Effects of wearing a cloth face mask on performance, physiological and perceptual responses during a graded treadmill running exercise test

Simon Driver,1 Megan Reynolds,1 Katelyn Brown,2 Jakob L Vingren,3 David W Hill,3 Monica Bennett,4 Taylor Gilliland,1 Evan McShan,1 Librada Callender,1 Erin Reynolds,1 Nate Borunda,5 John Mosolf,5 Casey Cates,6 Alan Jones6

ABSTRACT

Objectives To (1) determine if wearing a cloth face mask significantly affected exercise performance and associated physiological responses, and (2) describe perceptual measures of effort and participants’ experiences while wearing a face mask during a maximal treadmill test.

Methods Randomised controlled trial of healthy adults aged 18–29 years. Participants completed two (with and without a cloth face mask) maximal cardiopulmonary exercise tests (CPETs) on a treadmill following the Bruce protocol. Blood pressure, heart rate, oxygen saturation, exertion and shortness of breath were measured. Descriptive data and physical activity history were collected pretrial; perceptions of wearing face masks and experiential data were gathered immediately following the masked trial.

Results The final sample included 31 adults (age=23.2±3.1 years; 14 women/17 men). Data indicated that wearing a cloth face mask led to a significant reduction in exercise time (−0.139±0.19 min/sec, p<0.001), maximal oxygen consumption (VO2max) (−818±552 mL/min, p<0.001), minute ventilation (−45.2±20.3 L/min), maximal heart rate (−8.4±17.0 beats per minute, p<0.01) and increased dyspnoea (1.7±2.9, p<0.001). Our data also suggest that differences in SpO2 and rating of perceived exertion (−8.4±17.0 beats per minute, p<0.01) and increased dyspnoea (1.7±2.9, p<0.001) exist between the different stages of the CPET as participant’s exercise intensity increased. No significant differences were found between conditions after the 7-minute recovery period.

Conclusion Cloth face masks led to a 14% reduction in exercise time and 29% decrease in VO₂ max, attributed to perceived discomfort associated with mask-wearing. Compared with no mask, participants reported feeling increasingly short of breath and claustrophobic at higher exercise intensities while wearing a cloth face mask. Coaches, trainers and athletes should consider modifying the frequency, intensity, time and type of exercise when wearing a cloth face mask.

INTRODUCTION

The onset of the SARS-CoV-2 and subsequent spread of COVID-19 resulted in a global pandemic declaration by the WHO on 11 March 2020. By early April 2020, mandates were emerging globally requiring face masks in many public or workplaces, including during physical activity or exercise. However, recommendations for wearing face masks during exercise vary globally and the physiological impact of wearing cloth face masks during such activity is not well understood.1–3 Currently, the US Centers for Disease Control and Prevention recommends that all people over 2 years of age wear a cloth face mask, especially when exercising indoors or when social distancing measures are difficult to maintain.4 The WHO cautions that wearing a face mask when exercising may reduce the ability to breathe comfortably and that sweat can make the mask become wet more quickly, resulting in breathing difficulty and promotion of microorganism growth.5 In the USA, the requirements for wearing a face mask are similar for high school6 and collegiate sports1 which require that athletes wear a face mask when physical distancing is not possible. Similarly, gyms and fitness centres for the general population6 and clinical therapeutic exercise programmes for those with acute or chronic diseases (eg, cardiopulmonary rehabilitation) have face mask policies to reduce the impact of droplet or aerosol-generating exercises.

Several studies have investigated the impact of wearing N95 and surgical masks on the cardiovascular and subjective response to exercise.1–3 However, it is important to note that due to the shortage of N95 masks, it is recommended that these be reserved for frontline workers and not worn during exercise.4 Further, surgical masks may become wet during exercise, causing breakdown of the mask and subsequent loss of the ability to block outgoing virus and other germs.5 Thus, because cloth face masks appear to be the most common type of mask used by the general public, examining the impact of wearing a cloth face mask on subjective and objective cardiopulmonary response to maximal exercise and performance is needed.

To address this gap in the body of knowledge surrounding the effects of wearing cloth face masks during exercise, we completed a prospective, randomised crossover trial, in which participants completed two cardiopulmonary exercise tests (CPETs) on a treadmill (1) wearing a cloth face mask and (2) not wearing a cloth face mask. Our primary aim was to determine if wearing a cloth face mask significantly affected performance (ie, reduction in exercise time) and associated physiological responses (eg, maximal oxygen consumption (VO₂ max)). Our secondary aim was to describe perceptual measures of effort (eg, rating...
Original research

of perceived exertion (RPE) and participants’ experiences (eg, comfort, temperature, breathability) while wearing a face mask during the CPET.

METHODS

Participants
Before study initiation, signed informed consent was obtained from all participants. Recruitment occurred through a large healthcare system, sports performance programme and an academic university in the USA. Participation included two visits to the healthcare system’s sports therapy and research facility. Recruitment, screening and testing were completed during 3 weeks in September 2020.

Eligibility criteria included participants between 18 and 29 years of age, no contraindications for maximal treadmill exercise testing (ie, cardiopulmonary conditions, orthopaedic or neurological conditions,), diabetes, claustrophobia, pregnancy and history of COVID-19 infection, and screening with the Physical Activity Readiness Questionnaire. Consent participants were reimbursed $50 per assessment ($100 total).

Sample size calculations were performed to detect a medium effect size for a paired sample of 0.55 with VO_{2max} as the primary outcome. With a 5% significance level and 80% power, it was estimated that 28 participants would be needed. Order of testing was assigned using a 1:1 scheme stratified by sex. Participants crossed over to the other condition an average of 8.3±1.8 days later (see Consolidated Standards of Reporting Trials diagram in figure 1).

Cardiopulmonary exercise testing

Cloth face mask and CPET mask fit

All participants wore the same brand and style of cloth face mask: (22×11 cm, 2 layers of 88% polyester/12% elastane, cotton lining, elastic ear straps) (Foco, Team Beans, Somerset, New Jersey, USA). Participants were then fitted for metabolic testing equipment (K5 Wearable Metabolic System, COSMED, Concord, California, USA). The fit of the cloth face mask beneath the K5 mask was standardised; correct fit was confirmed through expiration with maximal force before each test to identify air leakage (figure 2) by closing the valve of the mask and stopping air flow. The fit was then checked for leakage (eg, lifting of the mask away from the face or sound of whistling) and during testing breath-by-breath measurements were monitored. For trials without face masks, the same K5 mask equipment fit procedures were used.

CPET protocol

All CPETs were completed within a sports performance diagnostic lab using a motorised treadmill (Woodway Pro XL, Waukesha, Wisconsin, USA) by an exercise physiologist. Prior to each CPET, the participant sat quietly for 5 min, followed by a resting measure of auscultatory arterial blood pressure (BP) (Gold Series DS66 Trigger Aneroids and Flexiport Reusable BP cuff, Welch Allyn, Skaneateles Falls, New York, USA; MD One Adult Stethoscope, MDF Instruments, Rincón, Puerto Rico), heart rate (HR) (HRM-Dual, Garmin, Kansas City, Missouri, USA), and SpO_{2} (Deluxe Oximeter, Innovo Medical, Stafford, Texas, USA).

After a 3-minute walking warm-up (2.7 km/hour-1/0% incline), participants performed an exhaustive incremental CPET using a Bruce treadmill protocol (see table 1). Assessments of BP and SpO_{2} were obtained during the last minute of each 3 min stage and immediately prior to exhaustion. RPE (Borg Scale for RPE, scoring 6–20) and dyspnoea (Modified Borg Dyspnoea Scale, scoring 0–10) were obtained and recorded during the last 10 s of each stage. Participants were instructed using a preapproved script to exercise to volitional fatigue. Time to exhaustion was determined by the exercise physiologist as the time from when the participant started the test until they indicated an inability to continue. No verbal or non-verbal encouragement or feedback was provided. After termination, all participants performed a 7-minute standing recovery in both conditions on the treadmill.

Figure 1 CONSORT diagram displaying eligibility, exclusion and randomisation scheme. Thirty-two individuals were consented and enrolled into the research study. Randomisation allocated participants to either the masked or unmasked condition, followed by crossover to the other condition. Participation was discontinued for one individual, resulting in analysis of 31 participants. CONSORT, Consolidated Standards of Reporting Trials.

Figure 2 Fit comparison of K5 COSMED masks with and without cloth face masks. (A1) K5 COSMED mask with no cloth face mask; (A2) K5 COSMED mask with no cloth face mask during fit test; (B1) K5 COSMED mask with cloth face mask and (B2) K5 COSMED mask with cloth face mask during fit test.
Table 1 Number of stages for masked and unmasked trials

<table>
<thead>
<tr>
<th>CPET stage number</th>
<th>Speed/incline</th>
<th>Predicted MET*</th>
<th>Masked</th>
<th>Unmasked</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.7 km/hour/10%</td>
<td>4.6</td>
<td>31 (100%)</td>
<td>31 (100%)</td>
</tr>
<tr>
<td>2</td>
<td>4.0 km/hour/12%</td>
<td>7.0</td>
<td>31 (100%)</td>
<td>31 (100%)</td>
</tr>
<tr>
<td>3</td>
<td>5.4 km/hour/14%</td>
<td>12.1</td>
<td>31 (100%)</td>
<td>31 (100%)</td>
</tr>
<tr>
<td>4</td>
<td>6.7 km/hour/16%</td>
<td>14.9</td>
<td>31 (100%)</td>
<td>31 (100%)</td>
</tr>
<tr>
<td>5</td>
<td>8.0 km/hour/18%</td>
<td>17.0</td>
<td>31 (100%)</td>
<td>31 (100%)</td>
</tr>
<tr>
<td>6</td>
<td>8.8 km/hour/20%</td>
<td>29.3</td>
<td>31 (100%)</td>
<td>31 (100%)</td>
</tr>
</tbody>
</table>

*American College of Sports Medicine values.

Descriptive and outcome data

Descriptive data and physical activity history were collected pretrial. A Scale of Measuring Subjective Perceptions to mask-wearing assessed humidity, heat, breathing resistance, itchiness, tightness, saltiness, feeling unfit, odour and fatigue using a scale of 0 (‘not at all’) to 10 (‘strongly’); overall discomfort was measured on a scale of 0 (‘comfortable’) to 10 (‘extremely uncomfortable’); and brief qualitative questions about their experience were administered immediately following the 7-minute recovery period of the masked trial in which participants were encouraged to sit. Gas analysis was not collected on several participants during recovery as they removed their mask prior to completing the 7-minute standing recovery period due to reported dyspnoea (table 2).

CPET outcomes were measured and recorded during (1) warm-up, (2) the exercise test, and (3) following 7-minute recovery and included time to fatigue, oxygen consumption \((\text{VO}_2)\), \(\text{VO}_2/\text{kg}\), respiratory exchange ratio (RER), minute ventilation \((\text{VE})/\text{carbon dioxide production (VCO}_2)\), VE, breathing reserve \((\text{BR})\), \(\text{VO}_2/\text{HR}\), respiratory frequency (RF) and tidal volume (VT). Expired gases were analysed on a breath-by-breath basis through the K5 device and peak values were averaged using the last 30 s prior to terminating the test. Chronotropic index was calculated for participants in each condition to determine significant differences in cardiovascular response profile.

Data analysis

Continuous data measures were summarised with means and SDs; categorical measures were summarised with counts and percentages. To determine if pretest HR, BP and \(\text{SpO}_2\) differed between trials, measures were compared using Wilcoxon rank sum test due to small sample size. To assess the impact of masked versus unmasked trials, potential ordering effects, and interaction between condition and gender, repeated measures analysis of variance was used. For all comparisons, participants’ data are only included for a given measure if they were collected under both conditions. All analyses were performed using SAS V9.4 with level of significance set at \(p\leq0.05\). Due to the exploratory nature of this study, we did not adjust \(p\) values for multiple comparisons.

Patient and public involvement

The results of the study will be shared with publicly available resources to inform the audience with regard to exercising with cloth face masks.

RESULTS

Demographic and baseline data

The final sample consisted of 31 individuals (Mage=23.2±3.1 years) who successfully completed both test trials and consisted of 14 women and 17 men who were predominantly white (n=17; 54%), followed by Black (n=6; 19%), Asian (n=4; 12%) and American Indian (n=1; 3%) with 10 (32%) of Hispanic ethnicity. Participants engaged in 170±158 min/week of moderate and 206±205 min/week of vigorous physical activity. No participants reported smoking cigarettes, three participants (10%) reported smoking marijuana and five participants (16%) indicated a history of controlled asthma. Other sample characteristics include height (172±11 cm), weight (74.4±16.5 kg) and body mass index (25.1±5.0 m\(^2\)). Most participants reported that they had worn a face mask while exercising prior to enrolling in the study (n=24; 77.4%) and/or that their exercise facility required them (n=19; 61.3%).

CPET data

The number of participants who reached each stage of the CPET for the masked and unmasked condition is presented in table 1. Table 2 reports data for (1) pretrial metrics, (2) each stage of the CPET, (3) the mean maximal values (ie, \(\text{VO}_2\), relative \(\text{VO}_2/\text{kg}\), RER, ventilatory efficiency \((\text{VE}/\text{VCO}_2)\) slope, \(\text{BR}, \text{O}_2/\text{HR}\), RF and tidal volume (VT), and (4) recovery data. Pretrial results indicated no difference between conditions in HR, BP or \(\text{SpO}_2\). For the CPET stage data, no significant differences were observed between conditions in diastolic BP and HR, but significant differences were observed in systolic BP at stages 3 (p=0.04) and 4 (p=0.04), and \(\text{SpO}_2\) pulse oximetry at stages 1 (p=0.07), 3 (p<0.001) and 4 (p<0.001).

Participant maximal CPET data indicated a significant difference between conditions including reduced exercise time (p<0.001), \(\text{VO}_2\max\) (p=0.001), RER (p<0.001), VE (p<0.001), BR (p<0.001), \(\text{VO}_2/\text{HR}\) (p<0.001), HR (p=0.01), \(\text{SpO}_2\) (p<0.001), RF (p<0.001), VT (p<0.001) and increased dyspnoea (p<0.001). No significant differences between conditions were found for \(\text{VE}/\text{VCO}_2\) (p=0.98), RPE (p=0.99), or diastolic (p=0.68) and systolic BP (p=0.27). At the end of the 7-minute recovery period, there was no significant difference between conditions in HR (p=0.15), BP (p=0.45; diastolic, p=0.20) or \(\text{SpO}_2\) (p=0.28). The chronotropic index was determined to be 0.87±0.08 for the masked condition and 0.93±0.09 for the unmasked condition; neither group demonstrated chronotropic incompetence (<0.8). A two-sample paired t-test indicated a statistically significant difference in chronotropic index between the two conditions (p=0.02). Analysis revealed no differences based on the interaction of gender and mask condition (reduced exercise time, maximum HR, maximum BP, systolic BP, diastolic BP, maximum \(\text{SpO}_2\), dyspnoea, RPE) or order of test effect.

Subjective ratings of mask comfort

Table 3 reports post-trial responses to cloth face mask comfort. Participants indicated that the cloth face mask was overall uncomfortable and strongly impacted breath resistance. The majority of the sample (n=30; 96.8%) reported to ‘agree’ (n=8) or ‘strongly agree’ (n=22) that it was harder to give maximum effort during the trial in which they were wearing the cloth face mask. Online supplemental material summarises the qualitative responses from participants collected following the masked trial. Responses in general indicated that participants felt that the test was more difficult in the cloth face mask (‘harder than last time, I fatigued quicker; no effect during the walking stage, affected me during the jog’), especially at increased intensity (‘running was harder than normal, breathing got harder as speed/incline increased’). Participants also mentioned feeling ‘claustrophobic’,...
Table 2 Summary of CPET data—pretrial, staged, maximal and recovery

<table>
<thead>
<tr>
<th>Measure</th>
<th>CPET stage</th>
<th>N*</th>
<th>Masked</th>
<th>Unmasked</th>
<th>Difference (95% CI)</th>
<th>Cohen’s d effect size</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (bpm)</td>
<td>31</td>
<td>64.1±14.8</td>
<td>65.1±15.4</td>
<td>-1 (-5.7 to 3.7)</td>
<td>0.07</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Systolic BP</td>
<td>31</td>
<td>106.5±6.9</td>
<td>106.8±7.3</td>
<td>-0.3 (-2.3 to 1.7)</td>
<td>0.05</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>31</td>
<td>62.5±6.1</td>
<td>61.7±7.5</td>
<td>0.8 (-2.5 to 4.1)</td>
<td>0.09</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>SpO2</td>
<td>31</td>
<td>97.8±1.5</td>
<td>97.9±1.5</td>
<td>-0.1 (-0.6 to 0.4)</td>
<td>0.07</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>Systolic BP (mm Hg)</td>
<td>1</td>
<td>122.4±13.3</td>
<td>121.0±16.2</td>
<td>1.4 (-4 to 6.8)</td>
<td>0.09</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>Systolic BP (mm Hg)</td>
<td>2</td>
<td>138.6±16.3</td>
<td>136.7±19.5</td>
<td>2 (-5.4 to 9.4)</td>
<td>0.01</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>Diastolic BP (mm Hg)</td>
<td>3</td>
<td>157.6±19.4</td>
<td>150.1±22.6</td>
<td>7.5 (0.8 to 14.2)</td>
<td>0.41</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Diastolic BP (mm Hg)</td>
<td>4</td>
<td>172.4±21.7</td>
<td>163.8±22.6</td>
<td>8.6 (-0.1 to 17.3)</td>
<td>0.47</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Diastolic BP (mm Hg)</td>
<td>5</td>
<td>178.0±14.8</td>
<td>179.6±29.1</td>
<td>-1.6 (-32.7 to 29.5)</td>
<td>0.05</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>1</td>
<td>100.7±18.1</td>
<td>101.3±18.2</td>
<td>-0.5 (-4.4 to 3.4)</td>
<td>0.05</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>2</td>
<td>124.9±21.4</td>
<td>119.1±21.5</td>
<td>5.7 (-3 to 14.4)</td>
<td>0.24</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>3</td>
<td>153.0±21.5</td>
<td>151.2±23.5</td>
<td>1.8 (-5.8 to 9.4)</td>
<td>0.09</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>4</td>
<td>170.4±21.7</td>
<td>167.6±22.6</td>
<td>2.9 (-1.9 to 7.7)</td>
<td>0.28</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>5</td>
<td>172.0±7.6</td>
<td>178.2±4.7</td>
<td>-6.2 (-10.7 to 1.7)</td>
<td>1.22</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>SpO2</td>
<td>1</td>
<td>96.6±1.8</td>
<td>97.3±1.3</td>
<td>-0.6 (-1.3 to 0.1)</td>
<td>0.3</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>SpO2</td>
<td>2</td>
<td>96.4±1.8</td>
<td>96.9±1.7</td>
<td>-0.4 (-1.1 to 0.3)</td>
<td>0.22</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>SpO2</td>
<td>3</td>
<td>96.6±1.9</td>
<td>96.5±1.6</td>
<td>-1.9 (-2.7 to 1.1)</td>
<td>0.86</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>SpO2</td>
<td>4</td>
<td>91.9±2.1</td>
<td>94.6±2.3</td>
<td>-2.8 (-4 to 1.6)</td>
<td>1.17</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>SpO2</td>
<td>5</td>
<td>92.3±3.3</td>
<td>93.5±3.1</td>
<td>-1.3 (-3.2 to 0.6)</td>
<td>0.68</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>RPE</td>
<td>1</td>
<td>9.3±2.5</td>
<td>7.4±1.9</td>
<td>1.9 (1 to 2.8)</td>
<td>0.73</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>RPE</td>
<td>2</td>
<td>11.2±3.0</td>
<td>9.9±2.7</td>
<td>1.3 (0.4 to 2.2)</td>
<td>0.2</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>RPE</td>
<td>3</td>
<td>14.3±2.8</td>
<td>12.9±3.0</td>
<td>1.4 (0.5 to 2.3)</td>
<td>0.56</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>RPE</td>
<td>4</td>
<td>17.0±2.1</td>
<td>15.6±2.7</td>
<td>1.4 (0.6 to 2.2)</td>
<td>0.82</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>RPE</td>
<td>5</td>
<td>18.0±3.5</td>
<td>17.6±3.6</td>
<td>0.4 (0.4 to 1.2)</td>
<td>0.44</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>1</td>
<td>1.6±1.4</td>
<td>0.5±0.8</td>
<td>1 (0.5 to 1.5)</td>
<td>0.7</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>2</td>
<td>2.6±1.8</td>
<td>1.4±1.3</td>
<td>1.2 (0.7 to 1.7)</td>
<td>0.92</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>3</td>
<td>4.8±2.8</td>
<td>2.8±1.8</td>
<td>2 (1.3 to 2.7)</td>
<td>1.05</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>4</td>
<td>7.2±2.6</td>
<td>4.8±2.6</td>
<td>2.4 (1.3 to 3.5)</td>
<td>1</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>5</td>
<td>7.6±2.6</td>
<td>5.4±2.8</td>
<td>2.2 (-0.2 to 4.6)</td>
<td>0.81</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Bruce test duration</td>
<td>31</td>
<td>10.5±0.28</td>
<td>12.3±0.27</td>
<td>-1.8 (-0.07 to -0.11)</td>
<td>1.25</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>VO2 (mL/min)</td>
<td>30</td>
<td>2398±881</td>
<td>3216±767</td>
<td>-818 (-1015.5 to 620.7)</td>
<td>1.48</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>VO2/kg (mL/min/kg)</td>
<td>30</td>
<td>32.2±9.0</td>
<td>43.9±8.1</td>
<td>-11.6 (-14.4 to 8.8)</td>
<td>1.51</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>RER</td>
<td>30</td>
<td>1.00±0.10</td>
<td>1.09±0.08</td>
<td>-0.09 (-0.1 to 0.1)</td>
<td>1.13</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>VE/VO2</td>
<td>29</td>
<td>26.2±4.1</td>
<td>26.1±4.8</td>
<td>0.1 (-1.6 to 1.8)</td>
<td>0.92</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>30</td>
<td>7.2±2.9</td>
<td>5.5±2.3</td>
<td>1.7 (0.7 to 2.7)</td>
<td>0.59</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>RPE</td>
<td>30</td>
<td>16.9±3.0</td>
<td>16.8±3.0</td>
<td>0.1 (-1.1 to 1.3)</td>
<td>0.93</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>VE (L/min)</td>
<td>30</td>
<td>54.2±21.0</td>
<td>99.4±24.7</td>
<td>-45.2 (-52.5 to 37.9)</td>
<td>2.23</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Breathing reserve (%)</td>
<td>30</td>
<td>63.1±10.8</td>
<td>34.6±13.8</td>
<td>28.5 (23.2 to 33.8)</td>
<td>1.94</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>VO2/HR (mL/beat)</td>
<td>30</td>
<td>14.0±5.1</td>
<td>17.7±4.5</td>
<td>-3.6 (-4.9 to 2.3)</td>
<td>0.97</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>30</td>
<td>175.3±10.0</td>
<td>183.7±10.8</td>
<td>-8.4 (-14.5 to 2.3)</td>
<td>0.59</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Systolic BP (mm Hg)</td>
<td>31</td>
<td>169.0±22.7</td>
<td>171.0±26.4</td>
<td>-2 (-10.3 to 6.3)</td>
<td>0.08</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Diastolic BP (mm Hg)</td>
<td>31</td>
<td>76.2±10.7</td>
<td>73.9±14.5</td>
<td>2.3 (-3.6 to 8.2)</td>
<td>0.14</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>SpO2</td>
<td>31</td>
<td>93.4±3.1</td>
<td>95.1±2.4</td>
<td>-1.7 (-2.8 to 0.6)</td>
<td>0.55</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Respiratory frequency</td>
<td>30</td>
<td>35.4±8.2</td>
<td>44.8±6.5</td>
<td>-9.4 (-12.5 to 6.3)</td>
<td>1.09</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Tidal volume</td>
<td>30</td>
<td>1.8±0.7</td>
<td>2.4±0.6</td>
<td>-0.6 (-0.7 to 0.5)</td>
<td>1.5</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Continued
‘suffocated’ and ‘anxious’ while wearing the mask and taking ‘shorter, more shallow breaths with the face covering’. Following the test, no participants indicated that moisture or weight of the mask inhibited their performance or resulted in terminating the exercise test.

DISCUSSION

Our data indicate that wearing a cloth face mask significantly impaired participant performance during a CPET. The observed significant differences in key performance variables (ie, reduced exercise time), physiological variables (eg, VO2max, VE, HR, SpO2) and perceptual variables (ie, RPE, dyspnoea) suggest that exercising while wearing a cloth face mask negatively impacted the exercise performance of our sample. Further, our data suggest that differences in SpO2, RPE and dyspnoea (figure 3) existed between different stages of the CPET as participants’ exercise intensity increased. Table 4 compares our results with previous research in this area.

Notably, the ventilatory efficiency for CO2 was unaffected by wearing a mask. This suggests that there was not a greater ventilatory demand associated with removal of CO2 and that, up to the point of exhaustion, ventilation was adequate to maintain arterial oxygen content at near-normal levels.26 SpO2 was reduced by 2% which would reduce peak VO2 (VO2peak) (−1 mL/kg/min) but is not considered clinically significant exercise-induced hypoxaemia.26 27 The perception of exertion can be associated with ventilation, as well as to metabolic efficiency. This is consistent with the lack of effect of mask-wearing on VO2 and VE at exhaustion. Similarly, RPE at the point of exhaustion was unaffected by mask-wearing. As our results do not fully explain how mask-wearing might directly limit cardiovascular function, our conclusion is that the discomfort associated with mask-wearing, as evidenced by the higher ratings of dyspnoea in the mask condition and participants’ qualitative feedback, directly led to the reduction in performance. Further, VO2peak, peak HR and peak VE were lower because of the early termination of exercise. Results also indicated a significant difference in ventilation between conditions, (ie, VT and RF were lower in the masked condition) which may also have contributed to early termination of exercise. This difference in the masked condition may potentially be due to an increased difficulty in breathing at higher intensities as evidenced by reduced number of breaths per minute (RF) and VT (amount of air moved with each breath). Qualitative data potentially support participants’ notion based on responses including ‘felt hard to breathe, felt like I couldn’t get a deep breath’ and ‘had to breathe deeper to get the same amount of air’.

In the present study, RPE at the point of exhaustion was the same in the mask and no mask condition and dyspnoea was significantly reduced by 2% which would reduce peak VO2 (VO2peak) (~1 mL/kg/min) but is not considered clinically significant exercise-induced hypoxaemia. This is consistent with the lack of effect of mask-wearing on VO2 and VE at exhaustion. Similarly, RPE at the point of exhaustion was unaffected by mask-wearing. As our results do not fully explain how mask-wearing might directly limit cardiovascular function, our conclusion is that the discomfort associated with mask-wearing, as evidenced by the higher ratings of dyspnoea in the mask condition and participants’ qualitative feedback, directly led to the reduction in performance. Further, VO2peak, peak HR and peak VE were lower because of the early termination of exercise. Results also indicated a significant difference in ventilation between conditions, (ie, VT and RF were lower in the masked condition) which may also have contributed to early termination of exercise. This difference in the masked condition may potentially be due to an increased difficulty in breathing at higher intensities as evidenced by reduced number of breaths per minute (RF) and VT (amount of air moved with each breath). Qualitative data potentially support participants’ notion based on responses including ‘felt hard to breathe, felt like I couldn’t get a deep breath’ and ‘had to breathe deeper to get the same amount of air’.

In the present study, RPE at the point of exhaustion was the same in the mask and no mask condition and dyspnoea was significantly reduced by 2% which would reduce peak VO2 (VO2peak) (~1 mL/kg/min) but is not considered clinically significant exercise-induced hypoxaemia. This is consistent with the lack of effect of mask-wearing on VO2 and VE at exhaustion. Similarly, RPE at the point of exhaustion was unaffected by mask-wearing. As our results do not fully explain how mask-wearing might directly limit cardiovascular function, our conclusion is that the discomfort associated with mask-wearing, as evidenced by the higher ratings of dyspnoea in the mask condition and participants’ qualitative feedback, directly led to the reduction in performance. Further, VO2peak, peak HR and peak VE were lower because of the early termination of exercise. Results also indicated a significant difference in ventilation between conditions, (ie, VT and RF were lower in the masked condition) which may also have contributed to early termination of exercise. This difference in the masked condition may potentially be due to an increased difficulty in breathing at higher intensities as evidenced by reduced number of breaths per minute (RF) and VT (amount of air moved with each breath). Qualitative data potentially support participants’ notion based on responses including ‘felt hard to breathe, felt like I couldn’t get a deep breath’ and ‘had to breathe deeper to get the same amount of air’.

In the present study, RPE at the point of exhaustion was the same in the mask and no mask condition and dyspnoea was significantly reduced by 2% which would reduce peak VO2 (VO2peak) (~1 mL/kg/min) but is not considered clinically significant exercise-induced hypoxaemia. This is consistent with the lack of effect of mask-wearing on VO2 and VE at exhaustion. Similarly, RPE at the point of exhaustion was unaffected by mask-wearing. As our results do not fully explain how mask-wearing might directly limit cardiovascular function, our conclusion is that the discomfort associated with mask-wearing, as evidenced by the higher ratings of dyspnoea in the mask condition and participants’ qualitative feedback, directly led to the reduction in performance. Further, VO2peak, peak HR and peak VE were lower because of the early termination of exercise. Results also indicated a significant difference in ventilation between conditions, (ie, VT and RF were lower in the masked condition) which may also have contributed to early termination of exercise. This difference in the masked condition may potentially be due to an increased difficulty in breathing at higher intensities as evidenced by reduced number of breaths per minute (RF) and VT (amount of air moved with each breath). Qualitative data potentially support participants’ notion based on responses including ‘felt hard to breathe, felt like I couldn’t get a deep breath’ and ‘had to breathe deeper to get the same amount of air’.

In the present study, RPE at the point of exhaustion was the same in the mask and no mask condition and dyspnoea was significantly reduced by 2% which would reduce peak VO2 (VO2peak) (~1 mL/kg/min) but is not considered clinically significant exercise-induced hypoxaemia. This is consistent with the lack of effect of mask-wearing on VO2 and VE at exhaustion. Similarly, RPE at the point of exhaustion was unaffected by mask-wearing. As our results do not fully explain how mask-wearing might directly limit cardiovascular function, our conclusion is that the discomfort associated with mask-wearing, as evidenced by the higher ratings of dyspnoea in the mask condition and participants’ qualitative feedback, directly led to the reduction in performance. Further, VO2peak, peak HR and peak VE were lower because of the early termination of exercise. Results also indicated a significant difference in ventilation between conditions, (ie, VT and RF were lower in the masked condition) which may also have contributed to early termination of exercise. This difference in the masked condition may potentially be due to an increased difficulty in breathing at higher intensities as evidenced by reduced number of breaths per minute (RF) and VT (amount of air moved with each breath). Qualitative data potentially support participants’ notion based on responses including ‘felt hard to breathe, felt like I couldn’t get a deep breath’ and ‘had to breathe deeper to get the same amount of air’.

In the present study, RPE at the point of exhaustion was the same in the mask and no mask condition and dyspnoea was significantly reduced by 2% which would reduce peak VO2 (VO2peak) (~1 mL/kg/min) but is not considered clinically significant exercise-induced hypoxaemia. This is consistent with the lack of effect of mask-wearing on VO2 and VE at exhaustion. Similarly, RPE at the point of exhaustion was unaffected by mask-wearing. As our results do not fully explain how mask-wearing might directly limit cardiovascular function, our conclusion is that the discomfort associated with mask-wearing, as evidenced by the higher ratings of dyspnoea in the mask condition and participants’ qualitative feedback, directly led to the reduction in performance. Further, VO2peak, peak HR and peak VE were lower because of the early termination of exercise. Results also indicated a significant difference in ventilation between conditions, (ie, VT and RF were lower in the masked condition) which may also have contributed to early termination of exercise. This difference in the masked condition may potentially be due to an increased difficulty in breathing at higher intensities as evidenced by reduced number of breaths per minute (RF) and VT (amount of air moved with each breath). Qualitative data potentially support participants’ notion based on responses including ‘felt hard to breathe, felt like I couldn’t get a deep breath’ and ‘had to breathe deeper to get the same amount of air’.

In the present study, RPE at the point of exhaustion was the same in the mask and no mask condition and dyspnoea was significantly reduced by 2% which would reduce peak VO2 (VO2peak) (~1 mL/kg/min) but is not considered clinically significant exercise-induced hypoxaemia. This is consistent with the lack of effect of mask-wearing on VO2 and VE at exhaustion. Similarly, RPE at the point of exhaustion was unaffected by mask-wearing. As our results do not fully explain how mask-wearing might directly limit cardiovascular function, our conclusion is that the discomfort associated with mask-wearing, as evidenced by the higher ratings of dyspnoea in the mask condition and participants’ qualitative feedback, directly led to the reduction in performance. Further, VO2peak, peak HR and peak VE were lower because of the early termination of exercise. Results also indicated a significant difference in ventilation between conditions, (ie, VT and RF were lower in the masked condition) which may also have contributed to early termination of exercise. This difference in the masked condition may potentially be due to an increased difficulty in breathing at higher intensities as evidenced by reduced number of breaths per minute (RF) and VT (amount of air moved with each breath). Qualitative data potentially support participants’ notion based on responses including ‘felt hard to breathe, felt like I couldn’t get a deep breath’ and ‘had to breathe deeper to get the same amount of air’.
significant difference. We conject that the perception of effort and sense of dyspnoea provided the perceptual cue to terminate exercise in the masked condition. Regardless of the work rate, elapsed time, metabolic demand or ventilatory response, exercise was terminated when the exercise was perceived as ‘very hard’ (on average) and level of dyspnoea was ‘very severe’ (on average).

Implications for exercise performance

Our results have several implications for training and performance while wearing a cloth face mask. First, as wearing a cloth mask reduced exercise performance, VO2peak and related variables, training variables of frequency, intensity, time and type of activity should be modified accordingly. Second, exercise goals can be modified to reflect the reduced performance and psychological impact of wearing a cloth mask while still promoting safe goal attainment.

Limitations and future research

It is important to note the study limitations. Our sample reflects young, apparently healthy, physically active adults, and thus results may not be applicable to other populations (eg, children, older adults, sedentary population, individuals with medical conditions). Next, despite following a thorough process for pretest mask fit, leakage may have occurred during the CPET, especially at higher workloads/stages when ventilation increased. Additionally, while we standardised the cloth face mask for the purposes of the study, there is significant variability in masks used by the public (eg, size, shape, material, design), each of which may impact the effect of masks on exercise responses. Further, resting measurements of dyspnoea would provide insight into the effect of wearing a cloth face mask at rest and measurement of lactate would provide insight into the explanation of reduced VO2 to account for differences associated with effort versus physiological limitations. Finally, participants did not undergo a ‘preparatory’ exercise test, nor were the study team blinded to masked or unmasked conditions (eg, use of a sham). Future research should examine the effect of those specific mask configurations on exercise performance and related physiological variables and whether ‘acclimatisation’—or even improved exercise performance—to wearing masks during exercise occurs, as well as quantitative resting rates of dyspnoea. Further, increased RPE and dyspnoea across all stages during the masked condition warrant future investigation of implications for individuals with history of conditions such as chronic obstructive lung disease, chronic heart failure and asthma. Future research should examine

<table>
<thead>
<tr>
<th>Authors</th>
<th>Design and mask</th>
<th>Number of participants</th>
<th>Age of participants</th>
<th>Test protocol</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver et al</td>
<td>Randomised crossover: cloth face mask, no mask</td>
<td>N=31 (14 women, 17 men)</td>
<td>Mage=23.2±3.1 years</td>
<td>Incremental CPET using a Bruce treadmill protocol</td>
<td>Impaired participant performance in key performance variables (ie, reduced exercise time, physiological variables (eg, VO2max, VE, HR, SpO2) and perceptual variables (ie, RPE, dyspnoea).</td>
</tr>
<tr>
<td>Li et al</td>
<td>Randomised: surgical, N95</td>
<td>N=10 (5 women, 5 men)</td>
<td>Mage=28.0±6 years</td>
<td>Intermittent treadmill test</td>
<td>HR was lower during exercise testing in the surgical mask condition. Participants rated the surgical face masks less favourably on perceived humidity, heat and breath resistance.</td>
</tr>
<tr>
<td>Fikenzer et al</td>
<td>Crossover: surgical, N95, no mask</td>
<td>N=12 men</td>
<td>Mage=38.1±6.2 years</td>
<td>Incremental test on semirecumbent cycle ergometer</td>
<td>Significantly reduced ventilation, VO2max, and comfort in the conditions with surgical and N95 masks compared with no mask.</td>
</tr>
<tr>
<td>Epstein et al</td>
<td>Crossover: surgical, N95, no mask</td>
<td>N=16 men</td>
<td>Mage=34±4 years</td>
<td>Ramp test on cycle ergometer</td>
<td>No significant difference in exercise time, HR, arterial blood oxygen saturation (SAO2) or blood pressure responses across conditions. End-tidal carbon dioxide level during the N95 mask condition (43 mm Hg) was significantly higher compared with surgical mask (40 mm Hg; p=0.04) and no mask (35 mm Hg; p=0.001).</td>
</tr>
<tr>
<td>Shaw et al</td>
<td>Randomised crossover: surgical, cloth face mask, no mask</td>
<td>N=14 (7 women, 7 men)</td>
<td>Mage28.2±8.7 years</td>
<td>Maximal cycle ergometer test</td>
<td>No significant effect of wearing a surgical or cloth mask on exercise time, peak power, SAO2, RPE or HR. No cardiopulmonary or ventilatory data were collected under the cloth mask condition.</td>
</tr>
</tbody>
</table>

CPET, cardiopulmonary exercise test; HR, heart rate; RPE, rating of perceived exertion; VE, minute ventilation; VO2max, maximal oxygen consumption.
cognitive capacity to tasks while wearing a mask during exercise, as well as the relationship between VO$_2$ data and CPET stages.

CONCLUSION

Our data suggest that wearing a cloth face covering negatively impacts exercise performance in healthy adults during a maximal treadmill test. As both physiological and perceptual factors were negatively impacted, coaches, trainers and athletes should be aware of the effect of cloth face coverings as the population continues to exercise safely during the global pandemic.

Twitter Megan Reynolds @megselfreynolds and Erin Reynolds @drerinreynolds

Contributors Study concept—SD, MR, KB, JLV and DWH. Study design—SD, MR, LC, MB, KB, JLV and DWH. Literature search—SD, MR, EM, KB, TG, JLV and DWH. Data acquisition—SD, MR, KB, TG, EM and LC. Data analysis—MB and LC. Manuscript preparation—SD, MR, KB, JLV, DWH, LC and MB. Manuscript editing—SD, MR, KB, MB, LC, TG, EM, ER, JLV, DWH, NB, JLM, CC and AJ. All authors read and approved the final manuscript.

Funding This research study was funded through the Baylor Scott and White Foundation.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval The study protocol for the study was approved by the Institutional Review Board (IRB) committee of Baylor Scott and White Research Institute, Dallas, Texas, USA (IRB#: 020-353).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request per institutional policy.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, commercial purpose (including text and data mining) provided that all copyright terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise. This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, commercial purpose (including text and data mining) provided that all copyright

ORCID iDs

Simon Driver http://orcid.org/0000-0003-2356-432X
Megan Reynolds http://orcid.org/0000-0002-8155-7200

REFERENCES

Question 1: Tell us about your experience wearing the face covering during the test

“Challenging; felt that I could go longer without it”
“Felt hard to breathe, felt like I couldn't get a deep breath”
“Wasn't that bad; once start going faster you start puffing harder. I could still breathe.”
“Mask was snug; wasn't able to breathe as well; [experienced] shortness of breath.”
“Harder to breathe compared to no face covering”
“Harder than last time; I fatigued quicker; no effect during walk stage; affected me during jog.”
“It felt like I couldn't breathe; [I] had anxiety.”
“Had to breathe deeper to get the same amount of air.”
“Definitely much more difficult than normal.”
“Felt more tiring; breathed through mouth more; threw off normal breathing.”
“Difficult; wanted to remove mask soon into the test.”
“Felt suffocating, especially at higher levels of exertion.”
“Mask was constricting; couldn't inhale enough; had to adjust breathing patterns.”
“Significantly harder to breathe as test went on, mask got hot, thought more about breath. Didn't feel short of breath.”
“Constricted breathing, noticed in the first few minutes.”
"Surprisingly went from okay to being tired really quick - sudden increase in intensity."
“Harder than expected, harder to breathe.”
“Felt like there was less oxygen to breathe in as breathing got deeper.”
“I was having to breathe more with my mouth instead of my nose.”
“At first it went well, at end it got difficult.”
“Hard to take a deep breath.”
“It made it a little harder to breathe; felt like I was breathing mask in; in practice, I can pull mask down if I need.”
“[I] had to breathe through mouth instead of nose.”
“[I] feel like I was taking deeper harder breaths to where the face covering was in my mouth.”
“Every inhale blocked nose and mouth.”
“Felt suffocating, hard to breathe.”
“Felt the need to breathe deeper; felt like I was having an anxiety attack; felt like I wasn't getting air through the face covering.”
“The face covering made me feel like I wasn't getting enough air; the humidity of my breath made me feel like I was drowning; the shortness of breath made me stop.”
“I couldn't catch my breath with it [the cloth face mask] on.”
“Running was harder than normal; breathing got harder as speed/incline increased.”
“I feel like I couldn't breathe as well compared to not wearing it; felt a "mental block" because I couldn't forget I was wearing it.”

Question 2: Describe the main differences to completing the test with the face covering versus without.
Face Mask and Exercise 2

“With [cloth face] mask I felt dizzy and as if not getting enough oxygen; felt restrictive with mask.”
“Felt more claustrophobic [with cloth face mask]; felt more fatigue with face covering than without.”
“Main difference is I didn't feel as restricted without it [cloth face mask].”
“[I’m] able to breathe a lot more and easier without [cloth] face mask; able to run longer without [cloth] face mask.”
“Wearing the [cloth] face mask felt tighter; couldn't breathe through nose or mouth; figured out how to breathe with face mask as test went on.”
“Breathing; nose got stopped up; breathe heavier; makes my face hotter.”
“Harder to breathe with [cloth] face mask; had to think more about breathing with face covering.”
“Had to breathe deeper with the [cloth] face covering than without.”
“Harder to breathe with [cloth] face covering; more resistance with the face covering.”
“With the face covering it was harder to breathe. [I] stopped test 1 (cloth mask) because of breathing, stopped test 2 (unmasked) due to muscle fatigue.”
“Felt harder to breathe and get air with [cloth] face mask compared to without.”
“Felt harder to breathe with [cloth] face mask than without; felt like mask was going inside mouth; restricted inhalation/exhalation with mask compared to without.”
“[I was] having to take longer, deeper breaths earlier in test [with cloth mask].”
“[It] felt harder to breathe with [cloth] face mask than without.”
“First time [with cloth face mask my] body was ready to call it-this time it was my lungs; body feels fine but my lungs hurt.”
“Harder to breathe with the [cloth face] mask.”
“Harder to breathe with the [cloth] face mask.”
“I was able to breathe more without the [cloth] face mask.”
“[I] wasn't able to breathe enough oxygen in with the [cloth face] mask; discomfort with mask.”
“[I] had to take longer breaths with the [cloth] face mask compared to without.”
“I had shorter, more shallow breaths with the [cloth face] mask.”
“[It was] harder to breathe with [cloth] face mask; had to breathe deeper.”
“I was] thinking about the [cloth] mask moving, focusing on my breathing, my running a lot more than last week with no mask.”
“[I] could breathe much better without it.”
“[It] felt easier to breathe through nose with no [cloth] face mask; with face mask breathed through mouth.”
“[It was] harder to breathe with [cloth] face mask; had to breathe harder/more deeply with face mask.”
“With [cloth] face mask it was breathing that was limiting factor; without face mask it was muscle fatigue.”
“Not being able to catch my breath with the [cloth] face mask.”
“I feel like my body had to do more work [with cloth face mask].”
“I feel like I couldn't breathe as well; put in more effort without [cloth] face mask.”