i-CONTENT tool for assessing therapeutic quality of exercise programs employed in randomised clinical trials

Thomas J Hoogeboom,1 Martijn C Kousemaker,2 Nico LU van Meeteren,3 Tracey Howe,4 Kari Bo,5,6 Peter Tugwell,7 Manuela Ferreira,8 Rob A de Bie,9 Cornelia HM van den Ende,10 Jennifer E Stevens-Lapley11,12

ABSTRACT

Objective When appraising the quality of randomised clinical trial (RCTs) on the merits of exercise therapy, we typically limit our assessment to the quality of the methods. However, heterogeneity across studies can also be caused by differences in the quality of the exercise interventions (ie, ‘the potential effectiveness of a specific intervention given the potential target group of patients’) —a challenging concept to assess. We propose an internationally developed, consensus-based tool that aims to assess the quality of exercise therapy programmes studied in RCTs: the international Consensus on Therapeutic Exercise aNd Training (i-CONTENT) tool.

Methods Forty-nine experts (from 12 different countries) in the field of physical and exercise therapy participated in a four-stage Delphi approach to develop the i-CONTENT tool: (1) item generation (Delphi round 1), (2) item selection (Delphi rounds 2 and 3), (3) item specification (focus group discussion) and (4) tool development and refinement (working group discussion and piloting).

Results Out of the 61 items generated in the first Delphi round, consensus was reached on 17 items, resulting in seven final items that form the i-CONTENT tool: (1) patient selection; (2) qualified supervisor; (3) type and timing of outcome assessment; (4) dosage parameters (frequency, intensity, time); (5) type of exercise; (6) safety of the exercise programme and (7) adherence to the exercise programme.

Conclusion The i-CONTENT tool is a step towards transparent assessment of the quality of exercise therapy programmes studied in RCTs, and ultimately, towards the development of future, higher quality, exercise interventions.

INTRODUCTION

Most people who are at risk of no longer being able to self-manage can benefit from therapeutic exercise,1–4 under the prerequisite that the exercise programme is of sufficient quality.5 The scientific exercise community has an obligation when applying and advancing scientific knowledge, to maximise direct and indirect benefits to patients, research participants and other affected individuals, while minimising harm.6 However, in 2005, Herbert and Bo argued that not every exercise intervention tested in a randomised clinical trial (RCT) is of similar quality.7 After all, exercise therapy interventions may differ in modes, dosage and administration, all of which will impact their quality, and consequently, their therapeutic potential. One might argue that it is almost unethical that researchers are still able, without any regulation, to design and test exercise interventions that likely have a low potential for effectiveness. There is an urgent need for an explicit tool that will assess the quality of an exercise intervention.8–11 The international Consensus on Therapeutic Exercise aNd Training (i-CONTENT) tool for assessing the quality of exercise interventions aims to make this possible.

Challenges and shortcomings in exercise therapy evaluations

Exercise therapy is used by patients with support or supervision from physiotherapists, exercise scientists and rehabilitation physicians. In the scientific field of exercise therapy, interventions are often poorly described.10,12–17 Over the last decade, a number of reporting guidelines have been published in the field of exercise therapy with the intent to improve the reproducibility of exercise interventions in scientific papers, like the Consolidated Standards of Reporting Trials statement,18 the Standard Protocol Items: Recommendations for Interventional Trials statement,19 the Template for Intervention Description and Replication (TIDieR) checklist,20 and the Consensus on Exercise Reporting Template (CERT).21

Although adequate reporting of exercise interventions is assumed to be crucial to the understanding and reproducibility of interventions, it still does not help the reader to determine the quality (ie, ‘the potential effectiveness of a specific intervention given the potential target group of patients’) of an exercise intervention. Moreover, it does not help the end-users—patients, professionals, healthcare financiers to weigh, choose and appreciate the different intervention options. A well-documented exercise intervention can still be of low therapeutic quality. In an earlier attempt to evaluate the quality of exercise programmes using a locally developed tool,2 we found that of 57 assessed trials (comprising over 4500 volunteers), 88% evaluated suboptimal exercise programmes, which were unlikely to yield meaningful clinical results.22 Assessing the quality of exercise interventions is one of the major challenges in the field of exercise therapy research.7–11
The currently available reporting tools do not interpret the quality of exercise interventions.10

Aim and scope
The aim of the i-CONTENT working group was to provide recommendations, in the form of a single useful rating and appraisal tool, to rate the quality of exercise therapy interventions, while taking previous efforts into account.318–21 The pool of potential users of the i-CONTENT tool are researchers developing, reporting or reviewing exercise therapy evaluations, and editors and peer reviewers evaluating publications on exercise therapy, while the wider audience might be patients, healthcare professionals and funders working with exercise therapy. We believe the tool (which consists of a 7-item checklist) is a useful and practical tool for these initiators and audiences and will improve our understanding of the quality of exercise interventions and, ultimately, our individual and collective thoughts about attributes and contributions of these interventions to exercise therapy outcomes.

METHODS
The tool was developed by the i-CONTENT working group. The eight i-CONTENT working group members were purposefully sampled by the primary author (TJH) based on their longstanding academic expertise and contribution to the field of exercise therapy research. All members of the working group had a PhD: seven members were specialised in sports medicine, exercise therapy or physiotherapy practice (NLvM, RdB, TH, CHvdE, JES-L, MF and KB) and two in clinical epidemiology (PT and RAdB). Six members were active in the Cochrane Collaboration (MF, PT, TH, KB, NLvM and RdB). Finally, four members served as editors for journals in related fields (PT, JES-L, MF, RdB).

The i-CONTENT working group followed a four-stage Delphi approach to develop the i-CONTENT tool: (1) item generation (Delphi round 1), (2) item selection (Delphi round 2 and 3), (3) item specification (focus group discussion) and (4) tool development and refinement (working group discussion and piloting) (see figure 1). The working definition of therapeutic quality was ‘the potential effectiveness of a specific intervention given the potential target group of patients’.32 Exercise therapy was defined as ‘a regimen or plan of physical activities designed and prescribed for specific therapeutic goal’ (Mesh database). The results from the four stages were compiled to create the tool.

Stage 1: generating an item pool
To ensure 30 responders in the last round, previous Delphi studies suggest that in a worst case scenario, 80 responders would be needed to participate in the first Delphi round23 and in a best case scenario, 43 responders.24 It was expected that 60 responders for the first Delphi questionnaire would suffice to include at least 30 responders in the last round. We included experts in the field of physiotherapy, exercise therapy, exercise physiology, clinical medicine and clinical research, allowing for a heterogeneous group of experts.25 The initial selection of experts was done after a pragmatic PubMed search; search terms “randomized clinical trials”, “exercise”, and “JAMA, BMJ, NEJM, Lancet, or PTJ” with the following limits were used: Adults (age >18 years) and publication year >2009. The first author of papers that studied the effectiveness of therapeutic exercise (exercise had to be the main intervention) in an RCT were contacted. Consequently, we asked these experts who they, outside their own research group, considered experts in the area of therapeutic exercise.26 The aim was to include ‘in depth-experts’,27 from a group selected on their work and achievements rather than acquaintances,28 and provoke a snowball effect to efficiently include the 60 responders. Experts were invited by email to participate in the study. Anonymity among experts was maintained throughout all Delphi rounds.

In the first round, we asked questions about the participants’ demographics (ie, age, sex, education and profession), participants’ level of expertise (ie, regarding scientific output on therapeutic exercise) and therapeutic quality. Questions related to therapeutic quality asked during the first Delphi round are shown in table 1. Data saturation was assessed by checking whether new surveys revealed new items.29

Stage 2: item selection
For the second round, the first author and a PhD student (JES-L) collated and grouped the responses from round one into a number of statements regarding therapeutic quality in exercise therapy. Consequently, the Delphi group was asked which of the statements they deemed essential for this rating scale (one point=very unessential, through to seven points=very essential).20

In the third Delphi round, personalised questionnaires were created by the second author for each of the experts. These questionnaires comprised of the median and iIQR of scores of each statement (representing group level of agreement and the degree of consensus, respectively) and their own personal rating. All experts reviewed and rerated all statements.

Finally, the second author prepared a list of statements which achieved consensus. Consensus for inclusion was defined a priori as a median rating of 6 or 7 on the 7-point rating scale and an IQR of 1.5 or less.30

Stage 3: item specification
After applying the cut-off values to the items from the third Delphi round, a focus group was held to prepare a survey for the i-CONTENT working group to collate the remaining items into a tool. This focus group discussed the following topics: (1)
Stage 4: developing and refining of the tool

A working group discussion was planned to discuss the outcome of the survey, as well as to come to a prefinal concept of the i-CONTENT tool. Prior to the discussion, the participants received a document containing the previous developments, the original items from the Delphi rounds, a concept for the tool, and outstanding discussion points from the survey. The results from the discussion were summarised and sent to all participants to receive their input, as not everyone would be able to participate due to time zone differences. Additional results were obtained via email. Consensus was reached if at least six out of the eight group members agreed to the proposed changes.

Finally, to test the tool’s interpretability, the second author and a PhD student from Caledonian University (JG) piloted the prefinal version of the tool. Seven articles on exercise therapy for people with shoulder complaints were selected at random from a larger systematic review that is in preparation. The second author and JG independently scored the articles and discussed in an online meeting their experiences using the checklist. Results from the discussion were used to refine the checklist to its final state.

RESULTS

During the first Delphi round, 65 people were initially invited. Participants were asked to suggest others to participate, which led to the invitation of another 46 participants. Of the 111 contacted people, 49 people responded (44%) to the first Delphi round. All 111 invited in the first Delphi round were also invited to participate in the second Delphi round, including 16 others who were recommended as experts but not contacted due to fact that data saturation was reached in the first round. A total of 53 people out of the 127 responded (42%) to the second Delphi round. During the third Delphi round, 49 participants from over 12 different countries responded (92%) and were included in the analysis. Out of the 49 participants in third Delphi round, 30 (61%) had a degree in physiotherapy, 4 (5%) had a degree in exercise physiology or exercise therapy and 14 (29%) had a medical doctor degree. Twenty-nine (59%) participants had a PhD, 41 (84%) worked in academics or a research institute, 5 (10%) in a hospital or an institution, 2 (4%) in private practice or a clinic and 1 (2%) was emeritus.

Stage 1: generating an item pool

The first Delphi round resulted in an item pool of 61 different items based on the comments of 49 experts (see online supplemental appendix 1 for an overview of all 61 items including their scores).

Stage 2: item selection

Out of the 61 available items, 17 were left after applying the cut-off value (table 2). The item ‘It is essential for the potential effectiveness of a therapeutic exercise programme to be ethically sound’ was the only item with an IQR of 0 and a median of 7. Six other items had a median of 7, while the other 10 items had a median and a 25th percentile score of 6.

Stage 3: item specification

The focus group discussion demonstrated that several items (item 1, 2, 4, 10, 11, 13, 14, 16) (table 2) were multi-interpretable, which prompted a discussion about how they should be changed. The items were systematically discussed and changed if full consensus of all participants was achieved. Out of the 17 items, all items were suggested to be rephrased and one to be removed (item 9). Two clusters were created, both containing four items to be rephrased into one single item. The transcripts of the focus group are available at request by contacting the first author.

The second author collated the results from the focus group. Based on the suggestions from the focus group, the first and second authors created a survey containing the suggestions and the proposed final items. The participants accepted the changes to the items 1, 2, 4, 11, 14 and 16. The participants accepted both of the clusters, the items 1–4 and 5, 12, 14, 17 and the rephrasing of the items. As a result of the focus group discussion, it was suggested that item 6 would be redundant, as it is already inherent in the new definition of rationale. Therefore, it would have no added value and should be removed. Removal was accepted by all but one of the participants.

Stage 4: developing and refining of the tool

Working group discussion

Before the working group discussion, the first and second author used the results of both the Delphi rounds and the
The working group concluded that item 9, ‘to be ethically sound’, had little to no influence on the potential effectiveness of a therapeutic exercise programme: Median Q1 Q3

<table>
<thead>
<tr>
<th>Item</th>
<th>Median</th>
<th>Q1</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. To be based on a plausible rationale.</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2. To have a rationale for the mode of exercise.</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3. To have a rationale for the dosage of the exercise programme.</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>4. To have anatomical, physiological, psychological and behavioural relevance to the injury/condition in question.</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5. That the content of the exercise programme is related to the goals to achieve.</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>6. To have the potential to achieve the identified goals.</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7. That the mode of exercise is in line with the purpose of the exercise programme.</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8. To yield only minimal adverse events.</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>9. To be ethically sound.</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>10. That therapy adherence is adequate.</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>11. That the eligibility criteria select patients that are in need of treatment.</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>12. To match the goal of the therapeutic exercise to the patients problems.</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>13. That, in case the exercise programme is supervised, the supervisor’s competences and skills are matched to the goals and content of the programme.</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>14. That the outcome measures reflect the goals of the intervention.</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>15. That outcomes are assessed with validated performance measures.</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>16. That outcomes are assessed directly after the intervention.</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>17. That the outcomes of the exercise programme are explained, based on a plausible rationale.</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

No changes were made.

Checklist items

The final items included in the i-COMENT tool (see table 4) are: (1) patient selection, (2) dosage of the exercise programme, (3) type of the exercise programme, (4) qualified supervisor, (5) type and timing of outcome assessment, (6) safety of the exercise programme and (7) adherence to exercise programme. The items are briefly described in the text and addressed in detail in the table 4.

Patient selection: When scoring this item, the question at hand is: Were the right patients selected in the study? Meaning that the problems or disabilities of the patient population align with the purpose of the exercise therapy programme. For example, if the goal of an exercise intervention was to improve functional capacity, did the participants selected for this programme have a limited functional capacity?

Dosage of the exercise programme: When scoring this item, the question at hand is: Was it likely that the dosage of the exercise intervention could have resulted in the expected treatment response? A plausible rationale regarding the benefits of the therapeutic exercise programme—especially if there is little or no previous experience with the intervention—is thought to be necessary to achieve therapy effects. The lack of a sound rationale for the dosage of the exercise therapy programme may result in underdosing or overdosing. For example, if the purpose of an exercise programme is to improve functional mobility of frail older adults, did the authors indeed test a programme deemed necessary without tedious overlap when using the tool. No changes were made.

Table 3 The categories included in the tool with their respective original item number

<table>
<thead>
<tr>
<th>Category</th>
<th>Original item no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Patient selection</td>
<td>11,12</td>
</tr>
<tr>
<td>2. Dosage</td>
<td>1,3,4,6</td>
</tr>
<tr>
<td>3. Type</td>
<td>2,5,7</td>
</tr>
<tr>
<td>4. Qualified supervisor</td>
<td>13</td>
</tr>
<tr>
<td>5. Type and timing of outcome assessment</td>
<td>14,15, 16,17</td>
</tr>
<tr>
<td>6. Safety</td>
<td>8</td>
</tr>
<tr>
<td>7. Adherence</td>
<td>10</td>
</tr>
</tbody>
</table>
Table 4 The final version of the i-CONTENT tool

1. Patient selection
Discrepancy between the problems or disabilities of the patient population and the purpose of exercise therapy programme may result in suboptimal effects.

| ‘Low risk’ of ineffectiveness * | The purpose of the exercise therapy programme matches the patients’ problems (directly or through a plausible causative relationship). In this case patients’ problems can lie in the International Classification of Functioning, Disability and Health domains of body functions, body structures, and activities and participation. For example:
| ► If the purpose of the exercise programme is to improve a patient’s functional status, then only patients with reduced functional status should be included (direct relationship).
| ► If the purpose of the exercise programme is to improve a patient’s balance, then specifically patients with impaired balance need to be included in the study (direct relationship).
| ► If the purpose of the exercise programme is to improve a patient’s cardiovascular fitness in patients who have been deconditioned as a result of long-term hospitalisation (indirect relationship). |

| ‘High risk’ of ineffectiveness | The purpose of the exercise therapy programme does not match the patients’ problems. For example: If the purpose of the exercise programme is to improve a patient’s quadriceps strength, but patients were not selected on having low quadriceps strength, nor is quadriceps strength a plausible target for the indexed disease |

2. Dosage of the exercise programme
The lack of a sound rationale for the dosage of the exercise therapy programme to achieve the purpose of the exercise programme may result in underdosing or overdosing.

| ‘Low risk’ of ineffectiveness * | The investigators applied a plausible or proven rationale based on anatomical, physiological, psychological, neurological, or behavioural relevance to the condition to determine the: Frequency†, Intensity‡, and Time§ of the exercise programme matching the purpose of the exercise intervention. For example:
| ► Training above 80% of 1RM with low volume for 8 weeks to improve muscle hypertrophy;
| ► Repeating the same movement in high volume to achieve neurophysiological adaptation;
| ► Exercising at least three times a week using resistance training to increase muscular strength. |

| ‘High risk’ of ineffectiveness | The investigators did not use a plausible or proven rationale based on anatomical, physiological, psychological, neurological or behavioural relevance to the condition or did not match the purpose of the exercise programme. The investigator did use a plausible or proven rationale based on anatomical, physiological, psychological or behavioural relevance to the condition, but there is a disconnect between the rationale and the applied Frequency, Intensity, and Time of the exercise programme. For example:
| ► Primarily using cardiovascular exercise to increase muscle hypertrophy.
| ► Primarily exercising above 80% of 1RM with low frequency to improve stability.
| ► Primarily exercising 1 day a week at 30% HRR to increase muscular strength, using resistance training. |

3. Type of the exercise programme
Discrepancy between the type and purpose of the exercise therapy programme may lead to a lack of exercise specificity.

| ‘Low risk’ of ineffectiveness * | The investigators applied a plausible or proven rationale based on anatomical, physiological, psychological, neurological or behavioural relevance to the condition to determine the: Type¶, Furthermore, the investigators matched the Type of the exercise therapy programme with the purpose of the exercise therapy programme. Type of exercise is defined as the form in which the exercise is provided. According to the training specificity principle, it is more likely for training benefits to be transferred to activities if the Type of exercise relates to functional movements. For example:
| ► Cardiovascular exercise through running, cycling or dancing.
| ► Resistance exercise through open/closed chain exercises related to functional targets. Furthermore, if an exercise therapy programme is built up from a no of single exercises, also consider whether there is a plausible or proven rationale for each of the exercises. |

| ‘High risk’ of ineffectiveness | The investigators did not match the type of the exercise programme with the purpose of the exercise therapy programme. For example:
| ► Primarily iso-kinetic exercise is prescribed, while the purpose of the programme was walking.
| ► Exercise is primarily delivered by use of exercise bike, while the purpose of the exercise programme was to improve patient-specific activities of daily living. |

4. Qualified supervisor (if applicable)
Supervisor(s) who lack the right skills and experiences regarding the exercise programme and patient population may result in suboptimal effects.

| ‘Low risk’ of ineffectiveness * | It can be assumed that the supervisor providing the exercise therapy programme is experienced with the targeted patient population and is sufficiently skilled in providing the proposed exercise programme. For example:
| ► If the content of the evaluated exercise therapy programme falls within the basic skill set of a registered physiotherapist, then the necessary skills can be assumed if the programme is delivered by a physiotherapist. However, the experience with the target population would still need to be made clear.
| ► If the content of the evaluated exercise therapy programme falls outside the basic skill set of a registered physiotherapist, the training and experience in the applied programme need to be defined. |

| ‘High risk’ of ineffectiveness | It can be assumed that the supervisor providing the programme is inexperienced with the patient population or is insufficiently skilled to provide the exercise programme. For example:
| ► The exercise programme is provided by a medical specialist without specific training.
| ► The exercise programme is provided to patients aged 25 and below by a medical specialist experienced in geriatric patients. |

5. Type and timing of outcome assessment
Using invalid outcome measures or mistiming the measurements might result in the (erroneous) conclusion that an exercise programme was not effective.

Continued
that included walking-type exercises? If the aim of the exercise programme is to improve general well-being, the authors might have selected less specific types of exercises.

Qualified supervisor: When scoring this item, the question at hand is: If a person was supervising the exercise programme, was this person sufficiently qualified? Unsupervised exercise programmes are thought to be of lower quality than supervised programmes. However, the qualities of a supervisor are also thought to influence treatment effects, as supervisors who lack the right skills, experiences and competences regarding both the content of exercise programme as well as the patient population might insufficiently apply an exercise intervention. Depending on the complexity of an exercise intervention and the patient population, the needed qualifications may vary. For example, if a high intensity exercise intervention is assessed in a population of frail older adults with Parkinson’s disease, did the authors select supervisors with proven expertise on both the programme and the population?

Type and timing of outcome assessment: When scoring this item, the question at hand is: Is it likely that the treatment response to the exercise intervention was actually measured? To adequately measure the response to an exercise intervention, it is important that a measurement tool is valid and responsive, but also that the measurement tool was deployed at the right moment in time. All three elements are thought to be of importance to avoid drawing erroneous conclusions. For example, if the purpose of an exercise programme is to increase physical activity by stimulating participants to slowly increase their own exercise regimens at home, did the authors measure the physical activity with a valid tool and at the right timing?

Safety of the exercise programme: When scoring this item, the question at hand is: Is the exercise programme safe? It is thought that an exercise programme with a high-risk intervention is administered to frail older adults, did patients drop-out or reduced level of adherence?

6. Safety of the exercise programme

A high risk for or no of adverse events may result in a high drop-out rate, reduced adherence and suboptimal effects.

‘Low risk’ of ineffectiveness*

The investigators used one or more performance-based outcome measures which reflect the goals and purpose of the exercise programme to assess the effectiveness exercise therapy programme. The measurements from the performance-based outcome measures have taken place within the time window where the expected effect would most likely take place. These performance-based measures need to be valid for the targeted patient population as well as for detecting change over time. For example:

- The goal of the exercise programme is to improve functional mobility, and the effect of the exercise programme is measured using the Timed Up and Go test, this test can be assumed to be valid for the targeted patient population and is responsive to measuring change over time. Moreover, the timing of the measurements fall within the period in which the optimal effect can be expected.**

‘High risk’ of ineffectiveness

The investigators use a non-validated (performance) measure as primary outcome measure to assess the effect of the therapeutic intervention. For example, if:

- The performance measure applied has not been validated or is unlikely to be valid for the targeted patient group.
- The performance measure is known to have a floor or ceiling effect.
- The effect of the exercise programme was measured solely by self-report measures.
- The measurements were obtained outside the window where the optimal effects would be expected.

7. Adherence to the exercise programme

Low exercise therapy adherence by the patient to the programme may result in a suboptimal effect.

‘Low risk’ of ineffectiveness*

Based on relevant information regarding to exercise adherence (ie, the no of sessions attended, the no of exercises performed, and whether or not the intended exercise dosage was reached) the rater draws the conclusion whether the intended exercise dosing was achieved. In order to warrant a ‘low-risk’ conclusion, the level of adherence of patients to the exercise therapy programme is deemed sufficient to assume that the proposed exercise therapy programme was performed as originally intended, in terms of achieved exercise intensity. Cut-off scores may be used to determine whether adherence was deemed adequate, however, we want to stress that the decision needs to be made whether the intended exercise dosing was achieved.

‘High risk’ of ineffectiveness

The level of exercise adherence of patients to the exercise therapy programme was insufficient to assume the intended exercise programme was performed as intended.

**In case insufficient information is provided to judge this item definitively as ‘low risk’, then it is up to the rater to make a (conservative) judgement as well as provide a rationale for this judgement.

†The number of days per week dedicated to the exercise programme.

‡Intensity can be defined using several different measures including but not limited to: percentage of maximal oxygen consumption, oxygen consumption reserve, heart rate reserve, maximal heart rate, or metabolic equivalents.

§A measure of amount of time physical activity is performed or by the total caloric expenditure.

** Both the type of the outcome measurement as well as the timing of the outcome measurement should be reasonable to be able to have a ‘low risk’. If either of the two lacks in either reporting or rationale a high risk of ineffectiveness should be assumed.

HRR, heart rate reserve; RM, repetition maximum.

Original research
suboptimal effects. For example, if an exercise intervention aims to make people with severe obesity be more physically active by requiring them to perform 150 min of moderate activity per day, did the patients adequate adhere to this programme?

Checklist scoring
People using the tool are required to judge each item as either: ‘low risk’ or ‘high risk’ for ineffectiveness as well as provide a rationale to support their judgement. If the information was not explicitly reported in the manuscript, the reviewers are required to provide a judgement and a rationale to support their judgement (to this end, we included ‘probably done’ and ‘probably not done’ to the scoring sheet (see online supplemental appendix 2). The wording on the two judgement criteria and the scoring sheet match those of the Cochrane’s Risk of Bias tool.31 In line with the Cochrane’s Risk of Bias tool, no overall score should be calculated, but each item should be weighted on their importance within the study that is assessed (ie, quality of the single study) and in unison with all other studies that are assessed (ie, the body of evidence). We suggest a narrative assessment be made on the therapeutic quality at an individual study level and on the total body of evidence (ie, all studies combined).

We recommend people systematically reviewing the literature on exercise therapy should assess both risk of bias of the included studies as well as quality of the studied interventions and interpret these outcomes in conjunction. After all, poor quality of the included studies as well as quality of the studied interventions can inflate and interpret these outcomes in conjunction. After all, poor included studies as well as quality of the studied interventions can inflate and interpret these outcomes in conjunction. After all, poor included studies as well as quality of the studied interventions can infl

CONCLUDING REMARKS
As the number of scientific publications on—and the number of prescriptions for—exercise therapy continue to grow, we believe a better understanding of the quality and content of these interventions in the scientific literature is warranted. We believe the i-CONTENT tool will be a starting point for researchers, healthcare professionals, and peer reviewers to take intervention quality into account and move the exercise therapy evidence base to the next level. While further validation is necessary, this can be done by the exercise therapy community by critically applying the i-CONTENT and refining the instrument in parallel.

The i-CONTENT tool represents a considerable expansion over previous efforts to elucidate the quality of exercise interventions. The current approach has the primary aim to create a rating tool, rather than a reporting guideline.9 10–21 We believe the size and composition of the Delphi group, containing a range of experts from 12 different countries, lend credibility to the tool. Moreover, our rigorous approach to collate and group the Delphi items into the final seven items helped create an unbiased tool. A final strength is that the seven items of the tool are all explicit reported in the manuscript, the reviewers are required to judge each item as either: ‘low risk’ or ‘high risk’ for ineffectiveness as well as provide a rationale to support their judgement. If the information was not explicitly reported in the manuscript, the reviewers are required to provide a judgement and a rationale to support their judgement (to this end, we included ‘probably done’ and ‘probably not done’ to the scoring sheet (see online supplemental appendix 2). The wording on the two judgement criteria and the scoring sheet match those of the Cochrane’s Risk of Bias tool.31 In line with the Cochrane’s Risk of Bias tool, no overall score should be calculated, but each item should be weighted on their importance within the study that is assessed (ie, quality of the single study) and in unison with all other studies that are assessed (ie, the body of evidence). We suggest a narrative assessment be made on the therapeutic quality at an individual study level and on the total body of evidence (ie, all studies combined).}

The i-CONTENT tool will be dynamic in its nature, as new insights will help shape the content and composition/structure of the tool over time.
Correction notice This article has been corrected since it published Online First. The affiliations for Prof van Meeteren have been updated.

Acknowledgements Special thanks to Bart Staal and Ria Nijhuis-van der Sanden for attending the focus group to give their independent opinion on the proposed subjects and to Jordi Ellings (MSc) for helping consolidate the 17 items into the final 7 even items. Appreciations also go to Jane Green from Caledonian University for testing the concept and exchanging experiences on using the concept of the tool.

Contributors All authors comply with recommendations for contribution by the ICMJE: substantial contributions to the conception or design of the work; or the acquisition, analysis or interpretation of data for the work; and drafting the work or revising it critically for important intellectual content; and final approval of the version to be published; and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as online supplemental information.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not be in the same format as the original. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to localised names, titles, and terms).

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Thomas J Hoogeboom http://orcid.org/0000-0003-2103-419X
Kari Bo http://orcid.org/0000-0003-1176-9272
Peter Tugwell http://orcid.org/0000-0001-5062-0556

REFERENCES

Therapeutic validity of exercise therapy in RCTs. Fujiyo symposium; 2014; Kuopio.

Corporation R. R-05-wave/mp3 recorder owner’s manual, 2010. Available: http://roland.co.jp/support/by_product/r-05 owners_manuals%e5%b7%bf%e5%a4%a7%e5%8c%9f%e5%a4%b5%e5%a4%bf%e8%b7%b2%e6%b4%8d%e4%a4%a7%e6%9c%a8%e5%a4%b5%e7%9a%84. 1904181/

Original research

Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Akershus, Norway

Department of Obstetrics and Gynecology, Akershus University Hospital, Lorenskog, Norway

Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada

Institute of Bone and Joint Research, The Kolling Institute, University of Sydney Medical School, Sydney, New South Wales, Australia

Department of Epidemiology, Maastricht University, Maastricht, Limburg, The Netherlands

Department of Rheumatology, Sint Maartenskliniek, Nijmegen, Gelderland, The Netherlands

Department of Physical Medicine and Rehabilitation, University of Colorado Denver School of Medicine, Aurora, Colorado, USA

Eastern Colorado VA Geriatric Research Education and Clinical Center (GRECC), Aurora, Colorado, USA