.1.7 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)                                                            | rsus Sys:<br>2<br>(P = 0.05<br>d" Inject<br>33<br>2.65<br>-4.85<br>-34.9<br>2.18<br>$i^2 = 12.93$<br>(P = 0.00<br>AID versu<br>-6.6<br>(P = 0.00           | 2.627<br>5)<br>ions<br>30<br>1.7<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1)<br>9)<br>us NSAID<br>2<br>03)<br>us Kinesi<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53<br>53<br>53<br>20<br>20<br>21<br>41<br>150<br>P = 0.0<br>33<br>33<br>0<br>000000000000000000000000000 | 3<br>39<br>3.78<br>-4.45<br>-7.1<br>3.26<br>2); I <sup>2</sup> = 6<br>-5.1<br>g plus N | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97<br>31%<br>1.9 | 53<br>26<br>23<br>20<br>20<br>20<br>39<br>148<br>33<br>33<br>33                                                                                 | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>13.9%<br>20.1%<br>100.0%           | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]<br>-0.51 [-0.89, -0.13]<br>-0.76 [-1.26, -0.26]<br>-0.76 [-1.26, -0.26]<br>0.00 [-0.48, 0.48] |                      |
| 1.4 Local Corticosteroid ver<br>keberg 2009<br>ubtotal (95% CI)<br>eterogeneity: Not applicable<br>est for overall effect: $Z = 1.93$<br>1.5 US-Guided versus "Blind<br>ole 2015<br>ogu 2012<br>aghighat 2016<br>aredo 2004<br>aredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>eterogeneity: Tau <sup>2</sup> = 0.14; Chi<br>est for overall effect: $Z = 2.63$<br>1.6 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>eterogeneity: Not applicable<br>est for overall effect: $Z = 2.97$<br>1.7 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>eterogeneity: Not applicable<br>est for overall effect: Z = 2.97 | rsus Sys:<br>2<br>(P = 0.05<br>d" Inject<br>33<br>2.65<br>-4.85<br>-34.9<br>2.18<br>$i^2 = 12.93$<br>(P = 0.00<br>AID versu<br>-6.6<br>(P = 0.00           | 2.627<br>5)<br>ions<br>30<br>1.7<br>1.2522<br>21.3<br>2.66<br>3, df = 5 (1)<br>9)<br>us NSAID<br>2<br>03)<br>us Kinesi<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53<br>53<br>53<br>20<br>20<br>21<br>41<br>150<br>P = 0.0<br>33<br>33<br>0<br>000000000000000000000000000 | 3<br>39<br>3.78<br>-4.45<br>-7.1<br>3.26<br>2); I <sup>2</sup> = 6<br>-5.1<br>g plus N | 30.5941<br>2.26<br>1.923<br>1.923<br>8.2<br>2.97<br>31%<br>1.9 | 53<br>26<br>23<br>20<br>20<br>20<br>39<br>148<br>33<br>33<br>33                                                                                 | 100.0%<br>17.5%<br>16.6%<br>15.9%<br>13.9%<br>20.1%<br>100.0%           | -0.38 [-0.76, 0.01]<br>-0.19 [-0.75, 0.36]<br>-0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.38 [-0.82, 0.06]<br>-0.51 [-0.89, -0.13]<br>-0.76 [-1.26, -0.26]<br>-0.76 [-1.26, -0.26]<br>0.00 [-0.48, 0.48] |                      |

Figure Appendix-4a 1. Steroids: Outcome pain at the longest follow-up

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cortic<br>Mean                                                                                                                                                                      | costeroids                                                              | Total                                                                                   | Mean                                                 | Control                               | Total                                         | Weight                                                     | Std. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                      | Std. Mean Difference<br>IV, Random, 95% Cl |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------|-----------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| tudy or Subgroup<br>.1.1 Corticosteroids vs. Con                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                     | 50                                                                      | Total                                                                                   | Mean                                                 | 50                                    | Total                                         | weight                                                     | IV, Random, 95% CI                                                                                                                                                                                              | IV, Random, 95% CI                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                     | 0.0004                                                                  | 00                                                                                      | 4.05                                                 | 0.0004                                | 00                                            | 10.00/                                                     | 4 07 ( 4 70 0 40)                                                                                                                                                                                               |                                            |
| debajo 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4.95                                                                                                                                                                               | 3.3094                                                                  | 20                                                                                      | -1.35                                                | 3.3094                                | 20                                            | 12.8%                                                      | -1.07 [-1.73, -0.40]                                                                                                                                                                                            | - <u> </u>                                 |
| Berry 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.6                                                                                                                                                                                | 22.5                                                                    | 12                                                                                      | 22                                                   | 28.6                                  | 12                                            | 11.2%                                                      | 0.17 [-0.63, 0.97]                                                                                                                                                                                              |                                            |
| Gialanella 2011 one shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.8                                                                                                                                                                                 | 1.8                                                                     | 20                                                                                      | 6.7                                                  | 1.4                                   | 10                                            | 10.3%                                                      | -1.68 [-2.56, -0.79]                                                                                                                                                                                            |                                            |
| Gialanella 2011 two shots                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.9                                                                                                                                                                                 | 1.7                                                                     | 20                                                                                      | 6.7                                                  | 1.4                                   | 10                                            | 10.3%                                                      | -1.69 [-2.58, -0.81]                                                                                                                                                                                            | •                                          |
| long 2011 high dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4                                                                                                                                                                                 | 2                                                                       | 27                                                                                      | 5                                                    | 1.5                                   | 13                                            | 12.0%                                                      | -1.37 [-2.11, -0.64]                                                                                                                                                                                            |                                            |
| long 2011 low dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.2                                                                                                                                                                                 | 1.8                                                                     | 25                                                                                      | 5                                                    |                                       | 14                                            | 12.4%                                                      | -1.04 [-1.73, -0.34]                                                                                                                                                                                            |                                            |
| Kelle 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.6                                                                                                                                                                                | 15.6                                                                    | 45                                                                                      | 43.3                                                 | 17.6                                  | 31                                            | 14.9%                                                      | -1.19 [-1.68, -0.69]                                                                                                                                                                                            |                                            |
| Penning 2012<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2                                                                                                                                                                                 | 2.8735                                                                  | 52<br>221                                                                               | 5.2                                                  | 2.59                                  | 55<br>165                                     | 16.2%<br>100.0%                                            | -0.36 [-0.75, 0.02]<br>-0.99 [-1.42, -0.57]                                                                                                                                                                     |                                            |
| leterogeneity: Tau² = 0.25; Ch<br>est for overall effect: Z = 4.58                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     | 7 (P = 0.001);                                                          |                                                                                         | %                                                    |                                       | 105                                           | 100.076                                                    | -0.33 [-1.42, -0.37]                                                                                                                                                                                            |                                            |
| .1.2 Corticosteroids vs. Activ                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ,                                                                                                                                                                                 | isc.)                                                                   |                                                                                         |                                                      |                                       |                                               |                                                            |                                                                                                                                                                                                                 |                                            |
| kgün 2004 one shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                 | 1.1                                                                     | 16                                                                                      | 1.7                                                  | 1                                     | 8                                             | 3.2%                                                       | -0.27 [-1.12, 0.58]                                                                                                                                                                                             |                                            |
| kgün 2004 two shots                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                                                                                                                 | 0.9                                                                     | 16                                                                                      | 1.7                                                  | 1                                     | 8                                             | 3.1%                                                       | -0.62 [-1.49, 0.25]                                                                                                                                                                                             |                                            |
| Ivarez 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39.05                                                                                                                                                                               | 28.4                                                                    | 30                                                                                      | 52.3                                                 | 27.2                                  | 28                                            | 4.8%                                                       | -0.47 [-0.99, 0.05]                                                                                                                                                                                             |                                            |
| lvarez-Nemegyei 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.2727273                                                                                                                                                                          |                                                                         |                                                                                         |                                                      | 29.81818182                           | 23                                            | 4.4%                                                       | -0.76 [-1.36, -0.15]                                                                                                                                                                                            |                                            |
| erry 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26.6                                                                                                                                                                                | 22.5                                                                    | 12                                                                                      | 41.2                                                 | 36.6                                  | 12                                            | 3.3%                                                       | -0.46 [-1.28, 0.35]                                                                                                                                                                                             |                                            |
| Celik 2009 Cortico                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0                                                                                                                                                                                | 22.5                                                                    | 28                                                                                      | 41.2                                                 | 1.3                                   | 28                                            | 3.3%<br>4.8%                                               |                                                                                                                                                                                                                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                     |                                                                         | 10                                                                                      | -3.4                                                 |                                       | 20<br>5                                       |                                                            | -0.20 [-0.73, 0.32]                                                                                                                                                                                             |                                            |
| hoi 2013 high Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -7.2                                                                                                                                                                                | 1.6                                                                     |                                                                                         |                                                      | 1.2                                   |                                               | 1.5%                                                       | -2.40 [-3.87, -0.93]                                                                                                                                                                                            |                                            |
| hoi 2013 low Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3.8                                                                                                                                                                                | 1.4<br>9 7415                                                           | 10                                                                                      | -3.4                                                 | 1.2                                   | 109                                           | 2.4%                                                       | -0.28 [-1.36, 0.80]                                                                                                                                                                                             |                                            |
| rawshaw 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -9.04                                                                                                                                                                               | 8.7415                                                                  | 104                                                                                     | -1.01                                                | 8.7547                                | 108                                           | 6.3%                                                       | -0.91 [-1.20, -0.63]                                                                                                                                                                                            |                                            |
| yigor 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.9                                                                                                                                                                                 | 1.2                                                                     | 20                                                                                      | 2.6                                                  | 1.6                                   | 20                                            | 4.2%                                                       | -0.49 [-1.11, 0.14]                                                                                                                                                                                             |                                            |
| öksu 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.61                                                                                                                                                                               | 17.9                                                                    | 31                                                                                      | 46                                                   | 19.22                                 | 30                                            | 5.0%                                                       | -0.23 [-0.74, 0.27]                                                                                                                                                                                             |                                            |
| ensen 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.755                                                                                                                                                                               | 1.712                                                                   | 23                                                                                      | 1.442                                                | 1.854                                 | 23                                            | 4.5%                                                       | 0.17 [-0.41, 0.75]                                                                                                                                                                                              |                                            |
| elle 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.6                                                                                                                                                                                | 15.6                                                                    | 45                                                                                      | 32.6                                                 | 17.6                                  | 38                                            | 5.4%                                                       | -0.54 [-0.98, -0.10]                                                                                                                                                                                            |                                            |
| im 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.8                                                                                                                                                                                | 20.9                                                                    | 42                                                                                      | 31.2                                                 |                                       | 38                                            | 5.3%                                                       | 0.75 [0.29, 1.20]                                                                                                                                                                                               |                                            |
| ee 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.4                                                                                                                                                                                 | 1.7                                                                     | 30                                                                                      | 3                                                    |                                       | 31                                            | 5.0%                                                       | 0.25 [-0.26, 0.75]                                                                                                                                                                                              |                                            |
| enning 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.2                                                                                                                                                                                 | 2.8735                                                                  | 52                                                                                      | 5.2                                                  |                                       | 55                                            | 5.7%                                                       | -0.36 [-0.75, 0.02]                                                                                                                                                                                             |                                            |
| abini 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.6                                                                                                                                                                                | 10.3                                                                    | 46                                                                                      | 35.1                                                 | 24.3                                  | 46                                            | 5.5%                                                       | -0.29 [-0.70, 0.12]                                                                                                                                                                                             |                                            |
| adnovich 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.2                                                                                                                                                                                 | 2.8                                                                     | 31                                                                                      | 2.8                                                  | 2.6                                   | 29                                            | 4.9%                                                       | 0.15 [-0.36, 0.65]                                                                                                                                                                                              |                                            |
| Rhon 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.7                                                                                                                                                                                 | 2.19013569                                                              | 46                                                                                      | 1.6                                                  | 2.08736913                            | 42                                            | 5.5%                                                       | 0.05 [-0.37, 0.46]                                                                                                                                                                                              |                                            |
| hibata 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.1375                                                                                                                                                                              | 1.8472                                                                  | 40                                                                                      | 5.3053                                               | 2.1099                                | 38                                            | 5.3%                                                       | -0.08 [-0.53, 0.36]                                                                                                                                                                                             |                                            |
| ubasi 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                   | 1.8                                                                     | 35                                                                                      | 3.83                                                 | 1.9                                   | 35                                            | 5.2%                                                       | 0.09 [-0.38, 0.56]                                                                                                                                                                                              |                                            |
| ecchio 1993 Corticosteroid                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -10                                                                                                                                                                                 | 8.14814815                                                              | 28                                                                                      | -7.5                                                 | 5.92592593                            | 27                                            | 4.8%                                                       | -0.34 [-0.88, 0.19]                                                                                                                                                                                             |                                            |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                     |                                                                         | 717                                                                                     |                                                      |                                       | 677                                           | 100.0%                                                     | -0.25 [-0.46, -0.05]                                                                                                                                                                                            | $\bullet$                                  |
| leterogeneity: Tau <sup>2</sup> = 0.15; Ch<br>est for overall effect: Z = 2.46                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                     | 21 (P < 0.000                                                           | )1);   <sup>2</sup> =                                                                   | 69%                                                  |                                       |                                               |                                                            |                                                                                                                                                                                                                 |                                            |
| .1.3 Corticosteroid vs. NSAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>DS</b><br>-4.95                                                                                                                                                                  | 3.3094                                                                  | 20                                                                                      | -3.6                                                 | 2.9963                                | 20                                            | 25.7%                                                      | -0.42 [-1.05, 0.21]                                                                                                                                                                                             |                                            |
| Cift 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.6                                                                                                                                                                                | 1.8                                                                     | 20                                                                                      | -5.2                                                 |                                       | 20                                            | 24.4%                                                      | 1.90 [1.14, 2.66]                                                                                                                                                                                               |                                            |
| /in 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.9                                                                                                                                                                                | 1.86                                                                    | 15                                                                                      | -1.83                                                | 2.25                                  | 17                                            | 25.0%                                                      | 0.44 [-0.27, 1.14]                                                                                                                                                                                              |                                            |
| White 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.3                                                                                                                                                                                | 5.2                                                                     | 15                                                                                      | -5.5                                                 | 8.3                                   | 15                                            | 24.9%                                                      | 0.17 [-0.55, 0.89]                                                                                                                                                                                              |                                            |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.5                                                                                                                                                                                | 5.2                                                                     | 70                                                                                      | -5.5                                                 | 0.5                                   | 72                                            | 100.0%                                                     | 0.51 [-0.44, 1.45]                                                                                                                                                                                              |                                            |
| Heterogeneity: Tau <sup>2</sup> = 0.80; Ch<br>Test for overall effect: Z = 1.05                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                     | 3 (P < 0.0001)                                                          |                                                                                         | 5%                                                   |                                       | . –                                           |                                                            |                                                                                                                                                                                                                 |                                            |
| .1.4 Local Corticosteroid ver                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rsus Systemic                                                                                                                                                                       | Corticostero                                                            | d                                                                                       |                                                      |                                       |                                               |                                                            |                                                                                                                                                                                                                 | _                                          |
| Ekeberg 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                   | 2.6265                                                                  | 53                                                                                      | 3                                                    | 5.253                                 |                                               | 100.0%                                                     | -0.24 [-0.62, 0.14]                                                                                                                                                                                             | - <b>B</b> +                               |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                     |                                                                         | 53                                                                                      |                                                      |                                       | 53                                            | 100.0%                                                     | -0.24 [-0.62, 0.14]                                                                                                                                                                                             |                                            |
| leterogeneity: Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                     |                                                                         |                                                                                         |                                                      |                                       |                                               |                                                            |                                                                                                                                                                                                                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (P = 0.22)                                                                                                                                                                          |                                                                         |                                                                                         |                                                      |                                       |                                               |                                                            |                                                                                                                                                                                                                 |                                            |
| est for overall effect: Z = 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1 0.22)                                                                                                                                                                            |                                                                         |                                                                                         |                                                      |                                       |                                               |                                                            |                                                                                                                                                                                                                 |                                            |
| .1.5 Ultrasound Guided Cort                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ticosteroid Inje                                                                                                                                                                    |                                                                         |                                                                                         |                                                      | 20 5044                               | 26                                            | 17 60/                                                     | -0 10 [ 0 75 0 26]                                                                                                                                                                                              |                                            |
| .1.5 Ultrasound Guided Cort<br>ole 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ticosteroid Inje<br>33                                                                                                                                                              | 30                                                                      | 25                                                                                      | 39                                                   | 30.5941                               | 26                                            | 17.6%                                                      | -0.19 [-0.75, 0.36]                                                                                                                                                                                             |                                            |
| .1.5 Ultrasound Guided Cort<br>ole 2015<br>logu 2012                                                                                                                                                                                                                                                                                                                                                                                                                                        | ticosteroid Inje<br>33<br>2.65                                                                                                                                                      | 30<br>1.7                                                               | 25<br>23                                                                                | 39<br>3.78                                           | 2.26                                  | 23                                            | 16.6%                                                      | -0.56 [-1.15, 0.03]                                                                                                                                                                                             |                                            |
| . <b>1.5 Ultrasound Guided Cort</b><br>cole 2015<br>Jogu 2012<br>Iaghighat 2015                                                                                                                                                                                                                                                                                                                                                                                                             | ticosteroid Inje<br>33<br>2.65<br>-4.85                                                                                                                                             | 30<br>1.7<br>1.2522                                                     | 25<br>23<br>20                                                                          | 39<br>3.78<br>-4.45                                  | 2.26<br>1.923                         | 23<br>20                                      | 16.6%<br>15.9%                                             | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]                                                                                                                                                                      |                                            |
| .1.5 Ultrasound Guided Cort<br>cole 2015<br>Jogu 2012<br>laghighat 2015<br>laghighat 2016                                                                                                                                                                                                                                                                                                                                                                                                   | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85                                                                                                                                    | 30<br>1.7<br>1.2522<br>1.2522                                           | 25<br>23<br>20<br>20                                                                    | 39<br>3.78<br>-4.45<br>-4.45                         | 2.26<br>1.923<br>1.923                | 23<br>20<br>20                                | 16.6%<br>15.9%<br>15.9%                                    | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]                                                                                                                                               |                                            |
| .1.5 Ultrasound Guided Cort<br>Cole 2015<br>Jogu 2012<br>Iaghighat 2015<br>Iaghighat 2016<br>Iaredo 2004                                                                                                                                                                                                                                                                                                                                                                                    | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-4.85<br>-34.9                                                                                                                  | 30<br>1.7<br>1.2522<br>1.2522<br>21.3                                   | 25<br>23<br>20<br>20<br>21                                                              | 39<br>3.78<br>-4.45<br>-4.45<br>-7.1                 | 2.26<br>1.923<br>1.923<br>8.2         | 23<br>20<br>20<br>20                          | 16.6%<br>15.9%<br>15.9%<br>13.9%                           | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]                                                                                                                       |                                            |
| .1.5 Ultrasound Guided Cort<br>Cole 2015<br>Dogu 2012<br>Haghighat 2015<br>Haghighat 2016<br>Haredo 2004<br>Saeed 2014                                                                                                                                                                                                                                                                                                                                                                      | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85                                                                                                                                    | 30<br>1.7<br>1.2522<br>1.2522                                           | 25<br>23<br>20<br>20<br>21<br>41                                                        | 39<br>3.78<br>-4.45<br>-4.45                         | 2.26<br>1.923<br>1.923                | 23<br>20<br>20<br>20<br>39                    | 16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%                  | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95] ◀<br>-0.53 [-0.97, -0.08]                                                                                             |                                            |
| .1.5 Ultrasound Guided Cort<br>cole 2015<br>logu 2012<br>laghighat 2015<br>laghighat 2016<br>laredo 2004<br>laredo 2004<br>laredo 2014<br>subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                 | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-34.9<br>1.68                                                                                                                   | 30<br>1.7<br>1.2522<br>1.2522<br>21.3<br>1.67                           | 25<br>23<br>20<br>20<br>21<br>41<br><b>150</b>                                          | 39<br>3.78<br>-4.45<br>-4.45<br>-7.1<br>2.67         | 2.26<br>1.923<br>1.923<br>8.2         | 23<br>20<br>20<br>20                          | 16.6%<br>15.9%<br>15.9%<br>13.9%                           | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]                                                                                                                       |                                            |
| .1.5 Ultrasound Guided Cort<br>Cole 2015<br>Jogu 2012<br>Iaghighat 2015<br>Iaghighat 2016<br>Jaredo 2004<br>Saeed 2014<br>Subtotal (95% CI)<br>Ieterogeneity: Tau <sup>2</sup> = 0.13; Ch                                                                                                                                                                                                                                                                                                   | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-34.9<br>1.68<br>i <sup>2</sup> = 12.71, df =                                                                                   | 30<br>1.7<br>1.2522<br>1.2522<br>21.3<br>1.67                           | 25<br>23<br>20<br>20<br>21<br>41<br><b>150</b>                                          | 39<br>3.78<br>-4.45<br>-4.45<br>-7.1<br>2.67         | 2.26<br>1.923<br>1.923<br>8.2         | 23<br>20<br>20<br>20<br>39                    | 16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%                  | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95] ◀<br>-0.53 [-0.97, -0.08]                                                                                             |                                            |
| .1.5 Ultrasound Guided Cort<br>Cole 2015<br>Dogu 2012<br>Iaghighat 2015<br>Iaghighat 2016<br>Jaredo 2004<br>Subtotal (95% CI)<br>Ieterogeneity: Tau <sup>2</sup> = 0.13; Ch<br>'est for overall effect: Z = 2.80                                                                                                                                                                                                                                                                            | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-34.9<br>1.68<br>i <sup>2</sup> = 12.71, df =<br>(P = 0.005)                                                                    | 30<br>1.7<br>1.2522<br>1.2522<br>21.3<br>1.67<br>5 (P = 0.03); P        | 25<br>23<br>20<br>20<br>21<br>41<br><b>150</b>                                          | 39<br>3.78<br>-4.45<br>-4.45<br>-7.1<br>2.67         | 2.26<br>1.923<br>1.923<br>8.2         | 23<br>20<br>20<br>20<br>39                    | 16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%                  | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95] ◀<br>-0.53 [-0.97, -0.08]                                                                                             |                                            |
| .1.5 Ultrasound Guided Cort<br>Cole 2015<br>Dogu 2012<br>Haghighat 2015<br>Haghighat 2016<br>Jaredo 2004<br>Saeed 2014<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Ch<br>Test for overall effect: Z = 2.80<br>.1.6 Corticosteroid plus NSA                                                                                                                                                                                                                              | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-34.9<br>1.68<br>i <sup>2</sup> = 12.71, df =<br>(P = 0.005)                                                                    | 30<br>1.7<br>1.2522<br>1.2522<br>21.3<br>1.67<br>5 (P = 0.03); P        | 25<br>23<br>20<br>20<br>21<br>41<br><b>150</b>                                          | 39<br>3.78<br>-4.45<br>-4.45<br>-7.1<br>2.67         | 2.26<br>1.923<br>1.923<br>8.2         | 23<br>20<br>20<br>20<br>39<br>148             | 16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%                  | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95] ◀<br>-0.53 [-0.97, -0.08]                                                                                             |                                            |
| .1.5 Ultrasound Guided Cort<br>Cole 2015<br>Jogu 2012<br>Iaghighat 2015<br>Iaghighat 2016<br>Jaredo 2004<br>Saeed 2014<br>Jubtotal (95% CI)<br>Ieterogeneity: Tau <sup>2</sup> = 0.13; Ch<br>est for overall effect: Z = 2.80<br>.1.6 Corticosteroid plus NSA<br>Sahin 2016                                                                                                                                                                                                                 | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-34.9<br>1.68<br>j <sup>2</sup> = 12.71, df =<br>(P = 0.005)<br>AIS versus NS/                                                  | 30<br>1.7<br>1.2522<br>1.2522<br>21.3<br>1.67<br>5 (P = 0.03); F        | 25<br>23<br>20<br>20<br>21<br>41<br><b>150</b><br>2 = 61%                               | 39<br>3.78<br>-4.45<br>-4.45<br>-7.1<br>2.67         | 2.26<br>1.923<br>1.923<br>8.2<br>2.04 | 23<br>20<br>20<br>20<br>39<br>148             | 16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%<br><b>100.0%</b> | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.53 [-0.97, -0.08]<br>-0.54 [-0.92, -0.16]                                                                       |                                            |
| .1.5 Ultrasound Guided Cort<br>Cole 2015<br>Dogu 2012<br>Iaghighat 2015<br>Iaghighat 2016<br>Iaredo 2004<br>Subtotal (95% CI)<br>Ieterogeneity: Tau <sup>2</sup> = 0.13; Ch<br>Test for overall effect: Z = 2.80<br>.1.6 Corticosteroid plus NSA<br>Sahin 2016<br>Subtotal (95% CI)<br>Ieterogeneity: Not applicable                                                                                                                                                                        | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-34.9<br>1.68<br>i <sup>2</sup> = 12.71, df =<br>(P = 0.005)<br>AIS versus NS/<br>-6.6                                          | 30<br>1.7<br>1.2522<br>1.2522<br>21.3<br>1.67<br>5 (P = 0.03); F        | 25<br>23<br>20<br>20<br>21<br>41<br><b>150</b><br>33                                    | 39<br>3.78<br>-4.45<br>-4.45<br>-7.1<br>2.67         | 2.26<br>1.923<br>1.923<br>8.2<br>2.04 | 23<br>20<br>20<br>20<br>39<br>148             | 16.6%<br>15.9%<br>15.9%<br>20.1%<br>100.0%                 | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.53 [-0.97, -0.08]<br>-0.54 [-0.92, -0.16]                                                                       |                                            |
| .1.5 Ultrasound Guided Cort<br>Cole 2015<br>Jogu 2012<br>Iaghighat 2015<br>Iaghighat 2016<br>Jaredo 2004<br>Saeed 2014<br>Jubtotal (95% CI)<br>Ieterogeneity: Tau <sup>2</sup> = 0.13; Ch<br>est for overall effect: Z = 2.80<br>.1.6 Corticosteroid plus NSA<br>Sahin 2016<br>Subtotal (95% CI)<br>Ieterogeneity: Not applicable<br>est for overall effect: Z = 2.97                                                                                                                       | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-34.9<br>1.68<br>i <sup>2</sup> = 12.71, df =<br>(P = 0.005)<br>AIS versus NSJ<br>-6.6<br>(P = 0.003)                           | 30<br>1.7<br>1.2522<br>1.2522<br>21.3<br>1.67<br>5 (P = 0.03); F<br>AID | 25<br>23<br>20<br>21<br>41<br><b>150</b><br>2 = 61%                                     | 39<br>3.78<br>-4.45<br>-4.45<br>-7.1<br>2.67<br>-5.1 | 2.26<br>1.923<br>1.923<br>8.2<br>2.04 | 23<br>20<br>20<br>20<br>39<br>148             | 16.6%<br>15.9%<br>15.9%<br>20.1%<br>100.0%                 | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.53 [-0.97, -0.08]<br>-0.54 [-0.92, -0.16]                                                                       |                                            |
| .1.5 Ultrasound Guided Cort<br>Cole 2015<br>Dogu 2012<br>Haghighat 2015<br>Haghighat 2016<br>Aaredo 2004<br>Saeed 2014<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Ch<br>Test for overall effect: Z = 2.80<br>.1.6 Corticosteroid plus NSA<br>Sahin 2016<br>Subtotal (95% CI)<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.97<br>.1.7 Corticosteroid plus NSA                                                                                     | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-34.9<br>1.68<br>i <sup>2</sup> = 12.71, df =<br>(P = 0.005)<br>AIS versus NS <i>i</i><br>-6.6<br>(P = 0.003)<br>AID versus Kin | 30<br>1.7<br>1.2522<br>21.3<br>1.67<br>5 (P = 0.03); P<br>AID<br>2      | 25<br>23<br>20<br>21<br>41<br><b>150</b><br>2 = 61%<br>33<br>33                         | 39<br>3.78<br>-4.45<br>-7.1<br>2.67<br>-5.1          | 2.26<br>1.923<br>1.923<br>8.2<br>2.04 | 23<br>20<br>20<br>39<br>148<br>33<br>33       | 16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%<br>100.0%        | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.53 [-0.97, -0.08]<br>-0.54 [-0.92, -0.16]<br>-0.76 [-1.26, -0.26]<br>-0.76 [-1.26, -0.26]                       |                                            |
| Fest for overall effect: Z = 1.23<br>1.1.5 Ultrasound Guided Cort<br>Cole 2015<br>Dogu 2012<br>Haghighat 2015<br>Haghighat 2016<br>Varedo 2004<br>Saeed 2014<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Ch<br>Fest for overall effect: Z = 2.80<br>1.1.6 Corticosteroid plus NSA<br>Sahin 2016<br>Subtotal (95% CI)<br>Heterogeneity: Not applicable<br>Fest for overall effect: Z = 2.97<br>1.1.7 Corticosteroid plus NSA<br>Sahin 2016<br>Subtotal (95% CI)          | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-34.9<br>1.68<br>i <sup>2</sup> = 12.71, df =<br>(P = 0.005)<br>AIS versus NSJ<br>-6.6<br>(P = 0.003)                           | 30<br>1.7<br>1.2522<br>1.2522<br>21.3<br>1.67<br>5 (P = 0.03); F<br>AID | 25<br>23<br>20<br>21<br>41<br><b>150</b><br><sup>2</sup> = 61%<br>33<br><b>33</b><br>33 | 39<br>3.78<br>-4.45<br>-4.45<br>-7.1<br>2.67<br>-5.1 | 2.26<br>1.923<br>1.923<br>8.2<br>2.04 | 23<br>20<br>20<br>39<br>148<br>33<br>33<br>33 | 16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%<br>100.0%        | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.53 [-0.97, -0.08]<br>-0.54 [-0.92, -0.16]<br>-0.76 [-1.26, -0.26]<br>-0.76 [-1.26, -0.26]<br>0.00 [-0.48, 0.48] |                                            |
| .1.5 Ultrasound Guided Cort<br>Cole 2015<br>Dogu 2012<br>Haghighat 2015<br>Haghighat 2016<br>Jaredo 2004<br>Saeed 2014<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.13; Ch<br>Test for overall effect: Z = 2.80<br>.1.6 Corticosteroid plus NSA<br>Sahin 2016<br>Subtotal (95% CI)<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.97<br>.1.7 Corticosteroid plus NSA<br>Sahin 2016<br>Subtotal (95% CI)                                                  | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-34.9<br>1.68<br>i <sup>2</sup> = 12.71, df =<br>(P = 0.005)<br>AIS versus NS <i>i</i><br>-6.6<br>(P = 0.003)<br>AID versus Kin | 30<br>1.7<br>1.2522<br>21.3<br>1.67<br>5 (P = 0.03); P<br>AID<br>2      | 25<br>23<br>20<br>21<br>41<br><b>150</b><br>2 = 61%<br>33<br>33                         | 39<br>3.78<br>-4.45<br>-7.1<br>2.67<br>-5.1          | 2.26<br>1.923<br>1.923<br>8.2<br>2.04 | 23<br>20<br>20<br>39<br>148<br>33<br>33<br>33 | 16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%<br>100.0%        | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.53 [-0.97, -0.08]<br>-0.54 [-0.92, -0.16]<br>-0.76 [-1.26, -0.26]<br>-0.76 [-1.26, -0.26]                       |                                            |
| .1.5 Ultrasound Guided Cort<br>cole 2015<br>logu 2012<br>laghighat 2015<br>laghighat 2015<br>laghighat 2016<br>laredo 2004<br>laeed 2014<br>lubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.13; Ch<br>est for overall effect: Z = 2.80<br>.1.6 Corticosteroid plus NSA<br>lahin 2016<br>lubtotal (95% CI)<br>leterogeneity: Not applicable<br>est for overall effect: Z = 2.97<br>.1.7 Corticosteroid plus NSA<br>lahin 2016<br>lubtotal (95% CI)<br>leterogeneity: Not applicable | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-4.85<br>-34.9<br>1.68<br>$i^2 = 12.71, df = (P = 0.005)$<br>AIS versus NSJ<br>-6.6<br>(P = 0.003)<br>AID versus Kin<br>-6.6    | 30<br>1.7<br>1.2522<br>21.3<br>1.67<br>5 (P = 0.03); P<br>AID<br>2      | 25<br>23<br>20<br>21<br>41<br><b>150</b><br><sup>2</sup> = 61%<br>33<br><b>33</b><br>33 | 39<br>3.78<br>-4.45<br>-7.1<br>2.67<br>-5.1          | 2.26<br>1.923<br>1.923<br>8.2<br>2.04 | 23<br>20<br>20<br>39<br>148<br>33<br>33<br>33 | 16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%<br>100.0%        | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.53 [-0.97, -0.08]<br>-0.54 [-0.92, -0.16]<br>-0.76 [-1.26, -0.26]<br>-0.76 [-1.26, -0.26]<br>0.00 [-0.48, 0.48] |                                            |
| 1.5 Ultrasound Guided Cort<br>ole 2015<br>ogu 2012<br>aghighat 2015<br>aghighat 2016<br>aredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>eterogeneity: Tau <sup>2</sup> = 0.13; Ch<br>est for overall effect: Z = 2.80<br>1.6 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>eterogeneity: Not applicable<br>est for overall effect: Z = 2.97<br>1.7 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)                                                                    | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-4.85<br>-34.9<br>1.68<br>$i^2 = 12.71, df = (P = 0.005)$<br>AIS versus NSJ<br>-6.6<br>(P = 0.003)<br>AID versus Kin<br>-6.6    | 30<br>1.7<br>1.2522<br>21.3<br>1.67<br>5 (P = 0.03); P<br>AID<br>2      | 25<br>23<br>20<br>21<br>41<br><b>150</b><br><sup>2</sup> = 61%<br>33<br><b>33</b><br>33 | 39<br>3.78<br>-4.45<br>-7.1<br>2.67<br>-5.1          | 2.26<br>1.923<br>1.923<br>8.2<br>2.04 | 23<br>20<br>20<br>39<br>148<br>33<br>33<br>33 | 16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%<br>100.0%        | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.53 [-0.97, -0.08]<br>-0.54 [-0.92, -0.16]<br>-0.76 [-1.26, -0.26]<br>-0.76 [-1.26, -0.26]<br>0.00 [-0.48, 0.48] |                                            |
| 1.5 Ultrasound Guided Cort<br>ole 2015<br>ogu 2012<br>aghighat 2015<br>aredo 2004<br>aredo 2004<br>aeed 2014<br>ubtotal (95% CI)<br>eterogeneity: Tau <sup>2</sup> = 0.13; Ch<br>est for overall effect: Z = 2.80<br>1.6 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>eterogeneity: Not applicable<br>est for overall effect: Z = 2.97<br>1.7 Corticosteroid plus NSA<br>ahin 2016<br>ubtotal (95% CI)<br>eterogeneity: Not applicable                                       | ticosteroid Inje<br>33<br>2.65<br>-4.85<br>-4.85<br>-4.85<br>-34.9<br>1.68<br>$i^2 = 12.71, df = (P = 0.005)$<br>AIS versus NSJ<br>-6.6<br>(P = 0.003)<br>AID versus Kin<br>-6.6    | 30<br>1.7<br>1.2522<br>21.3<br>1.67<br>5 (P = 0.03); P<br>AID<br>2      | 25<br>23<br>20<br>21<br>41<br><b>150</b><br><sup>2</sup> = 61%<br>33<br><b>33</b><br>33 | 39<br>3.78<br>-4.45<br>-7.1<br>2.67<br>-5.1          | 2.26<br>1.923<br>1.923<br>8.2<br>2.04 | 23<br>20<br>20<br>39<br>148<br>33<br>33<br>33 | 16.6%<br>15.9%<br>15.9%<br>13.9%<br>20.1%<br>100.0%        | -0.56 [-1.15, 0.03]<br>-0.24 [-0.86, 0.38]<br>-0.24 [-0.86, 0.38]<br>-1.67 [-2.39, -0.95]<br>-0.53 [-0.97, -0.08]<br>-0.54 [-0.92, -0.16]<br>-0.76 [-1.26, -0.26]<br>-0.76 [-1.26, -0.26]<br>0.00 [-0.48, 0.48] |                                            |

Figure Appendix-4a 2. Steroids: Outcome pain at the shortest follow-up

| Other days and Other handling                                                   |           | erimental    | T - 4 - 1         |                       | Control | T . 4. 1  |                         | Std. Mean Difference                                | Std. Mean Difference                                    |
|---------------------------------------------------------------------------------|-----------|--------------|-------------------|-----------------------|---------|-----------|-------------------------|-----------------------------------------------------|---------------------------------------------------------|
| Study or Subgroup                                                               | Mean      |              | Total             |                       |         |           | Weight                  | IV, Random, 95% CI                                  | IV, Random, 95% Cl                                      |
| 2.1.1 Ketoprofen plus Lidoca                                                    |           | •            |                   |                       |         |           |                         |                                                     |                                                         |
| Güler 2009<br>Subtotal (95% CI)                                                 | 30.81     | 26.49        | 37<br>37          | 43.33                 | 16.7    |           | 100.0%<br><b>100.0%</b> | -0.55 [-1.03, -0.07]<br><b>-0.55 [-1.03, -0.07]</b> |                                                         |
| Heterogeneity: Not applicable                                                   |           |              |                   |                       |         |           |                         |                                                     |                                                         |
| Test for overall effect: Z = 2.26                                               | (P = 0.02 | 2)           |                   |                       |         |           |                         |                                                     |                                                         |
| 2.1.2 Celecoxib or Naproxen                                                     | versus F  | lacebo       |                   |                       |         |           |                         |                                                     |                                                         |
| Petri Celecoxib 200m 2004                                                       | -38.6     | 30.4904      | 98                | -27.5                 | 24.2499 | 54        | 49.5%                   | -0.39 [-0.72, -0.05]                                |                                                         |
| Petri Naproxen 500mg 2004<br>Subtotal (95% CI)                                  | -33.2     | 31.9         | 100<br><b>198</b> | -27.5                 | 24.2499 | 54<br>108 | 50.5%<br>100.0%         | -0.19 [-0.52, 0.14]<br><b>-0.29 [-0.53, -0.05]</b>  |                                                         |
| Heterogeneity: Tau² = 0.00; Ch<br>Test for overall effect: Z = 2.41             |           | · ·          | = 0.42)           | ; I <sup>2</sup> = 0% |         |           |                         |                                                     |                                                         |
| 2.1.3 Topical Glyceryl Trinitra                                                 | ate Appli | cation ver   | sus P             | lacebo F              | atch    |           |                         |                                                     | _                                                       |
| Paoloni 2005<br>Subtotal (95% CI)                                               | 0.9214    | 0.7031       | 23<br><b>23</b>   | 2.0838                | 1.5707  |           | 100.0%<br><b>100.0%</b> | -0.93 [-1.52, -0.33]<br><b>-0.93 [-1.52, -0.33]</b> |                                                         |
| Heterogeneity: Not applicable<br>Test for overall effect: Z = 3.03              | (P = 0.00 | 02)          | 23                |                       |         | 20        | 100.0%                  | -0.33 [*1.32, *0.33]                                |                                                         |
|                                                                                 |           | ,            |                   |                       |         |           |                         |                                                     |                                                         |
| 2.1.4 Naprosyn plus Exercise                                                    |           |              |                   |                       |         |           | 100.00                  |                                                     |                                                         |
| Devereaux 2015<br>Subtotal (95% CI)                                             | -2.32     | 2.8393       | 29<br><b>29</b>   | -1.46                 | 2.8202  |           | 100.0%<br><b>100.0%</b> | -0.30 [-0.80, 0.20]<br><b>-0.30 [-0.80, 0.20]</b>   |                                                         |
| Heterogeneity: Not applicable<br>Test for overall effect: Z = 1.17              | (P = 0.24 | 4)           |                   |                       |         |           |                         |                                                     |                                                         |
| 2.1.5 Local Anaesthetic vers                                                    | us Cortio | osteroids    |                   |                       |         |           |                         |                                                     |                                                         |
| Akgün 2004 one inject.                                                          | 0.7       | 0.6          | 8                 | 0.81                  | 0.9     | 16        | 11.3%                   | -0.13 [-0.98, 0.72]                                 |                                                         |
| Akgün 2004 two inject.                                                          | 0.7       | 0.6          | 8                 | 0.8                   | 0.7     | 16        | 11.3%                   | -0.14 [-0.99, 0.71]                                 |                                                         |
| Alvarez 2005                                                                    | 42.6      | 35.9         | 28                | 45.2                  | 27.7    | 30        | 30.8%                   | -0.08 [-0.60, 0.43]                                 |                                                         |
| Alvarez-Nemegyei 2008                                                           | 46.485    | 38.776       |                   | 39.002                | 40.363  | 15        | 16.9%                   | 0.18 [-0.51, 0.88]                                  |                                                         |
| Celik 2009 Cortico                                                              | 1.5       | 1.3          | 28<br><b>89</b>   | 1.2                   | 1.6     | 28        | 29.6%                   | 0.20 [-0.32, 0.73]                                  |                                                         |
| Subtotal (95% CI)                                                               |           | -If - 4 (D - |                   | . 12 - 00/            |         | 105       | 100.0%                  | 0.04 [-0.25, 0.32]                                  |                                                         |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Ch<br>Test for overall effect: Z = 0.24 |           |              | = 0.90)           | ; 1- = 0%             |         |           |                         |                                                     |                                                         |
| 2.1.6 Local Anaesthetic Patcl                                                   | h versus  | Corticost    | eroid             |                       |         |           |                         |                                                     |                                                         |
| Jensen 2014                                                                     | 1.442     | 1.854        | 23                | 1.755                 | 1.712   | 23        | 43.4%                   | -0.17 [-0.75, 0.41]                                 |                                                         |
| Radnovich 2014<br>Subtotal (95% CI)                                             | 2.6       | 2.7          | 29<br>52          | 2.9                   | 2.7     | 31        | 56.6%<br>100.0%         | -0.11 [-0.62, 0.40]<br>-0.14 [-0.52, 0.24]          |                                                         |
| Heterogeneity: Tau² = 0.00; Ch<br>Test for overall effect: Z = 0.70             |           |              | = 0.87)           | ; I² = 0%             |         |           |                         |                                                     |                                                         |
| 2.1.7 Diclofenac versus Place                                                   | ebo       |              |                   |                       |         |           |                         |                                                     | _                                                       |
| Adebajo 1990<br>Subtotal (95% CI)                                               | -3.6      | 2.9963       | 20<br><b>20</b>   | -1.35                 | 3.3094  |           | 100.0%<br><b>100.0%</b> | -0.70 [-1.34, -0.06]<br>-0.70 [-1.34, -0.06]        |                                                         |
| Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.14              | (P = 0.03 | 3)           |                   |                       |         |           |                         |                                                     |                                                         |
|                                                                                 |           |              |                   |                       |         |           |                         | _                                                   | <u>i</u> ii                                             |
|                                                                                 |           |              |                   |                       |         |           |                         |                                                     | -1 -0.5 0 0.5 1<br>Favours Experimental Favours Control |

Figure Appendix-4a 3. Medications, and anaesthetic patch: Outcome pain at the longest follow-up

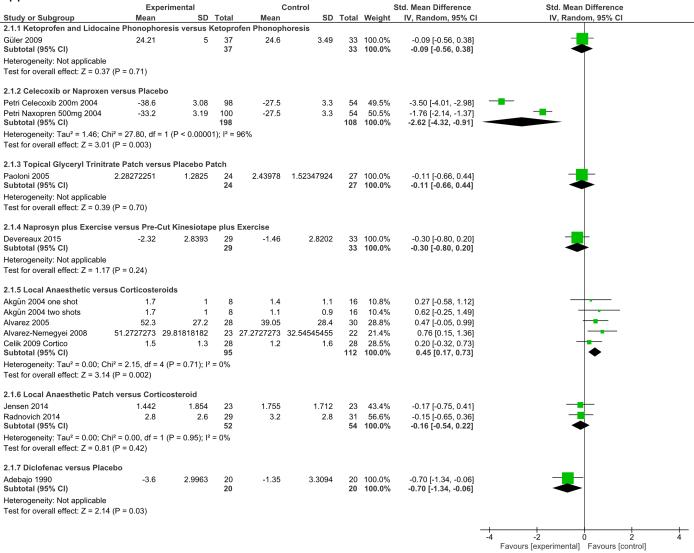



Figure Appendix-4a 4. Medications, and anaesthetic patch: Outcome pain at the shortest follow-up

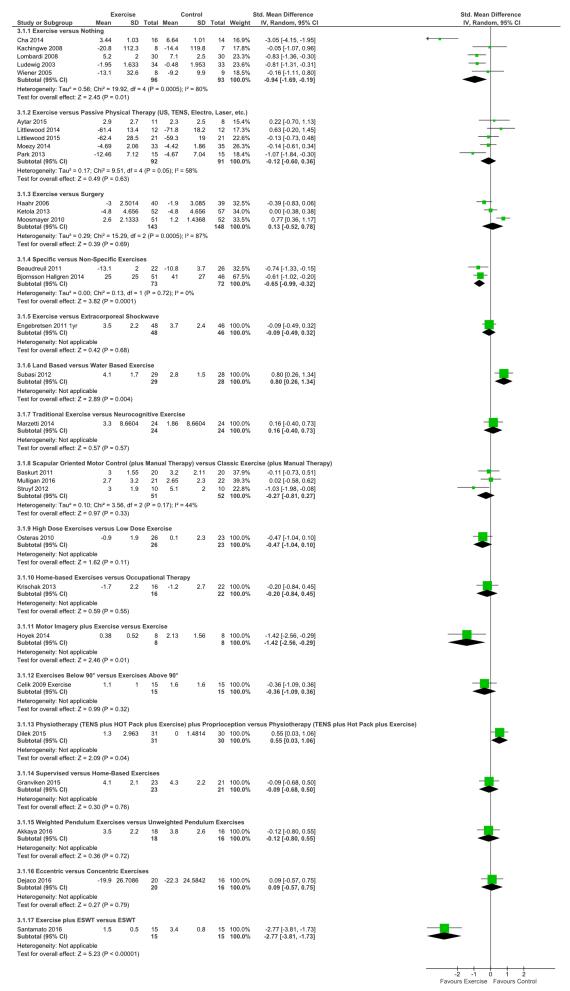



Figure Appendix-4a 5. Exercise: Outcome pain at the longest follow-up

| tudy or Subgroup                                                            | Exero<br>lean        | ores           | otal           |                                         | ontrol<br>SD            | Total    | S<br>Weight             | Std. Mean Difference<br>IV, Random, 95% CI   | Std. Mean Difference<br>IV, Random, 95% Cl |
|-----------------------------------------------------------------------------|----------------------|----------------|----------------|-----------------------------------------|-------------------------|----------|-------------------------|----------------------------------------------|--------------------------------------------|
| 1.1 Exercise versus No                                                      | othing               |                |                |                                         |                         |          |                         |                                              | IV, Kandom, 95% Cl                         |
|                                                                             |                      | 1.03<br>12.3   |                | 6.64<br>-14.4                           | 1.01<br>119.8           | 14<br>7  | 16.9%<br>17.8%          | -3.05 [-4.15, -1.95]<br>-0.05 [-1.07, 0.96]  | *                                          |
| ombardi 2008<br>udewig 2003                                                 | 5.2<br>1.95 1.0      | 2<br>5327      | 30<br>34       | 7.1<br>-0.48                            | 2.5<br>1.9532           | 30<br>33 | 23.3%<br>23.6%          | -0.83 [-1.36, -0.30]<br>-0.81 [-1.31, -0.31] |                                            |
| Viener 2005                                                                 |                      | 32.6           | 8              | -9.2                                    | 9.9                     | 9        | 18.5%                   | -0.16 [-1.11, 0.80]                          |                                            |
| ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.5                   | 6: Chi² = 1          | 9.92. df       | 96<br>f = 4 (F | P = 0.00                                | 05): l² = 8             |          | 100.0%                  | -0.94 [-1.69, -0.19]                         |                                            |
| est for overall effect: Z =                                                 |                      |                | ,              |                                         | ,,                      |          |                         |                                              |                                            |
| .1.2 Exercise versus Pa                                                     |                      |                |                |                                         |                         |          |                         |                                              |                                            |
|                                                                             | 61.4<br>52.9         | 13.4<br>19.1   |                | -71.8<br>-58.4                          | 18.2<br>15              | 12<br>33 | 21.2%<br>27.8%          | 0.63 [-0.20, 1.45]<br>0.32 [-0.20, 0.84]     |                                            |
| loezy 2014                                                                  | 4.69                 | 2.06           | 33             | -4.42                                   | 1.86                    | 35       | 28.7%                   | -0.14 [-0.61, 0.34]                          |                                            |
| ark 2013 -1<br>Subtotal (95% CI)                                            | 2.46                 | 7.12           | 15<br>86       | -4.67                                   | 7.04                    | 15<br>95 | 22.3%<br>100.0%         | -1.07 [-1.84, -0.30]<br>-0.05 [-0.66, 0.55]  |                                            |
| leterogeneity: Tau <sup>2</sup> = 0.2<br>est for overall effect: Z =        |                      |                | f = 3 (F       | P = 0.01                                | 0); l <sup>2</sup> = 74 | %        |                         |                                              |                                            |
|                                                                             |                      | 0.00)          |                |                                         |                         |          |                         |                                              |                                            |
| .1.3 Exercise versus Su<br>laahr 2006                                       | -3.1 3.              | 3992           | 43             | -2.8                                    | 3.8018                  | 41       | 32.0%                   | -0.08 [-0.51, 0.35]                          |                                            |
| etola 2009                                                                  |                      | 0866           | 66<br>51       |                                         | 7.0866                  | 68<br>52 | 35.1%<br>32.9%          | 0.06 [-0.28, 0.39]<br>0.77 [0.36, 1.17]      | _ <b>_</b>                                 |
| loosmayer 2010<br>Subtotal (95% CI)                                         | 2.6 2.               | 1333           | 160            | 1.2                                     | 1.4368                  |          | 32.9%<br>100.0%         | 0.25 [-0.25, 0.74]                           | -                                          |
| leterogeneity: Tau <sup>2</sup> = 0.1<br>est for overall effect: Z =        |                      |                | = 2 (P         | = 0.007                                 | ); I <sup>2</sup> = 80% | D        |                         |                                              |                                            |
|                                                                             |                      |                |                |                                         |                         |          |                         |                                              |                                            |
| .1.4 Specific versus No<br>eaudreuil 2011                                   | n-Specifi<br>12.2    | 2.8            | ises<br>30     | -9.9                                    | 2.9                     | 32       | 43.0%                   | -0.80 [-1.32, -0.28]                         | <b>_</b>                                   |
| lolmgren 2012                                                               | -36 31.              |                | 51             |                                         | 30.3068                 | 46       | 57.0%                   | -0.35 [-0.75, 0.05]                          |                                            |
| ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0                   | 4; Chi² = 1          | .78, df =      | 81<br>= 1 (P   | = 0.18):                                | l² = 44%                | 78       | 100.0%                  | -0.54 [-0.97, -0.11]                         |                                            |
| est for overall effect: Z =                                                 |                      |                |                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                         |          |                         |                                              |                                            |
| .1.5 Exercise versus Ra                                                     |                      |                |                |                                         |                         |          |                         |                                              |                                            |
| ngebretsen 2009<br>ubtotal (95% CI)                                         | 3.7                  | 2.2            | 52<br>52       | 4.1                                     | 2.6                     |          | 100.0%<br>100.0%        | -0.16 [-0.55, 0.22]<br>-0.16 [-0.55, 0.22]   |                                            |
| leterogeneity: Not applic                                                   |                      |                |                |                                         |                         |          | / /                     |                                              |                                            |
| est for overall effect: Z =                                                 | 0.84 (P =            | 0.40)          |                |                                         |                         |          |                         |                                              |                                            |
| .1.6 Land Based versus                                                      |                      |                |                |                                         |                         | ~~       | 100.001                 | 0.0010.00.1.5.7                              |                                            |
| ubasi 2012<br>Subtotal (95% CI)                                             | 4.1                  | 1.7            | 29<br>29       | 2.8                                     | 1.5                     |          | 100.0%<br><b>100.0%</b> | 0.80 [0.26, 1.34]<br>0.80 [0.26, 1.34]       |                                            |
| leterogeneity: Not applic<br>est for overall effect: Z =                    |                      | 0.0041         |                |                                         |                         |          |                         |                                              |                                            |
|                                                                             |                      |                |                |                                         |                         |          |                         |                                              |                                            |
| .1.7 Traditional Exercis<br>Iarzetti 2014                                   | e versus<br>3.73 3.4 |                | ogntiv<br>24   |                                         | cise<br>3.4995          | 24       | 100.0%                  | -0.10 [-0.67, 0.46]                          | <mark>_</mark>                             |
| ubtotal (95% CI)                                                            |                      | +550           | 24             | 4.1                                     | 0.4000                  |          | 100.0%                  | -0.10 [-0.67, 0.46]                          |                                            |
| leterogeneity: Not applic<br>est for overall effect: Z =                    |                      | 0.72)          |                |                                         |                         |          |                         |                                              |                                            |
| .1.8 Scapular Oriented                                                      |                      |                | lus M-         | anual T                                 | herany                  | erevie   | Classic                 | vercise (plus Mapuel                         | [herany]                                   |
| askurt 2011                                                                 | 3                    | 1.55           | 20             | 3.2                                     | 2.11                    | 20       | 37.9%                   | -0.11 [-0.73, 0.51]                          |                                            |
| 1ulligan 2016<br>truyf 2012                                                 | 2.7<br>3             | 3.2<br>1.9     | 21<br>10       | 2.65<br>5.1                             | 2.3<br>2                | 22<br>10 | 39.3%<br>22.8%          | 0.02 [-0.58, 0.62]<br>-1.03 [-1.98, -0.08]   |                                            |
| ubtotal (95% CI)                                                            |                      |                | 51             |                                         |                         |          | 100.0%                  | -0.27 [-0.81, 0.27]                          |                                            |
| leterogeneity: Tau <sup>2</sup> = 0.1<br>est for overall effect: Z =        |                      |                | = 2 (P         | = 0.17);                                | 1 <sup>2</sup> = 44%    |          |                         |                                              |                                            |
| .1.9 Home-based exerc                                                       |                      |                | instic         | nal Th-                                 | rany                    |          |                         |                                              |                                            |
| rischak 2013                                                                | ises vers<br>-1.7    | us Occu<br>2.2 | 16             | nal The<br>-1.2                         | erapy<br>2.7            |          | 100.0%                  | -0.20 [-0.84, 0.45]                          | — <b>—</b>                                 |
| ubtotal (95% CI)                                                            |                      |                | 16             |                                         |                         |          | 100.0%                  | -0.20 [-0.84, 0.45]                          |                                            |
| leterogeneity: Not applic<br>est for overall effect: Z =                    |                      | 0.55)          |                |                                         |                         |          |                         |                                              |                                            |
| .1.10 High Dose Exerci                                                      | ses versu            | s Low [        | Dose E         | Exercis                                 | e                       |          |                         |                                              |                                            |
| steras 2010                                                                 | -2.1                 | 1.1            | 29             | -2                                      | 2.3                     |          | 100.0%                  | -0.06 [-0.58, 0.47]                          |                                            |
| ubtotal (95% CI)<br>leterogeneity: Not applic                               | able                 |                | 29             |                                         |                         | 27       | 100.0%                  | -0.06 [-0.58, 0.47]                          |                                            |
| est for overall effect: Z =                                                 |                      | 0.84)          |                |                                         |                         |          |                         |                                              |                                            |
| .1.11 Motor Imagery pl                                                      | is Exercis           | se versu       |                |                                         |                         |          |                         |                                              | _                                          |
| loyek 2014<br>Subtotal (95% CI)                                             | 0.38                 | 0.52           | 8<br>8         | 2.13                                    | 1.56                    |          | 100.0%<br><b>100.0%</b> | -1.42 [-2.56, -0.29]<br>-1.42 [-2.56, -0.29] |                                            |
| leterogeneity: Not applic                                                   |                      |                | 0              |                                         |                         | 0        |                         |                                              |                                            |
| est for overall effect: Z =                                                 | 2.46 (P =            | 0.01)          |                |                                         |                         |          |                         |                                              |                                            |
| .1.12 Exercise Below 9                                                      |                      |                |                |                                         |                         |          |                         |                                              | _                                          |
| elik 2009 Exercise<br>subtotal (95% CI)                                     | 2.9                  | 1.7            | 15<br>15       | 4.1                                     | 1.6                     | 15<br>15 | 100.0%<br>100.0%        | -0.71 [-1.45, 0.03]<br>-0.71 [-1.45, 0.03]   |                                            |
| leterogeneity: Not applic                                                   |                      | 0.003          |                |                                         |                         |          |                         |                                              |                                            |
| est for overall effect: Z =                                                 |                      |                |                |                                         |                         |          |                         |                                              |                                            |
| .1.13 Physiotherapy (Tl<br>bilek 2015                                       |                      | HOT Pa<br>815  | ack plu<br>31  | us Exer<br>3                            | cise) plus<br>4.178     |          | rioception<br>100.0%    | o versus Physiotherap<br>-0.14 [-0.64, 0.36] | y (TENS plus HOT Pack plus Exercise)       |
| ubtotal (95% CI)                                                            |                      |                | 31             | 3                                       |                         |          | 100.0%                  | -0.14 [-0.64, 0.36]                          |                                            |
| leterogeneity: Not applic<br>est for overall effect: Z =                    |                      | 0.59)          |                |                                         |                         |          |                         |                                              |                                            |
|                                                                             |                      |                | vo *           |                                         |                         |          |                         |                                              |                                            |
| .1.14 Supervised versu<br>Granviken 2015                                    | s Home-E<br>4.1      | ased E<br>2.1  | xercis<br>23   | es<br>4.3                               | 2.2                     | 21       | 100.0%                  | -0.09 [-0.68, 0.50]                          | <b></b>                                    |
| ubtotal (95% CI)                                                            | hla                  |                | 23             | -                                       |                         | 21       | 100.0%                  | -0.09 [-0.68, 0.50]                          | -                                          |
| eterogeneity: Not applic<br>est for overall effect: Z =                     |                      | 0.76)          |                |                                         |                         |          |                         |                                              |                                            |
| 1.15 Weighted Pendul                                                        |                      |                | sus II         | Inweigh                                 | nted Pend               | ulum     | Exercises               |                                              |                                            |
| kkaya 2016                                                                  | 3.5                  | 2.2            | 18             | 3.8                                     | 2.6                     | 16       | 100.0%                  | -0.12 [-0.80, 0.55]                          | — <u>–</u>                                 |
| ubtotal (95% CI)<br>eterogeneity: Not applic                                | able                 |                | 18             |                                         |                         | 16       | 100.0%                  | -0.12 [-0.80, 0.55]                          |                                            |
| est for overall effect: Z =                                                 |                      | 0.72)          |                |                                         |                         |          |                         |                                              |                                            |
| .1.16 Eccentric versus                                                      | Concentr             | ic Exerc       | cise           |                                         |                         |          |                         |                                              |                                            |
| ejaco 2016                                                                  |                      | 13.5           | 19             | 18.9                                    | 15.8                    |          | 100.0%                  | -0.64 [-1.33, 0.06]                          | — <u> </u>                                 |
| ubtotal (95% CI)<br>leterogeneity: Not applic                               | able                 |                | 19             |                                         |                         | 15       | 100.0%                  | -0.64 [-1.33, 0.06]                          |                                            |
| est for overall effect: Z =                                                 |                      | 0.07)          |                |                                         |                         |          |                         |                                              |                                            |
| .1.17 Exercise plus ES                                                      | VT versu             | ESWT           |                |                                         |                         |          |                         |                                              |                                            |
| antamato 2016                                                               | 4.9                  | 1.3            | 15             | 5.1                                     | 0.9                     |          | 100.0%                  | -0.17 [-0.89, 0.54]                          |                                            |
|                                                                             |                      |                | 15             |                                         |                         | 15       | 100.0%                  | -0.17 [-0.89, 0.54]                          |                                            |
| ubtotal (95% CI)<br>leterogeneity: Not applic                               | able                 |                |                |                                         |                         |          |                         |                                              |                                            |
| ubtotal (95% CI)<br>eterogeneity: Not applic<br>est for overall effect: Z = |                      | 0.63)          |                |                                         |                         |          |                         |                                              |                                            |

Figure Appendix-4a 6. Exercise: Outcome pain at the shortest follow-up

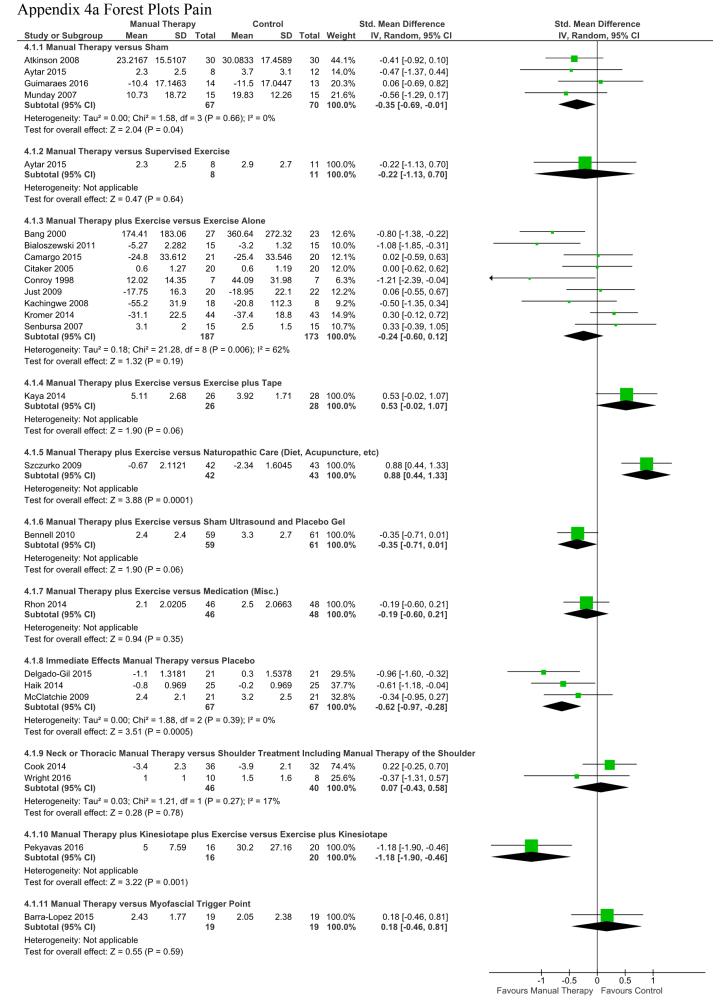



Figure Appendix-4a 7. Manual therapy: Outcome pain at the longest follow-up

| Appendix 4a | Forest | Plots | Pain |
|-------------|--------|-------|------|
|-------------|--------|-------|------|

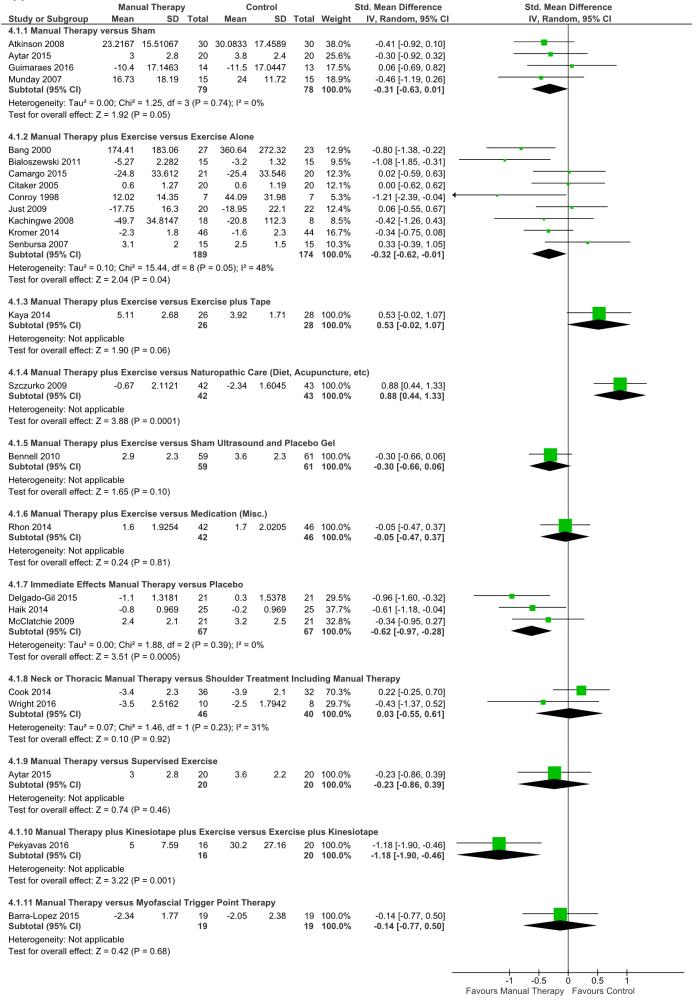



Figure Appendix-4a 8. Manual therapy: Outcome pain at the shortest follow-up

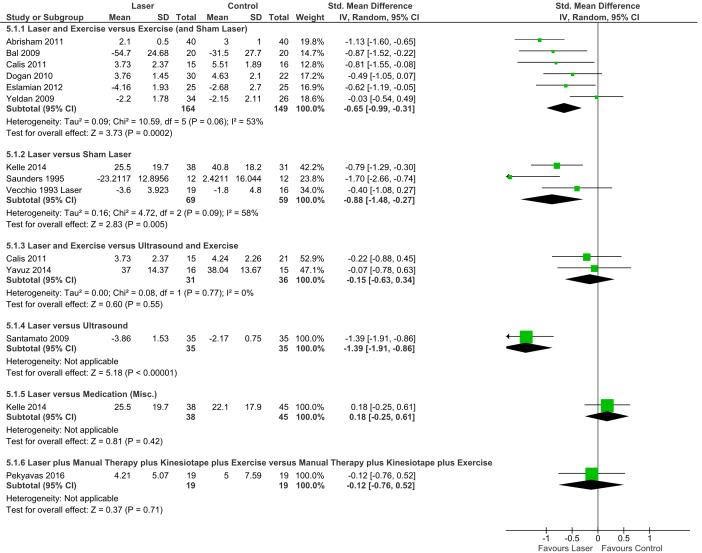



Figure Appendix-4a 9. Laser: Outcome pain at the longest follow-up

| 04                                                      |               | .aser          | T - 4 - 1        |             | Control       | <b>T</b> - 4 - 1 |                         | Std. Mean Difference                              | Std. Mean Difference |
|---------------------------------------------------------|---------------|----------------|------------------|-------------|---------------|------------------|-------------------------|---------------------------------------------------|----------------------|
| Study or Subgroup                                       | Mean          |                | Total            | Mean        | SD            | Total            | Weight                  | IV, Random, 95% Cl                                | IV, Random, 95% Cl   |
| 5.1.1 Laser and Exercis                                 |               |                |                  |             |               |                  |                         |                                                   |                      |
| Abrisham 2011                                           | 2.1           | 0.5            | 40               | 3           | 1             | 40               | 19.8%                   | -1.13 [-1.60, -0.65]                              |                      |
| Bal 2009                                                | -54.7         | 24.68          | 20               | -31.5       | 27.7          | 20               | 14.7%                   | -0.87 [-1.52, -0.22]                              |                      |
| Calis 2011                                              | 3.73          | 2.37           | 15               | 5.51        | 1.89          | 16               | 12.8%                   | -0.81 [-1.55, -0.08]                              |                      |
| Dogan 2010                                              | 3.76          | 1.45           | 30               | 4.63        | 2.1           | 22               | 17.2%                   | -0.49 [-1.05, 0.07]                               |                      |
| Eslamian 2012                                           | -4.16         | 1.93           | 25               | -2.68       | 2.7           | 25               | 16.9%                   | -0.62 [-1.19, -0.05]                              |                      |
| Yeldan 2009<br>Subtotal (95% CI)                        | -2.2          | 1.78           | 34<br><b>164</b> | -2.15       | 2.11          | 26<br>149        | 18.6%<br><b>100.0%</b>  | -0.03 [-0.54, 0.49]<br>-0.65 [-0.99, -0.31]       | ◆                    |
| Heterogeneity: Tau² = 0.<br>Test for overall effect: Z  | ,             | , ,            | 0.06); I         | ² = 53%     |               |                  |                         |                                                   |                      |
| 5.1.2 Laser versus Sha                                  | m Laser       |                |                  |             |               |                  |                         |                                                   |                      |
| Kelle 2014                                              | 32.6          | 17.6           | 38               | 43.3        | 17.6          | 31               | 41.8%                   | -0.60 [-1.09, -0.12]                              |                      |
| Saunders 1995 -                                         | 23.2116788    | 12.89556076    | 12               | 2.4210526   | 16.04426011   | 12               | 24.3%                   | -1.70 [-2.66, -0.74]                              |                      |
| Vecchio 1993 laser<br>Subtotal (95% CI)                 | -3.6          | 3.923          | 19<br><b>69</b>  | -1.8        | 4.8           | 16<br><b>59</b>  | 34.0%<br><b>100.0%</b>  | -0.40 [-1.08, 0.27]<br>-0.80 [-1.43, -0.17]       |                      |
| Heterogeneity: Tau² = 0.<br>Test for overall effect: Z  | ,             | · ·            | .08); l²         | = 61%       |               |                  |                         |                                                   |                      |
| 5.1.3 Laser and Exercis                                 | e versus Ultr | rasound and E  | xercis           | e           |               |                  |                         |                                                   |                      |
| Calis 2011                                              | 3.73          | 2.37           | 15               | 4.24        | 2.26          | 21               | 52.9%                   | -0.22 [-0.88, 0.45]                               |                      |
| Yavuz 2014<br>Subtotal (95% CI)                         | 39            | 14.29          | 16<br><b>31</b>  | 37.43       | 15.07         | 15<br><b>36</b>  | 47.1%<br><b>100.0%</b>  | 0.10 [-0.60, 0.81]<br>-0.07 [-0.55, 0.42]         |                      |
| Heterogeneity: Tau² = 0.<br>Test for overall effect: Z  | ,             | , <b>,</b>     | .52); l²         | = 0%        |               |                  |                         |                                                   |                      |
| 5.1.4 Laser versus Ultra                                | asound        |                |                  |             |               |                  |                         |                                                   |                      |
| Santamato 2009<br>Subtotal (95% CI)                     | -3.86         | 1.53           | 35<br><b>35</b>  | -2.17       | 0.75          |                  | 100.0%<br><b>100.0%</b> | -1.39 [-1.91, -0.86]<br>-1.39 [-1.91, -0.86]      |                      |
| Heterogeneity: Not applie<br>Test for overall effect: Z |               | 00001)         |                  |             |               |                  |                         |                                                   |                      |
| 5.1.5 Laser versus Med                                  | ication (misc | )              |                  |             |               |                  |                         |                                                   |                      |
| Kelle 2014<br>Subtotal (95% CI)                         | 25.5          | 19.7           | 38<br>38         | 22.1        | 17.9          |                  | 100.0%<br><b>100.0%</b> | 0.18 [-0.25, 0.61]<br>0.18 [-0.25, 0.61]          |                      |
| Heterogeneity: Not applie<br>Test for overall effect: Z |               | 42)            |                  |             |               |                  |                         | _ <b>4</b>                                        |                      |
|                                                         |               | ,              |                  |             |               |                  |                         |                                                   |                      |
| 5.1.6 Laser plus Manua                                  | l Therapy plu | ıs Kinesiotape | plus l           | Exercise ve | rsus Manual T | herapy           | plus Kin                | esiotape plus Exercise                            |                      |
| Pekyavas 2016<br>Subtotal (95% CI)                      | 4.21          | 5.07           | 19<br><b>19</b>  | 5           | 7.59          |                  | 100.0%<br><b>100.0%</b> | -0.12 [-0.76, 0.52]<br><b>-0.12 [-0.76, 0.52]</b> |                      |
| Heterogeneity: Not applie<br>Test for overall effect: Z |               | 71)            |                  |             |               |                  |                         | • · •                                             |                      |
|                                                         |               |                |                  |             |               |                  |                         |                                                   | -2 -1 0 1 2          |
|                                                         |               |                |                  |             |               |                  |                         |                                                   | -2 -1 0 1 2          |

Figure Appendix-4a 10. Laser: Outcome pain at the shortest follow-up

| Study or Subarous                                    | Ultrasound<br>Mean SD       |                 |                | Control         | Total    |                         | Std. Mean Difference                          | Std. Mean Difference<br>IV, Random, 95% Cl |
|------------------------------------------------------|-----------------------------|-----------------|----------------|-----------------|----------|-------------------------|-----------------------------------------------|--------------------------------------------|
| Study or Subgroup<br>5.1.1 Ultrasound versu          |                             |                 | Mean           | 5D              | Total    | Weight                  | IV, Random, 95% CI                            |                                            |
| Kurtais 2004                                         | 0.4 0.5                     | 17              | 0.6            | 0.4             | 16       | 32.7%                   | -0.43 [-1.12, 0.26]                           |                                            |
| Vykanen 1995<br>Subtotal (95% CI)                    | 13 5                        | 30<br>47        | 13             | 4               | 37       | 67.3%<br>100.0%         | 0.00 [-0.48, 0.48]<br>-0.14 [-0.54, 0.25]     |                                            |
| leterogeneity: Tau <sup>2</sup> = 0                  |                             | df = 1          | (P = 0.32      | 2); I² = 0%     |          | 100.070                 | -0.14 [-0.34, 0.23]                           |                                            |
| est for overall effect: Z                            | = 0.70 (P = 0.49            | 9)              |                |                 |          |                         |                                               |                                            |
| 3.1.2 Ultrasound plus<br>Calis 2011                  | Hotpack plus E<br>4.24 2.26 | xercise<br>21   | versus<br>5.51 | Hotpack<br>1.89 |          | Exercise<br>100.0%      | -0.59 [-1.25, 0.08]                           |                                            |
| Subtotal (95% CI)                                    | 4.24 2.20                   | 21              | 5.51           | 1.09            |          | 100.0%                  | -0.59 [-1.25, 0.08]                           |                                            |
| leterogeneity: Not appl<br>est for overall effect: Z |                             | 3)              |                |                 |          |                         |                                               |                                            |
| 5.1.3 Ultrasound versu                               | s Hyperthermia              | 1               |                |                 |          |                         |                                               |                                            |
| Giombini 2006                                        | 5.15 3.0138                 | 12              | 1.2            | 2.3572          | 14       | 100.0%                  | 1.43 [0.55, 2.31]                             |                                            |
| Subtotal (95% CI)                                    |                             | 12              |                |                 | 14       | 100.0%                  | 1.43 [0.55, 2.31]                             |                                            |
| leterogeneity: Not appl<br>est for overall effect: Z |                             | )1)             |                |                 |          |                         |                                               |                                            |
| 5.1.4 Ultrasound plus                                | Exercise versus             | Sham            | Ultraso        | ound and        | Exerc    | ise                     |                                               |                                            |
| San Segundo 2007                                     | -17.9 24.6                  | 17              | -24.2          | 24.2            | 17       | 40.3%                   | 0.25 [-0.42, 0.93]                            | - <u>+</u>                                 |
| /azmalar 2016<br>Subtotal (95% CI)                   | -30.23 21.16                | 26<br>43        | -30.33         | 18.31           | 24<br>41 | 59.7%<br>100.0%         | 0.00 [-0.55, 0.56]<br>0.10 [-0.32, 0.53]      |                                            |
| leterogeneity: Tau² = 0<br>est for overall effect: Z |                             | df = 1          | (P = 0.58      | 3); I² = 0%     |          | 100.070                 | 0.10 [ 0.02, 0.00]                            |                                            |
|                                                      |                             |                 | Pendul         | um Strat        | ching    | etc.)                   |                                               |                                            |
| 5.1.5 Ultrasound versı<br>Giombini 2006              | 5.15 3.0138                 | cises (<br>12   |                | 2.9186          | -        | eτc.)<br>100.0%         | 0.08 [-0.74, 0.90]                            | <b></b>                                    |
| Subtotal (95% CI)                                    | 0.10 0.0100                 | 12              | 1.5            |                 |          | 100.0%                  | 0.08 [-0.74, 0.90]                            |                                            |
| leterogeneity: Not appl<br>est for overall effect: Z |                             | 5)              |                |                 |          |                         |                                               |                                            |
| 6.1.6 Ultrasound plus                                |                             |                 | and Ev         | ercise          |          |                         |                                               |                                            |
| Calis 2011                                           | 4.24 2.26                   | 21 21           | 3.73           | 2.37            | 15       | 52.9%                   | 0.22 [-0.45, 0.88]                            | <b></b>                                    |
| avuz 2014                                            | 38.04 13.67                 | 15              | 37             | 14.37           | 16       | 47.1%                   | 0.07 [-0.63, 0.78]                            |                                            |
| Subtotal (95% CI)<br>leterogeneity: Tau² = 0         |                             |                 | (P = 0.7       | 7); l² = 0%     |          | 100.0%                  | 0.15 [-0.34, 0.63]                            |                                            |
| est for overall effect: Z                            | = 0.60 (P = 0.55            | 5)              |                |                 |          |                         |                                               |                                            |
| 5.1.7 Ultrasound versu                               | -                           |                 |                | 10              |          | 100.00/                 |                                               |                                            |
| lohansson 2005<br>Subtotal (95% Cl)                  | -85 14                      | 41<br><b>41</b> | -88            | 13              |          | 100.0%<br><b>100.0%</b> | 0.22 [-0.21, 0.65]<br>0.22 [-0.21, 0.65]      |                                            |
| leterogeneity: Not appl<br>est for overall effect: Z |                             |                 |                |                 |          |                         |                                               |                                            |
|                                                      |                             | /               |                |                 |          |                         |                                               |                                            |
| 5.1.8 Ultrasound versu<br>Santamato 2009             | -2.17 0.7569                | 35              | -3.86          | 1.5429          | 35       | 100.0%                  | 1.38 [0.85, 1.90]                             | — <b>—</b>                                 |
| Subtotal (95% CI)                                    |                             | 35              |                |                 |          | 100.0%                  | 1.38 [0.85, 1.90]                             |                                            |
| leterogeneity: Not appl<br>est for overall effect: Z |                             | 0001)           |                |                 |          |                         |                                               |                                            |
| 5.1.9 Long duration UI                               | rasound versu               | s Shor          | t Durati       | on Ultrae       | ound     |                         |                                               |                                            |
| /ildirim 2013                                        | 3.38 1.46                   | 50              | 5.2            | 1.26            | 50       | 100.0%                  | -1.32 [-1.76, -0.89]                          |                                            |
| Subtotal (95% CI)                                    | aabla                       | 50              |                |                 | 50       | 100.0%                  | -1.32 [-1.76, -0.89]                          |                                            |
| leterogeneity: Not appl<br>est for overall effect: Z |                             | 0001)           |                |                 |          |                         |                                               |                                            |
| 5.1.10 Ultrasound vers                               | us Myofascial <sup>-</sup>  | Frigger         | · Point T      | herapy          |          |                         |                                               |                                            |
| Al Dajah 2014<br>Subtotal (95% CI)                   | 5.23 0.72                   | 15<br><b>15</b> | 3.8            | 0.79            |          | 100.0%<br><b>100.0%</b> | 1.84 [0.97, 2.71]<br>1.84 [0.97, 2.71]        |                                            |
| leterogeneity: Not appl<br>est for overall effect: Z |                             |                 |                |                 | 15       | 100.0%                  | 1.04 [0.97, 2.71]                             |                                            |
|                                                      |                             | ,               | th Davi        | torrefe         |          |                         |                                               |                                            |
| 5.1.11 Ultrasound vers<br>Perez-Merino 2015          | -1.8 2.4963                 | sis wi<br>32    |                | 2.8202          |          | 100.0%                  | 0.07 [-0.41, 0.56]                            |                                            |
| Subtotal (95% CI)                                    |                             | 32              |                |                 |          | 100.0%                  | 0.07 [-0.41, 0.56]                            | <b>•</b>                                   |
| leterogeneity: Not appl<br>est for overall effect: Z |                             | <b>'</b> )      |                |                 |          |                         |                                               |                                            |
| 5.1.12 Ultrasound vers                               | us lontophores              | is with         | Dexket         | oprofen         |          |                         |                                               | L                                          |
| Perez-Merino 2015                                    | -1.8 2.4963                 | 32              | -2.3           | 2.866           |          | 100.0%                  | 0.18 [-0.30, 0.67]                            |                                            |
| Subtotal (95% CI)<br>leterogeneity: Not appl         |                             | 32              |                |                 | 34       | 100.0%                  | 0.18 [-0.30, 0.67]                            |                                            |
| est for overall effect: Z                            | = 0.74 (P = 0.46            | 5)              |                |                 |          |                         |                                               |                                            |
| 5.1.13 Ultrasound vers                               | -                           |                 |                |                 |          |                         |                                               |                                            |
| Bansal 2011<br>Subtotal (95% CI)                     | -3.55 0.887                 | 20<br><b>20</b> | -4.4           | 1.1877          |          | 100.0%<br><b>100.0%</b> | 0.79 [0.15, 1.44]<br><b>0.79 [0.15, 1.44]</b> |                                            |
| leterogeneity: Not appl                              | cable                       | 20              |                |                 | 20       | //                      |                                               |                                            |
| est for overall effect: Z                            |                             | 2)              |                |                 |          |                         |                                               |                                            |
|                                                      |                             |                 |                |                 |          |                         |                                               |                                            |

Figure Appendix-4a 11. Ultrasound: Outcome pain at the longest follow-up

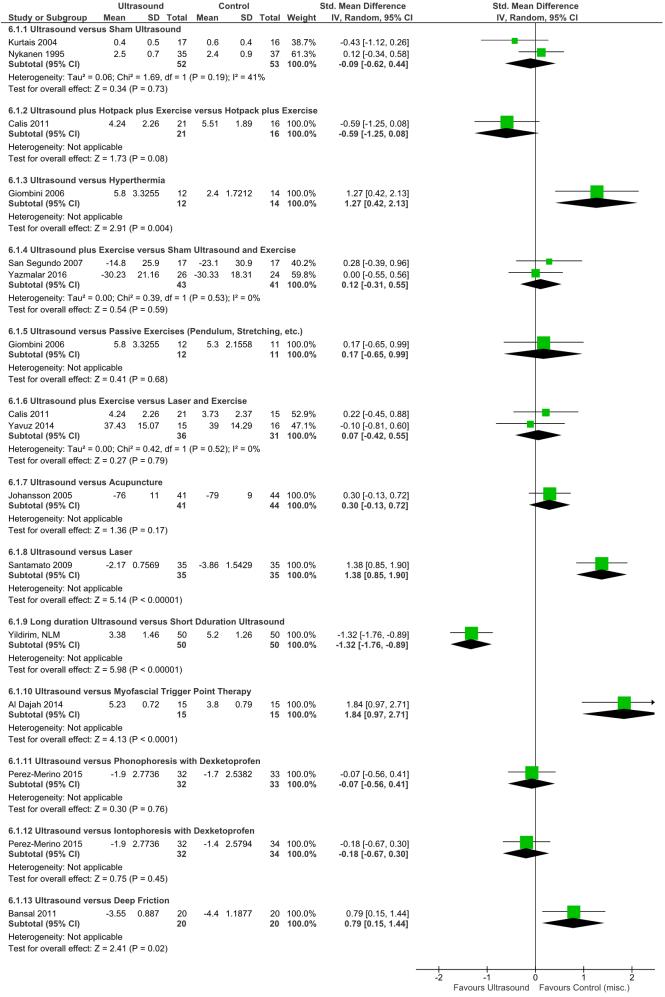



Figure Appendix-4a 12. Ultrasound: Outcome pain at the shortest follow-up

| Appendix 4a | Forest Plots Pain |
|-------------|-------------------|
|-------------|-------------------|

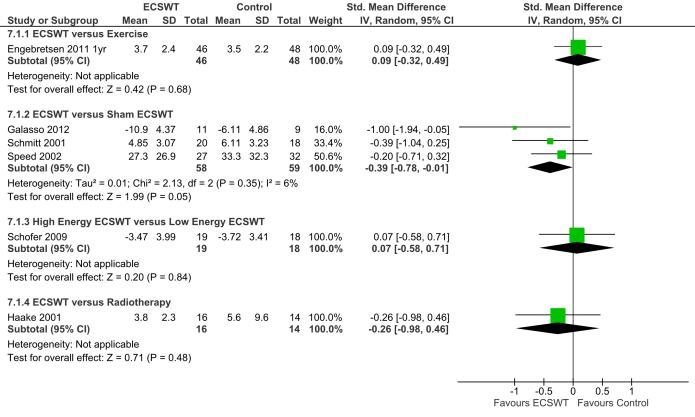
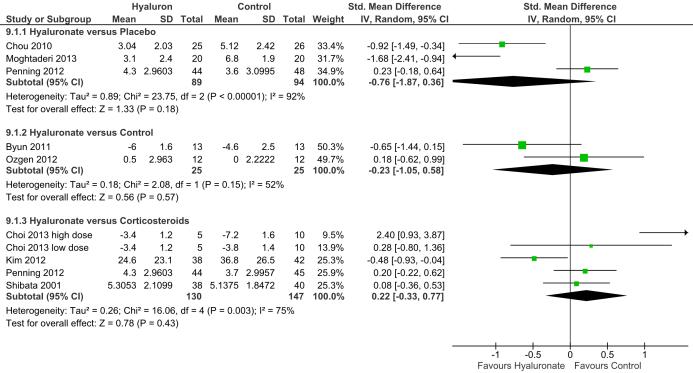



Figure Appendix-4a 13. Extracorporeal shockwave therapy (ECSWT): Outcome pain at the longest follow-up

|                                                       | E           | CSWT    |                 | С         | ontrol   |                 | 5                       | Std. Mean Difference                                 | Std. Mean Difference          |
|-------------------------------------------------------|-------------|---------|-----------------|-----------|----------|-----------------|-------------------------|------------------------------------------------------|-------------------------------|
| Study or Subgroup                                     | Mean        | SD      | Total           | Mean      | SD       | Total           | Weight                  | IV, Random, 95% Cl                                   | IV, Random, 95% Cl            |
| 7.1.1 ECSWT versus E                                  | Exercise    |         |                 |           |          |                 |                         |                                                      |                               |
| Engebretsen 2011 1yr<br>Subtotal (95% CI)             | 3.7         | 2.4     | 46<br><b>46</b> | 3.5       | 2.2      | 48<br><b>48</b> | 100.0%<br><b>100.0%</b> | 0.09 [-0.32, 0.49]<br><b>0.09 [-0.32, 0.49]</b>      |                               |
| Heterogeneity: Not app                                | licable     |         |                 |           |          |                 |                         |                                                      |                               |
| Test for overall effect: Z                            | z = 0.42 (I | ⊃ = 0.6 | 68)             |           |          |                 |                         |                                                      |                               |
| 7.1.2 ECSWT versus S                                  | Sham EC     | SWT     |                 |           |          |                 |                         |                                                      |                               |
| Galasso 2012                                          | -8.18       |         | 11              | -4.44     | 3.9      | 9               | 20.8%                   | -0.99 [-1.94, -0.05]                                 |                               |
| Schmitt 2001                                          | -0.18       |         | 19              | -4.44     | 2.8      | 18              | 20.8 %<br>34.2%         | 0.01 [-0.64, 0.65]                                   | - <u> </u>                    |
| Speed 2002                                            |             | 28.2    | 30              |           | 31.8     | 35              | 45.0%                   | -0.04 [-0.53, 0.45]                                  | _ <b>_</b>                    |
| Subtotal (95% CI)                                     | 00.1        | 20.2    | 60              | 00.0      | 01.0     | 62              |                         | -0.22 [-0.72, 0.28]                                  |                               |
| Heterogeneity: Tau² = (<br>Test for overall effect: Z | ,           |         | '               | 2 (P = 0. | .18); l² | = 42%           |                         |                                                      |                               |
| 7.1.3 High Energy EC                                  | SWT vers    | sus Lo  | w Ene           | rgy EC    | SWT      |                 |                         |                                                      |                               |
| Schofer 2009<br>Subtotal (95% CI)                     | -2.37       | 3.5     | 19<br><b>19</b> | -3.2      | 2.51     |                 | 100.0%<br><b>100.0%</b> | 0.27 [-0.38, 0.91]<br><b>0.27 [-0.38, 0.91]</b>      |                               |
| Heterogeneity: Not app<br>Test for overall effect: Z  |             | ⊃ = 0.4 | 12)             |           |          |                 |                         |                                                      |                               |
| 7.1.4 ECSWT versus F                                  | Radiothe    | apv     |                 |           |          |                 |                         |                                                      |                               |
| Haake 2001<br>Subtotal (95% CI)                       | 4.5         | 1.8     | 16<br><b>16</b> | 6.4       | 2.2      |                 | 100.0%<br><b>100.0%</b> | -0.93 [-1.69, -0.17]<br>- <b>0.93 [-1.69, -0.17]</b> |                               |
| Heterogeneity: Not app<br>Test for overall effect: Z  |             | ⊃ = 0.( | 02)             |           |          |                 |                         |                                                      |                               |
|                                                       |             |         |                 |           |          |                 |                         |                                                      |                               |
|                                                       |             |         |                 |           |          |                 |                         |                                                      | -2 -1 0 1 2                   |
|                                                       |             |         |                 |           |          |                 |                         |                                                      | Favours ECSWT Favours Control |


Figure Appendix-4a 14. Extracorporeal shockwave therapy (ECSWT): Outcome pain at the shortest follow-up

|                                                               |                 | Таре            |                 |              | Control                 |          |                         | Std. Mean Difference                            | Std. Mean Difference                            |
|---------------------------------------------------------------|-----------------|-----------------|-----------------|--------------|-------------------------|----------|-------------------------|-------------------------------------------------|-------------------------------------------------|
| <u>Study or Subgroup</u><br>8.1.1 Tape plus Exerc             | Mean            |                 | Total           |              |                         |          | Weight                  | IV, Random, 95% CI                              | IV, Random, 95% Cl                              |
|                                                               | 30              | 22.2            | 30              | y (mei<br>40 | 18.5                    |          | 27.3%                   | 0 49 [ 1 02 0 06]                               |                                                 |
| Kaya 2011<br>Kaya 2014                                        | 3.92            | 1.71            | 30<br>28        | 40<br>5.11   | 2.68                    | 25<br>26 | 27.3%                   | -0.48 [-1.02, 0.06]<br>-0.53 [-1.07, 0.02]      |                                                 |
| Miller 2009                                                   |                 | 17.5556         | 20              |              | 29.6296                 | 11       | 20.9%                   | -0.07 [-1.06, 0.93]                             |                                                 |
| Pekyavas 2016                                                 | 30.2            | 27.16           | 20              | 4            | 4.7                     | 15       | 20.9 <i>%</i><br>24.6%  | 1.23 [0.49, 1.96]                               | <b>_</b>                                        |
| Subtotal (95% CI)                                             | 50.2            | 27.10           | 84              | 4            | 4.7                     |          | 100.0%                  | 0.01 [-0.78, 0.81]                              |                                                 |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: |                 |                 | df = 3 (        | P = 0.0      | 0008); l² =             | 82%      |                         |                                                 |                                                 |
| 8.1.3 Tape and Exerc                                          | ise vers        | us Cortico      | steroi          | ls and       | Exercise                | •        |                         |                                                 |                                                 |
| Göksu 2015                                                    | 41.66           | 20.18           |                 | 35.48        | 19.46                   | 31       | 46.3%                   | 0.31 [-0.20, 0.81]                              |                                                 |
| Subasi 2014                                                   | 2.8             | 1.8             | 35              | 2.7          | 2.3                     | 35       | 53.7%                   | 0.05 [-0.42, 0.52]                              |                                                 |
| Subtotal (95% CI)                                             |                 |                 | 65              |              |                         | 66       | 100.0%                  | 0.17 [-0.18, 0.51]                              |                                                 |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: |                 |                 | ``              | 9 = 0.46     | 6); I <sup>2</sup> = 0% | )        |                         |                                                 |                                                 |
| 8.1.4 Pre-Cut Kinesic                                         | tape plu        | s Exercis       | e versu         | s NSA        | ID plus E               | xercis   | е                       |                                                 |                                                 |
| Devereaux 2015                                                | -1.46           | 2.8202          |                 | -2.32        | 2.8393                  |          | 100.0%                  | 0.30 [-0.20, 0.80]                              |                                                 |
| Subtotal (95% CI)                                             |                 |                 | 33              |              |                         | 29       | 100.0%                  | 0.30 [-0.20, 0.80]                              |                                                 |
| Heterogeneity: Not ap<br>Test for overall effect:             |                 | (P = 0.24)      |                 |              |                         |          |                         |                                                 |                                                 |
| 8.1.5 Pre-Cut Kinesic                                         | tape plu        | s Exercis       | e versı         | s Exe        | rcise only              | /        |                         |                                                 |                                                 |
| Devereaux 2015<br>Subtotal (95% CI)                           | -1.46           | 2.8202          | 33<br><b>33</b> | -1.8         | 3.0119                  |          | 100.0%<br><b>100.0%</b> | 0.11 [-0.35, 0.58]<br><b>0.11 [-0.35, 0.58]</b> |                                                 |
| Heterogeneity: Not ap<br>Test for overall effect:             |                 | (P = 0.63)      |                 |              |                         |          |                         |                                                 |                                                 |
| 8.1.6 Kinesiotape plu                                         | s NSAID         | versus C        | orticos         | teroid       | plus NS/                | AID      |                         |                                                 |                                                 |
| Sahin 2016<br>Subtotal (95% CI)                               | -6.6            | 1.7             | 33<br><b>33</b> | -6.6         | 2                       |          | 100.0%<br><b>100.0%</b> | 0.00 [-0.48, 0.48]<br><b>0.00 [-0.48, 0.48]</b> |                                                 |
| Heterogeneity: Not ap<br>Test for overall effect:             |                 | (P = 1.00)      |                 |              |                         |          |                         |                                                 |                                                 |
|                                                               |                 | ,               |                 |              |                         |          |                         |                                                 |                                                 |
| 8.1.7 Kinesiotape plu<br>Sahin 2016                           | s NSAID<br>-6.6 | versus N<br>1.7 | SAID<br>33      | -5.1         | 1.9                     | 22       | 100.0%                  | 0 82 [ 1 22 0 22]                               |                                                 |
| Subtotal (95% CI)                                             | -0.0            | 1.7             | 33              | -5.1         | 1.9                     |          | 100.0%                  | -0.82 [-1.33, -0.32]<br>-0.82 [-1.33, -0.32]    |                                                 |
| Heterogeneity: Not ap                                         | olicable        |                 |                 |              |                         |          |                         |                                                 |                                                 |
| Test for overall effect:                                      |                 | (P = 0.001      | )               |              |                         |          |                         |                                                 |                                                 |
|                                                               |                 |                 |                 |              |                         |          |                         |                                                 |                                                 |
|                                                               |                 |                 |                 |              |                         |          |                         | -                                               | -1 -0.5 0 0.5 1<br>Favours Tape Favours Control |
|                                                               |                 |                 |                 |              |                         | S        | td. Mean                | Difference                                      | Std. Mean Difference                            |
| Study or Subgroup                                             | Std.            | Mean Dif        |                 |              | SE We                   |          |                         | dom, 95% Cl                                     | IV, Random, 95% Cl                              |
| Kocyigit 2016                                                 |                 |                 |                 | 2 0.3        |                         | .1%      |                         | [-1.24, -0.00]                                  |                                                 |
| Lewis 2005                                                    |                 |                 | -0.             |              |                         | .3%      |                         | [-0.79, -0.01]                                  |                                                 |
| Shakeri 2013                                                  |                 |                 |                 | 2 0.4        |                         | .8%      |                         | [-2.69, -0.95]                                  | —                                               |
| Thelen 2008                                                   |                 |                 |                 | 6 0.3        |                         | .5%      |                         | [-0.44, 0.76]                                   |                                                 |
| Şimşek 2013                                                   |                 |                 | -0.8            | 3 0.3        | 418 19                  | .2%      | -0.83                   | [-1.50, -0.16]                                  |                                                 |
| Total (95% CI)                                                |                 |                 |                 |              | 100                     | .0%      | -0.64                   | -1.16, -0.12]                                   |                                                 |
| Heterogeneity: Tau <sup>2</sup>                               | - 0 25. 4       | 2hi2 - 14       | 70 Af -         | A /D         |                         |          |                         |                                                 |                                                 |
| notorogeneity. rau                                            | - 0.20, (       | Jin - 14.       | 79, ui -<br>02) |              | - 0.000),               | 13       |                         |                                                 | -1 -0.5 0 0.5 1                                 |

Figure Appendix-4a 15. Tape: Outcome pain at the longest follow-up

|                                                               |                      | Таре                  | <b>-</b>        |          | Control                             |         |                         | Std. Mean Difference                            | Std. Mean Difference         |
|---------------------------------------------------------------|----------------------|-----------------------|-----------------|----------|-------------------------------------|---------|-------------------------|-------------------------------------------------|------------------------------|
| Study or Subgroup<br>8.1.1 Tape plus Exerc                    | Mean                 |                       |                 | Mean     |                                     |         | Weight                  | IV, Random, 95% CI                              | IV, Random, 95% CI           |
| Kaya 2011                                                     | 30 30                | 22.2                  | 30              | 40 40    | 18.5                                | ,       | 27.3%                   | -0.48 [-1.02, 0.06]                             | <b>_</b> _                   |
| Kaya 2014                                                     | 3.92                 | 1.71                  | 28              | 5.11     | 2.68                                |         | 27.2%                   | -0.53 [-1.07, 0.02]                             | _ <b>_</b>                   |
| Miller 2009                                                   |                      | 12.0741               | 6               |          | 36.4444                             |         | 20.8%                   | -0.62 [-1.64, 0.40]                             |                              |
| Pekyavas 2016                                                 | 30.2                 | 27.16                 | 20              | 4        | 4.7                                 |         | 24.7%                   | 1.23 [0.49, 1.96]                               |                              |
| Subtotal (95% CI)                                             | 00.2                 | 21.10                 | 84              | •        |                                     |         | 100.0%                  | -0.10 [-0.91, 0.72]                             |                              |
| Heterogeneity: Tau² =<br>Test for overall effect:             |                      | ,                     | df = 3          | (P = 0.0 | 0006); I²                           | = 83%   |                         |                                                 |                              |
| 8.1.3 Tape and Exerc                                          | ise vers             | us Cortico            | steroi          | ds and   | Exercis                             | е       |                         |                                                 |                              |
| Göksu 2015                                                    | 46                   | 19.22                 |                 | 41.61    | 17.9                                | 31      | 46.4%                   | 0.23 [-0.27, 0.74]                              | - <b>+</b>                   |
| Subasi 2014                                                   | 3.83                 | 1.9                   | 35              | 4        | 1.8                                 |         | 53.6%                   | -0.09 [-0.56, 0.38]                             |                              |
| Subtotal (95% CI)                                             |                      |                       | 65              |          |                                     |         | 100.0%                  | 0.06 [-0.28, 0.40]                              | <b>•</b>                     |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: | -                    |                       | f = 1 (I        | 5 = 0.36 | 6); I <sup>2</sup> = 0 <sup>4</sup> | %       |                         |                                                 |                              |
| 8.1.4 Pre-Cut Kinesic                                         | tape plu             | s Exercis             | e vers          | us NSA   | ID plus                             | Exercis | е                       |                                                 |                              |
| Devereaux 2015                                                | -1.46                | 2.8202                |                 | -2.32    | 2.8393                              |         | 100.0%                  | 0.30 [-0.20, 0.80]                              |                              |
| Subtotal (95% CI)                                             | aliaatta             |                       | 33              |          |                                     | 29      | 100.0%                  | 0.30 [-0.20, 0.80]                              |                              |
| Heterogeneity: Not ap<br>Test for overall effect:             |                      | (P = 0.24)            |                 |          |                                     |         |                         |                                                 |                              |
| 8.1.5 Pre-Cut Kinesic                                         |                      |                       |                 |          |                                     | -       |                         |                                                 |                              |
| Devereaux 2015<br>Subtotal (95% Cl)                           | -1.46                | 2.8202                | 33<br><b>33</b> | -1.8     | 3.0119                              |         | 100.0%<br><b>100.0%</b> | 0.11 [-0.35, 0.58]<br><b>0.11 [-0.35, 0.58]</b> |                              |
| Heterogeneity: Not ap<br>Test for overall effect:             |                      | (P = 0.63)            |                 |          |                                     |         |                         |                                                 |                              |
| 8.1.6 Kinesiotape plu                                         |                      |                       |                 |          | •                                   |         |                         |                                                 |                              |
| Sahin 2016<br>Subtotal (95% CI)                               | -6.6                 | 1.7                   | 33<br><b>33</b> | -6.6     | 2                                   |         | 100.0%<br><b>100.0%</b> | 0.00 [-0.48, 0.48]<br><b>0.00 [-0.48, 0.48]</b> |                              |
| Heterogeneity: Not ap<br>Test for overall effect:             |                      | (P = 1.00)            |                 |          |                                     |         |                         |                                                 |                              |
| 8.1.7 Kinesiotape plu                                         | s NSAID              | versus N              | SAID            |          |                                     |         |                         |                                                 | _                            |
| Sahin 2016                                                    | -6.6                 | 1.7                   | 33<br><b>33</b> | -5.1     | 1.9                                 |         | 100.0%<br><b>100.0%</b> | -0.82 [-1.33, -0.32]                            |                              |
| Subtotal (95% CI)                                             | aliaabla             |                       | 33              |          |                                     | 33      | 100.0%                  | -0.82 [-1.33, -0.32]                            |                              |
| Heterogeneity: Not ap<br>Test for overall effect:             |                      | (P = 0.001            | )               |          |                                     |         |                         |                                                 |                              |
|                                                               |                      |                       |                 |          |                                     |         |                         |                                                 |                              |
|                                                               |                      |                       |                 |          |                                     |         |                         |                                                 |                              |
|                                                               |                      |                       |                 |          |                                     |         |                         |                                                 | Favours Tape Favours Control |
| Study on Such and                                             |                      | Marin                 |                 |          | 05                                  | \A/!    |                         | ean Difference                                  | Std. Mean Difference         |
| Study or Subgroup                                             | o Std                | l. Mean D             |                 |          |                                     | Weight  |                         | Random, 95% Cl                                  | IV, Random, 95% CI           |
| Kocyigit 2016                                                 |                      |                       |                 | 0.13 0   |                                     | 20.4%   |                         | .13 [-0.47, 0.73]                               |                              |
| Lewis 2005                                                    |                      |                       |                 | -0.4     | 0.2                                 | 23.5%   |                         | 40 [-0.79, -0.01]                               |                              |
| Shakeri 2013                                                  |                      |                       |                 | 1.82 0   |                                     | 16.3%   |                         | 82 [-2.69, -0.95]                               | <b>e</b>                     |
| Thelen 2008                                                   |                      |                       | (               | 0.16 0   | .3061                               | 20.4%   |                         | .16 [-0.44, 0.76]                               |                              |
| Şimşek 2013                                                   |                      |                       | -(              | 0.83 0   | .3418                               | 19.3%   | -0.                     | 83 [-1.50, -0.16]                               |                              |
| Total (95% CI)                                                |                      |                       |                 |          |                                     | 100.0%  | <b>-0</b> .             | 49 [-1.06, 0.08]                                |                              |
| 10tal (3370 CI)                                               |                      |                       |                 |          |                                     |         |                         |                                                 |                              |
| Heterogeneity: Tau                                            | <sup>2</sup> = 0.32: | Chi <sup>2</sup> = 18 | 3.15. c         | f = 4 (  |                                     |         | 78%                     |                                                 | -2 -1 0 1 2                  |

Figure Appendix-4a 16. Tape: Outcome pain at the shortest follow-up



### Figure Appendix-4a 17. Hyaluronate: Outcome pain at the longest follow-up

|                                   |                        | Hyaluron         |        |                        | Control    |       |        | Std. Mean Difference | Std. Mean Difference                   |
|-----------------------------------|------------------------|------------------|--------|------------------------|------------|-------|--------|----------------------|----------------------------------------|
| Study or Subgroup                 | Mean                   | SD               | Total  | Mean                   | SD         | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                     |
| 9.1.1 Hyaluronate ver             | rsus Plac              | ebo              |        |                        |            |       |        |                      |                                        |
| Chou 2010                         | 4.2                    | 1.76             | 25     | 4.77                   | 1.75       | 26    | 32.9%  | -0.32 [-0.87, 0.23]  |                                        |
| Moghtaderi 2013                   | 6.8                    | 1.5              | 20     | 8.2                    | 1.2        | 20    | 30.2%  | -1.01 [-1.67, -0.35] | <b>_</b>                               |
| Penning 2012                      | 5.8                    | 2.7852           | 49     | 5.2                    | 2.5894     | 55    | 36.9%  | 0.22 [-0.16, 0.61]   |                                        |
| Subtotal (95% CI)                 |                        |                  | 94     |                        |            | 101   | 100.0% | -0.33 [-1.02, 0.36]  |                                        |
| Heterogeneity: Tau <sup>2</sup> = | 0.30; Chi <sup>2</sup> | ² = 10.41, df =  | 2 (P = | 0.005); l <sup>a</sup> | ² = 81%    |       |        |                      |                                        |
| Test for overall effect:          | Z = 0.93 (             | (P = 0.35)       |        |                        |            |       |        |                      |                                        |
| 9.1.2 Hyaluronate vei             | rsus Con               | trol             |        |                        |            |       |        |                      |                                        |
| Byun 2011                         | -6                     | 1.6              | 13     | -4.6                   | 2.5        | 13    | 50.3%  | -0.65 [-1.44, 0.15]  |                                        |
| Ozgen 2012                        | 0.5                    | 2.96296296       | 12     | 0                      | 2.22222222 | 12    | 49.7%  | 0.18 [-0.62, 0.99]   |                                        |
| Subtotal (95% CI)                 |                        |                  | 25     |                        |            | 25    | 100.0% | -0.23 [-1.05, 0.58]  |                                        |
| Heterogeneity: Tau <sup>2</sup> = | 0.18; Chi <sup>2</sup> | ² = 2.08, df = 1 | (P = 0 | .15); l² =             | 52%        |       |        |                      |                                        |
| Test for overall effect:          | Z = 0.56 (             | (P = 0.57)       |        |                        |            |       |        |                      |                                        |
| 9.1.3 Hyaluronate vei             | rsus Cort              | icosteroids      |        |                        |            |       |        |                      |                                        |
| Choi 2013 high Dose               | -3.4                   | 1.2              | 5      | -7.2                   | 1.6        | 10    | 12.4%  | 2.40 [0.93, 3.87]    | │                                      |
| Choi 2013 low Dose                | -3.4                   | 1.2              | 5      | -3.8                   | 1.4        | 10    | 16.3%  | 0.28 [-0.80, 1.36]   |                                        |
| Kim 2012                          | 31.2                   | 20.4             | 38     | 46.8                   | 20.9       | 42    | 23.6%  | -0.75 [-1.20, -0.29] | <b>_</b>                               |
| Penning 2012                      | 5.8                    | 2.7852           | 49     | 4.2                    | 2.8735     | 52    | 24.1%  | 0.56 [0.16, 0.96]    | <b>→</b>                               |
| Shibata 2001                      | 5.3053                 | 2.1099           | 38     | 5.1375                 | 1.8472     | 40    | 23.7%  | 0.08 [-0.36, 0.53]   |                                        |
| Subtotal (95% CI)                 |                        |                  | 135    |                        |            | 154   | 100.0% | 0.32 [-0.39, 1.03]   |                                        |
| Heterogeneity: Tau <sup>2</sup> = | 0.50; Chi <sup>2</sup> | ² = 28.07, df =  | 4 (P < | 0.0001);               | l² = 86%   |       |        |                      |                                        |
| Test for overall effect:          | Z = 0.89 (             | (P = 0.38)       |        |                        |            |       |        |                      |                                        |
|                                   |                        |                  |        |                        |            |       |        |                      |                                        |
|                                   |                        |                  |        |                        |            |       |        |                      | -+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ |
|                                   |                        |                  |        |                        |            |       |        |                      | Favours Hyalunorate Favours Control    |
|                                   |                        |                  |        |                        |            |       |        |                      |                                        |

Figure Appendix-4a 18. Hyaluronate: Outcome pain at the shortest follow-up

|                                    | Exp       | erimenta  | al    | C                      | ontrol   |       |        | Std. Mean Difference | Std. Mean Difference         |
|------------------------------------|-----------|-----------|-------|------------------------|----------|-------|--------|----------------------|------------------------------|
| Study or Subgroup                  | Mean      | SD        | Total | Mean                   | SD       | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI           |
| 10.1.1 PEMF versus                 | Sham PE   | MF        |       |                        |          |       |        |                      |                              |
| Aktas 2007                         | 2.7       | 2.51      | 20    | 2.75                   | 2.22     | 20    | 35.1%  | -0.02 [-0.64, 0.60]  |                              |
| Ammer 1991                         | 4         | 0.592     | 12    | 3                      | 0.592    | 10    | 28.4%  | 1.63 [0.63, 2.62]    |                              |
| de Freitas 2013                    | 4.8       | 2.4       | 26    | 6                      | 4.9      | 30    | 36.6%  | -0.30 [-0.83, 0.23]  |                              |
| Subtotal (95% CI)                  |           |           | 58    |                        |          | 60    | 100.0% | 0.34 [-0.60, 1.29]   |                              |
| 10.1.2 Long duration<br>Chard 1988 | (8h) vers |           |       | tion (2h)  <br>-0.1743 |          | 24    | 100.0% | -0.06 [-0.66, 0.54]  |                              |
|                                    | -0.233    | 1.0157    |       | -0.1743                | 0.85395  |       |        | -0.06 [-0.66, 0.54]  |                              |
| Subtotal (95% CI)                  |           |           | 19    |                        |          | 24    | 100.0% | -0.06 [-0.66, 0.54]  |                              |
| Heterogeneity: Not ap              |           |           |       |                        |          |       |        |                      |                              |
| Test for overall effect:           | Z = 0.20  | (P = 0.84 | 4)    |                        |          |       |        |                      |                              |
|                                    |           |           |       |                        |          |       |        | _                    |                              |
|                                    |           |           |       |                        |          |       |        |                      | -1 -0.5 0 0.5 1              |
| Toot for subgroup diffs            |           |           |       |                        | o) 10 of | .,    |        |                      | Favours PEMF Favours Control |

Test for subgroup differences: Chi<sup>2</sup> = 0.50, df = 1 (P = 0.48), l<sup>2</sup> = 0% Figure Appendix-4a 19. PEMF: Outcome pain at the longest follow-up

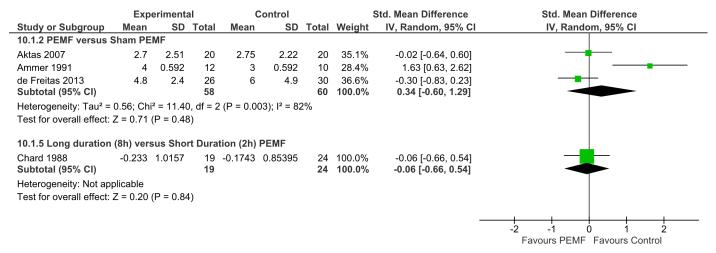



Figure Appendix-4a 20. PEMF: Outcome pain at the shortest follow-up

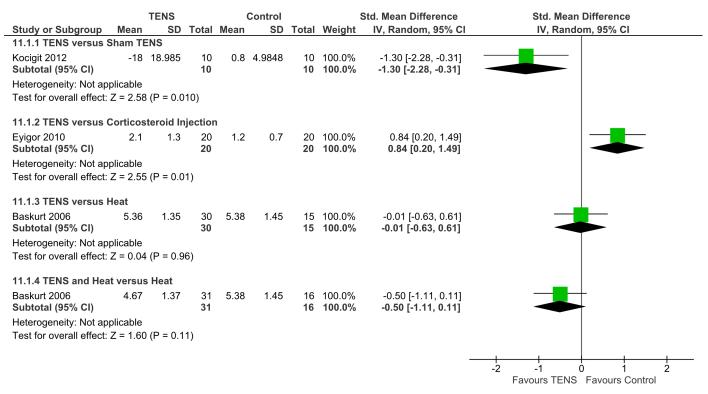



Figure Appendix-4a 21. TENS: Outcome pain at the longest follow-up

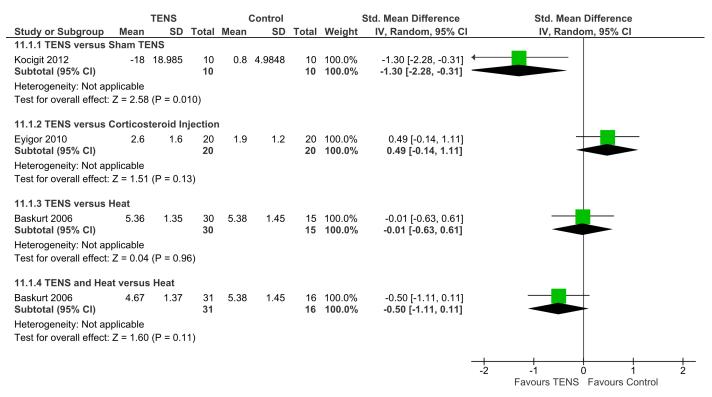



Figure Appendix-4a 22. TENS: Outcome pain at the shortest follow-up

|                                   | Surge                  | ry      | Contr       | ol              |             | <b>Risk Difference</b> | Risk Difference                 |
|-----------------------------------|------------------------|---------|-------------|-----------------|-------------|------------------------|---------------------------------|
| Study or Subgroup                 | Events                 | Total   | Events      | Total           | Weight      | M-H, Random, 95% Cl    | M-H, Random, 95% Cl             |
| Brox 1999                         | 23                     | 38      | 7           | 28              | 64.9%       | 0.36 [0.13, 0.58]      |                                 |
| Rahme 1998                        | 12                     | 21      | 6           | 18              | 35.1%       | 0.24 [-0.07, 0.54]     |                                 |
| Total (95% Cl)                    |                        | 59      |             | 46              | 100.0%      | 0.31 [0.13, 0.49]      |                                 |
| Total events                      | 35                     |         | 13          |                 |             |                        |                                 |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi <sup>2</sup> | = 0.37  | , df = 1 (F | <b>P</b> = 0.54 | l); l² = 0% |                        | -1 -0.5 0 0.5 1                 |
| Test for overall effect:          | Z = 3.42 (I            | P = 0.0 | 006)        |                 |             |                        | Favours Control Favours Surgery |

Figure Appendix-4a 23. Surgery: Dichotomous outcome pain at the longest follow-up

|                                                               | Surge  | ry    | Contr  | ol       |                       | <b>Risk Difference</b> | Risk Difference                                 |
|---------------------------------------------------------------|--------|-------|--------|----------|-----------------------|------------------------|-------------------------------------------------|
| Study or Subgroup                                             | Events | Total | Events | Total    | Weight                | M-H, Random, 95% Cl    | M-H, Random, 95% Cl                             |
| Brox 1999                                                     | 23     | 38    | 7      | 28       | 64.9%                 | 0.36 [0.13, 0.58]      |                                                 |
| Rahme 1998                                                    | 12     | 21    | 6      | 18       | 35.1%                 | 0.24 [-0.07, 0.54]     |                                                 |
| Total (95% CI)                                                |        | 59    |        | 46       | 100.0%                | 0.31 [0.13, 0.49]      |                                                 |
| Total events                                                  | 35     |       | 13     |          |                       |                        |                                                 |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: | ,      |       |        | P = 0.54 | ; I <sup>2</sup> = 0% | ⊢<br>-1                | -0.5 0 0.5 1<br>Favours Control Favours Surgery |

Figure Appendix-4a 24. Surgery: Dichotomous outcome pain at the shortest follow-up

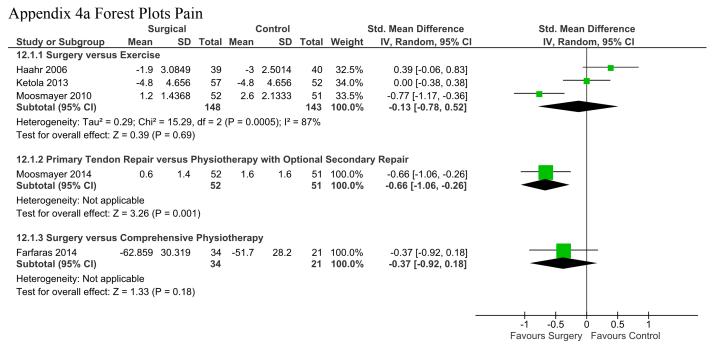



Figure Appendix-4a 25. Surgery: Outcome pain at the longest follow-up

|                                   | S                      | urgical     |           |                    | Control                 |         |         | Std. Mean Difference | Std. Mean Difference                   |
|-----------------------------------|------------------------|-------------|-----------|--------------------|-------------------------|---------|---------|----------------------|----------------------------------------|
| Study or Subgroup                 | Mean                   | SD          | Total     | Mean               | SD                      | Total   | Weight  | IV, Random, 95% CI   | IV, Random, 95% Cl                     |
| 12.1.1 Surgery versu              | s Exercis              | е           |           |                    |                         |         |         |                      |                                        |
| Haahr 2006                        | -2.8                   | 3.8018      | 41        | -3.1               | 3.8992                  | 43      | 32.0%   | 0.08 [-0.35, 0.51]   |                                        |
| Ketola 2013                       | -4.2                   | 7.0866      | 68        | -3.8               | 7.0866                  | 66      | 35.1%   | -0.06 [-0.39, 0.28]  |                                        |
| Moosmayer 2010                    | 1.2                    | 1.4368      | 52        | 2.6                | 2.1333                  | 51      | 32.9%   | -0.77 [-1.17, -0.36] | <b>_</b>                               |
| Subtotal (95% CI)                 |                        |             | 161       |                    |                         | 160     | 100.0%  | -0.25 [-0.74, 0.25]  |                                        |
| Heterogeneity: Tau <sup>2</sup> = | 0.15; Chi <sup>2</sup> | ² = 9.85, o | df = 2 (I | <b>&gt;</b> = 0.00 | 07); l <sup>2</sup> = 8 | 80%     |         |                      |                                        |
| Test for overall effect:          | Z = 0.97 (             | P = 0.33    | )         |                    |                         |         |         |                      |                                        |
| 12.1.2 Primary Tendo              | on Repair              | versus I    | hysio     | herapy             | / with Op               | otional | Seconda | ry Repair            |                                        |
| Moosmayer 2014                    | 0.6                    | 1.4         | 52        | 1.6                | 1.6                     | 51      | 100.0%  | -0.66 [-1.06, -0.26] | —————————————————————————————————————— |
| Subtotal (95% CI)                 |                        |             | 52        |                    |                         | 51      | 100.0%  | -0.66 [-1.06, -0.26] |                                        |
| Heterogeneity: Not app            | plicable               |             |           |                    |                         |         |         |                      |                                        |
| Test for overall effect:          | Z = 3.26 (             | P = 0.00    | 1)        |                    |                         |         |         |                      |                                        |
| 12.1.3 Surgery versu              | s Compre               | hensive     | Physic    | otherap            | у                       |         |         |                      |                                        |
| Farfaras 2014                     | -62.859                | 30.319      | 34        | -51.7              | 28.2                    | 21      | 100.0%  | -0.37 [-0.92, 0.18]  |                                        |
| Subtotal (95% CI)                 |                        |             | 34        |                    |                         | 21      | 100.0%  | -0.37 [-0.92, 0.18]  |                                        |
| Heterogeneity: Not ap             | plicable               |             |           |                    |                         |         |         |                      |                                        |
| Test for overall effect:          | Z = 1.33 (             | P = 0.18    | )         |                    |                         |         |         |                      |                                        |
|                                   |                        |             |           |                    |                         |         |         |                      |                                        |
|                                   |                        |             |           |                    |                         |         |         |                      | -1 -0.5 0 0.5 1                        |
|                                   |                        |             |           |                    |                         |         |         |                      | Equate Surgery Equate Control          |

Favours Surgery Favours Control

Figure Appendix-4a 26. Surgery: Outcome pain at the shortest follow-up

| di Lorenzo 2006 3.95 1.05 20 5.25 1.99 20 32.2%            | V, Random, 95% Cl<br>-1.07 [-1.56, -0.58] | IV, Random, 95% CI |
|------------------------------------------------------------|-------------------------------------------|--------------------|
| di Lorenzo 2006 3.95 1.05 20 5.25 1.99 20 32.2%            |                                           |                    |
|                                                            | -0.80 [-1.45, -0.15]                      |                    |
| Vecchio 1993 Nerve Block -1.4 4.4272 10 0.2 2.6833 5 11.5% |                                           |                    |
|                                                            | -0.38 [-1.46, 0.71]                       |                    |
| Total (95% Cl) 68 61 100.0%                                | -0.91 [-1.27, -0.54]                      | ◆                  |

Figure Appendix-4a 27. Nerve block: Outcome pain at the longest follow-up

|                                                                           | Ехр  | erimen | tal   | c        | ontrol  |       | :      | Std. Mean Difference | Std. Mean Difference                               |  |  |
|---------------------------------------------------------------------------|------|--------|-------|----------|---------|-------|--------|----------------------|----------------------------------------------------|--|--|
| Study or Subgroup                                                         | Mean | SD     | Total | Mean     | SD      | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% Cl                                 |  |  |
| Bayram 2014                                                               | 3    | 3.4    | 38    | 5.9      | 3.1     | 36    | 58.0%  | -0.88 [-1.36, -0.40] | — <b>—</b>                                         |  |  |
| di Lorenzo 2006                                                           | 3.95 | 1.05   | 20    | 5.25     | 1.99    | 20    | 31.8%  | -0.80 [-1.45, -0.15] | <b>e</b>                                           |  |  |
| Vecchio 1993 NerveBlock                                                   | -2.8 | 2.846  | 10    | -0.4     | 1.118   | 5     | 10.2%  | -0.92 [-2.06, 0.22]  |                                                    |  |  |
| Total (95% CI)                                                            |      |        | 68    |          |         | 61    | 100.0% | -0.86 [-1.22, -0.50] | $\bullet$                                          |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 4 |      |        | ``    | = 0.97); | I² = 0% |       |        |                      | -2 -1 0 1 2<br>Favours Nerve Block Favours Control |  |  |

Figure Appendix-4a 28. Nerve block: Outcome pain at the shortest follow-up

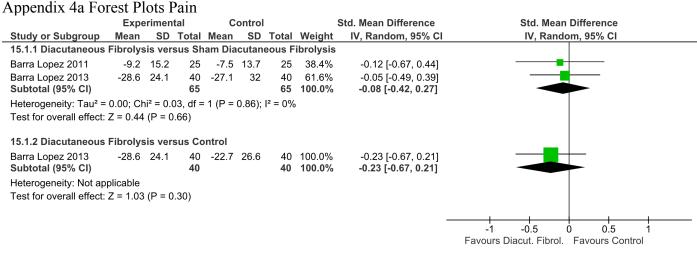



Figure Appendix-4a 29. Diacutaneous Fibrolysis: Outcome pain at the longest follow-up

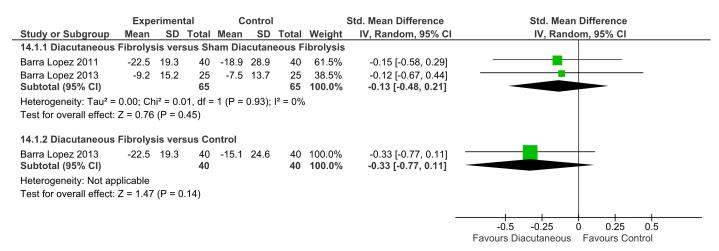



Figure Appendix-4a 30. Diacutaneous Fibrolysis: Outcome pain at the shortest follow-up

| Appendix 4a Forest Plots Pain |
|-------------------------------|
|-------------------------------|

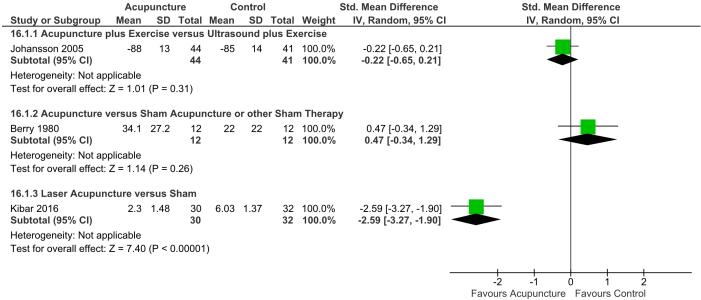



Figure Appendix-4a 31. Acupuncture: Outcome pain at the longest follow-up

|                                                    | Acupuncture |         |                 |          |         |                 | s                       | Std. Mean Difference                                | Std. Mean Difference |
|----------------------------------------------------|-------------|---------|-----------------|----------|---------|-----------------|-------------------------|-----------------------------------------------------|----------------------|
| Study or Subgroup                                  | Mean        | SD      | Total           | Mean     | SD      | Total           | Weight                  | IV, Random, 95% CI                                  | IV, Random, 95% CI   |
| 15.1.1 Acupuncture p                               | lus Exe     | rcise v | ersus           | Ultraso  | ound p  | lus Ex          | ercise                  |                                                     |                      |
| Johansson 2005<br>Subtotal (95% CI)                | -79         | 9       | 44<br><b>44</b> | -76      | 11      | 41<br><b>41</b> | 100.0%<br><b>100.0%</b> | -0.30 [-0.72, 0.13]<br><b>-0.30 [-0.72, 0.13]</b>   |                      |
| Heterogeneity: Not app<br>Test for overall effect: |             | (P = 0. | 17)             |          |         |                 |                         |                                                     |                      |
| 15.1.2 Acupuncture v                               | ersus S     | ham A   | cupun           | cture c  | or othe | r Shar          | n Therapy               |                                                     |                      |
| Berry 1980<br>Subtotal (95% CI)                    | 34.1        | 27.2    | 12<br><b>12</b> | 22       | 22      |                 | 100.0%<br><b>100.0%</b> | 0.47 [-0.34, 1.29]<br><b>0.47 [-0.34, 1.29]</b>     |                      |
| Heterogeneity: Not app                             | olicable    |         |                 |          |         |                 |                         |                                                     |                      |
| Test for overall effect:                           | Z = 1.14    | (P = 0. | 26)             |          |         |                 |                         |                                                     |                      |
| 15.1.7 Laser Acupund                               | cture ve    | rsus Sl | ham             |          |         |                 |                         |                                                     |                      |
| Kibar 2016<br>Subtotal (95% CI)                    | 2.3         | 1.48    | 30<br><b>30</b> | 6.03     | 1.37    | 32<br><b>32</b> | 100.0%<br><b>100.0%</b> | -2.59 [-3.27, -1.90]<br><b>-2.59 [-3.27, -1.90]</b> | <b>—</b>             |
| Heterogeneity: Not app                             |             | (D 4 0  | 00004           | <b>、</b> |         |                 |                         |                                                     |                      |
| Test for overall effect:                           | Z = 7.40    | (P < 0. | 00001           | )        |         |                 |                         |                                                     |                      |
|                                                    |             |         |                 |          |         |                 |                         |                                                     |                      |

Figure Appendix-4a 32. Acupuncture: Outcome pain at the shortest follow-up

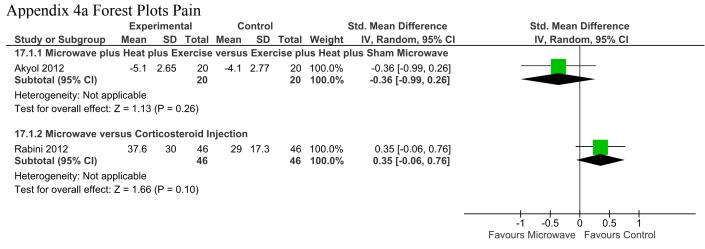



Figure Appendix-4a 33. Microwave: Outcome pain at the longest follow-up

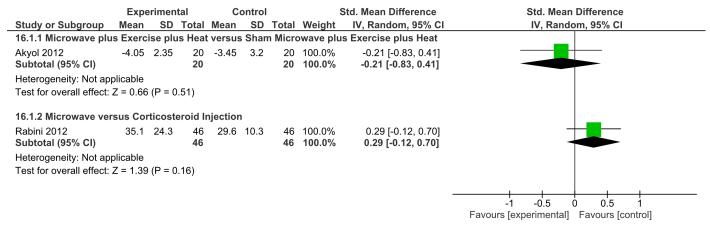



Figure Appendix-4a 34. Microwave: Outcome pain at the shortest follow-up

|                                                                                                                         | Myofascia                                                 | l Trigger I       | Point                | Co                 | ontrol |                 | 5                       | Std. Mean Difference                         | Std. Mean Difference |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------|----------------------|--------------------|--------|-----------------|-------------------------|----------------------------------------------|----------------------|
| Study or Subgroup                                                                                                       | Mean                                                      | SD                | Total                | Mean               | SD     | Total           | Weight                  | IV, Random, 95% CI                           | IV, Random, 95% CI   |
| 19.1.1 Myofascial Trig                                                                                                  | ger Point Th                                              | nerapy vei        | rsus Wai             | ting Lis           | it     |                 |                         |                                              |                      |
| Bron 2011<br>Subtotal (95% CI)                                                                                          | 17.2                                                      | 19.5              | 34<br><b>34</b>      | 31                 | 21     | 31<br><b>31</b> | 100.0%<br><b>100.0%</b> | -0.67 [-1.18, -0.17]<br>-0.67 [-1.18, -0.17] |                      |
| Heterogeneity: Not app                                                                                                  | licable                                                   |                   |                      |                    |        |                 |                         |                                              |                      |
| Test for overall effect: 2                                                                                              | <u>′</u> = 2.64 (P =                                      | 0.008)            |                      |                    |        |                 |                         |                                              |                      |
| 19.1.2 Myofascial Trig                                                                                                  | jger Point Tł                                             | nerapy vei        | rsus Ultr            | asound             |        |                 |                         |                                              | _                    |
| Al Dajah 2014                                                                                                           | 3.8                                                       | 0.79              | 15                   | 5.23               | 0.72   |                 | 100.0%                  | -1.84 [-2.71, -0.97]                         |                      |
| Subtotal (95% CI)                                                                                                       |                                                           |                   | 15                   |                    |        | 15              | 100.0%                  | -1.84 [-2.71, -0.97]                         |                      |
| Heterogeneity: Not app<br>Test for overall effect: 2                                                                    |                                                           | 0.0001)           |                      |                    |        |                 |                         |                                              |                      |
| 19.1.3 Trigger Point D                                                                                                  | ry Needling                                               | plus Exer         | cises ve             | rsus Ex            | ercise | only            |                         |                                              |                      |
| Arias 2016                                                                                                              | 1.5                                                       | 1.4               | 24                   | 1.6                | 1.5    | 23              | 100.0%                  | -0.07 [-0.64, 0.50]                          |                      |
| Subtotal (95% CI)                                                                                                       |                                                           |                   | 24                   |                    |        | 23              | 100.0%                  | -0.07 [-0.64, 0.50]                          |                      |
|                                                                                                                         | P                                                         |                   |                      |                    |        |                 |                         |                                              |                      |
| Heterogeneity: Not app                                                                                                  | licable                                                   |                   |                      |                    |        |                 |                         |                                              |                      |
| Heterogeneity: Not app<br>Test for overall effect: 2                                                                    |                                                           | 0.82)             |                      |                    |        |                 |                         |                                              |                      |
| 0 7 11                                                                                                                  | Z = 0.23 (P =                                             | ,                 | ual Ther             | ару                |        |                 |                         |                                              |                      |
| Test for overall effect: 2                                                                                              | Z = 0.23 (P =                                             | ,                 | ual Ther<br>19<br>19 | <b>apy</b><br>2.43 | 1.77   | 19<br><b>19</b> | 100.0%<br><b>100.0%</b> | -0.18 [-0.81, 0.46]<br>-0.18 [-0.81, 0.46]   |                      |
| Test for overall effect: 2<br>19.1.4 Myofascial Trig<br>Barra-Lopez 2015                                                | Z = 0.23 (P =<br><b>Jger Point ve</b><br>2.05             | ersus Man         | 19                   |                    | 1.77   |                 |                         |                                              |                      |
| Test for overall effect: 2<br>19.1.4 Myofascial Trig<br>Barra-Lopez 2015<br>Subtotal (95% CI)                           | Z = 0.23 (P =<br><b>iger Point ve</b><br>2.05<br>vlicable | ersus Man<br>2.38 | 19                   |                    | 1.77   |                 |                         |                                              |                      |
| Test for overall effect: 2<br>19.1.4 Myofascial Trig<br>Barra-Lopez 2015<br>Subtotal (95% CI)<br>Heterogeneity: Not app | Z = 0.23 (P =<br><b>iger Point ve</b><br>2.05<br>vlicable | ersus Man<br>2.38 | 19                   |                    | 1.77   |                 |                         |                                              |                      |
| Test for overall effect: 2<br>19.1.4 Myofascial Trig<br>Barra-Lopez 2015<br>Subtotal (95% CI)<br>Heterogeneity: Not app | Z = 0.23 (P =<br><b>iger Point ve</b><br>2.05<br>vlicable | ersus Man<br>2.38 | 19                   |                    | 1.77   |                 |                         |                                              |                      |

Figure Appendix-4a 35. Myofascial Trigger: Outcome pain at the longest follow-up

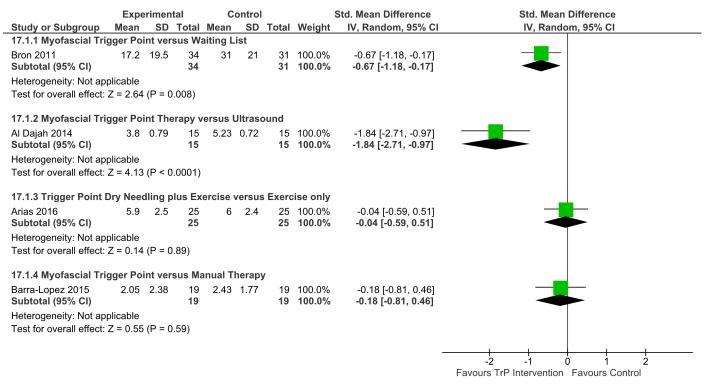



Figure Appendix-4a 36. Myofascial Trigger: Outcome pain at the shortest follow-up

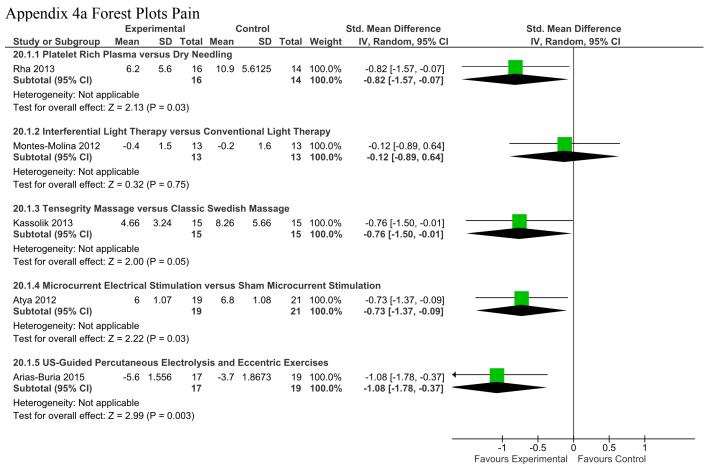



Figure Appendix-4a 37. Miscellaneous interventions: Outcome pain at the longest follow-up

|                          | Ex        | perimenta   | al      |         | Control    |         |            | Std. Mean Difference | Std. Mean Difference                     |
|--------------------------|-----------|-------------|---------|---------|------------|---------|------------|----------------------|------------------------------------------|
| Study or Subgroup        | Mean      | SD          | Total   | Mean    | SD         | Total   | Weight     | IV, Random, 95% CI   | IV, Random, 95% Cl                       |
| 18.1.1 Platelet Rich F   | Plasma v  | versus Dr   | y Need  | ling    |            |         |            |                      | _                                        |
| Rha 2013                 | 10.9      | 7.15542     | 16      | 16.4    | 6.97424    | 19      | 100.0%     | -0.76 [-1.45, -0.07] | <b></b>                                  |
| Subtotal (95% CI)        |           |             | 16      |         |            | 19      | 100.0%     | -0.76 [-1.45, -0.07] |                                          |
| Heterogeneity: Not ap    | plicable  |             |         |         |            |         |            |                      |                                          |
| Test for overall effect: | Z = 2.16  | 6 (P = 0.03 | 3)      |         |            |         |            |                      |                                          |
| 18.1.2 Interferential I  | Light Th  | erapy ver   | sus Co  | nventio | onal Light | Thera   | ру         |                      |                                          |
| Montes-Molina 2012       | -0.4      | 1.5         | 13      | -0.2    | 1.6        | 13      | 100.0%     | -0.12 [-0.89, 0.64]  | <b></b>                                  |
| Subtotal (95% CI)        |           |             | 13      |         |            | 13      | 100.0%     | -0.12 [-0.89, 0.64]  |                                          |
| Heterogeneity: Not ap    | plicable  |             |         |         |            |         |            |                      |                                          |
| Test for overall effect: | Z = 0.32  | 2 (P = 0.75 | 5)      |         |            |         |            |                      |                                          |
| 18.1.3 Tensegrity Ma     | assage v  | ersus Cla   | assic S | wedish  | Massage    |         |            |                      |                                          |
| Kassolik 2013            | 4.66      | 3.24        | 15      | 8.26    | 5.66       | 15      | 100.0%     | -0.76 [-1.50, -0.01] |                                          |
| Subtotal (95% CI)        |           |             | 15      |         |            | 15      | 100.0%     | -0.76 [-1.50, -0.01] |                                          |
| Heterogeneity: Not ap    | plicable  |             |         |         |            |         |            |                      |                                          |
| Test for overall effect: | Z = 2.00  | ) (P = 0.05 | 5)      |         |            |         |            |                      |                                          |
| 18.1.4 Microcurrent I    | Electrica | al Stimula  | tion ve | rsus Sl | nam Micro  | ocurrer | nt Stimula | ation                |                                          |
| Atya 2012                | 6         | 1.07        | 19      | 6.8     | 1.08       | 21      | 100.0%     | -0.73 [-1.37, -0.09] |                                          |
| Subtotal (95% CI)        |           |             | 19      |         |            | 21      | 100.0%     | -0.73 [-1.37, -0.09] |                                          |
| Heterogeneity: Not ap    | plicable  |             |         |         |            |         |            |                      |                                          |
| Test for overall effect: | Z = 2.22  | 2 (P = 0.03 | 3)      |         |            |         |            |                      |                                          |
| 18.1.5 US-Guided Pe      | rcutane   | ous Elect   | rolysis | and Ed  | centric E  | xercise | es         |                      |                                          |
| Arias-Buria 2015         | -5.6      | 1.556       | 17      | -3.7    | 1.8673     | 19      | 100.0%     | -1.08 [-1.78, -0.37] |                                          |
| Subtotal (95% CI)        |           |             | 17      |         |            |         | 100.0%     | -1.08 [-1.78, -0.37] |                                          |
| Heterogeneity: Not ap    | plicable  |             |         |         |            |         |            |                      |                                          |
| Test for overall effect: | Z = 2.99  | ) (P = 0.00 | 03)     |         |            |         |            |                      |                                          |
|                          |           |             |         |         |            |         |            |                      |                                          |
|                          |           |             |         |         |            |         |            | -                    | -1 -0.5 0 0.5 1                          |
|                          |           |             |         |         |            |         |            |                      | Favours [experimental] Favours [control] |
|                          |           |             |         |         |            |         |            |                      |                                          |

Figure Appendix-4a 38. Miscellaneous interventions: Outcome pain at the longest follow-up