OPTIKNEE 2022: consensus recommendations to optimise knee health after traumatic knee injury to prevent osteoarthritis

Jackie L Whittaker,1,2,3 Adam G Culvenor,4 Carsten Bogh Juhl,5,6 Bjørnar Berg,7,8 Alessio Bricca,9,10 Stephanie Rose Filbay,11 Pætur Holm,6,10 Erin Macri,12,13,14 Anouk P Urhansen,15 Clare L Ardern,4,12 Andrea M Bruder,4 Garrett S Bullock,16 Allison M Ezzat,1,14 Michael Girdwood,4 Melissa Haberfield,4,17 Mick Hughes,17 Lina Holm Ingelsrud,18 Karim M Khan,19,20 Christina Y Le,2,20 Justin M Losciale,1,17 Matilde Lundberg,21 Maxi Miciak,20 Britt Elin Øiestad,22 Brooke Patterson,4 Anu M Räisänen,3,23 Sören T Skou,6,10 Jonas Bloch Thorlund,6,21 Clodagh Toomey,24 Linda K Truong,1,2,25 Belle L. van Meer,25 Thomas James West,8,4 James Justin Young,6,26 L Stefan Lohmander,1,27 Carolyn Emery,1,28,29 May Arna Risberg,7,15 Marienke van Middelkoop,13 Ewa M Roos,6 Kay M Crossley,4

ABSTRACT
The goal of the OPTIKNEE consensus is to improve knee and overall health, to prevent osteoarthritis (OA) after a traumatic knee injury. The consensus followed a seven-step hybrid process. Expert groups conducted 7 systematic reviews to synthesise the current evidence and inform recommendations on the burden of knee injuries; risk factors for post-traumatic knee OA; rehabilitation to prevent post-traumatic knee OA; and patient-reported outcomes, muscle function and functional performance tests to monitor people at risk of post-traumatic knee OA. Draft consensus definitions, and clinical and research recommendations were generated, iteratively refined, and discussed at 6, tri-weekly, 2-hour videoconferencing meetings. After each meeting, items were finalised before the expert group (n=36) rated the level of appropriateness for each using a 9-point Likert scale, and recorded dissenting viewpoints through an anonymous online survey. Seven definitions, and 8 clinical recommendations (who to target, what to target and when, rehabilitation approach and interventions, what outcomes to monitor and how) and 6 research recommendations (research priorities, study design considerations, what outcomes to monitor and how) were voted on. All definitions and recommendations were rated appropriate (median appropriateness scores of 7–9) except for two subcomponents of one clinical recommendation, which were rated uncertain (median appropriateness score of 4.5–5.5). Varying levels of evidence supported each recommendation. Clinicians, patients, researchers and other stakeholders may use the definitions and recommendations to advocate for, guide, develop, test and implement person-centred evidence-based rehabilitation programmes following traumatic knee injury, and facilitate data synthesis to reduce the burden of knee post-traumatic knee OA.

EXECUTIVE SUMMARY
To promote knee health and prevent post-traumatic osteoarthritis (PTOA), we recommend that clinicians:

- Prioritise people with single and multi-structure intra-articular knee injuries who have symptoms and/or functional restrictions persisting beyond usual recovery times, or have a subsequent knee injury.

- Provide person-centred interventions to promote education, self-management, and exercises that mitigate known modifiable risk factors for re-injury and non-traumatic OA—commencing as soon as possible after injury and continuing across the lifespan.

- Focus ACL tear management on education and exercise-therapy-based rehabilitation, with optional reconstruction if a patient cannot achieve their acceptable functional level. Rehabilitation should be initially supervised and progress through semi-supervised to unsupervised self-care and include weight bearing, mobility, open and closed kinetic chain resistance, neuromuscular control and plyometric exercises targeting the quadriceps and hamstring muscles. Rehabilitation should also prioritise return to activity preparation, and techniques to promote exercise engagement and knee health self-management.

- Monitor knee pain and other symptoms, adverse events, knee-related quality of life and cognitive behavioural factors (fear, self-efficacy and confidence), self-reported knee function, quadriceps and hamstring muscle function (strength), functional performance (hop battery) and physical activity/sport participation.

To better understand how to promote knee health and prevent PTOA, we recommend that researchers:
Prioritise symptomatic over structural knee PTOA (including reaching consensus on how to define and measure both) and understand how social determinants of health influence PTOA development.

Design studies, including participants with ACL tear and/or non-ACL tear related knee injuries, and assess PTOA risk and rehabilitation interventions with follow-up beyond 5 years.

Monitor knee pain and other symptoms, adverse events, knee-related quality of life, cognitive behavioural factors, physical function (including self-reported function, muscle function and functional performance), physical activity/sport participation and participant global assessment.

INTRODUCTION

Traumatic knee injuries are very common, occurring in 720–1800 per 100,000 persons annually.1,2 Injury frequency varies by sex/gender, age and precipitating event, with the highest incidence in adolescents and young adults participating in sport and recreational activities.3–5 Traumatic knee injuries are associated with short-term (eg, negative mood states, re-injury anxiety, loss of social identity,6 withdrawal from sport,7 physical inactivity8 and gender, age and precipitating event, with the highest incidence in adolescents and young adults participating in sport and recreational activities.4–6 Traumatic knee injuries are associated with short-term (eg, negative mood states, re-injury anxiety, loss of social identity,6 withdrawal from sport,7 physical inactivity8 and long-term (eg, obesity,9 reduced quality of life10 and osteoarthritis (OA)11) negative health outcomes. Specifically, these injuries are linked to a 6-fold increased risk of radiographic OA at 11 years,12 and 6-fold elevated lifetime risk of arthroplasty.13–16

Due to their relatively young age injury, people with traumatic knee injuries develop OA at an earlier age than those without injuries, leading to more years lived with disability.17

Knowing that traumatic injuries precipitate knee OA presents an opportunity to prevent (delay or halt) OA. This opportunity hinges on knowing who develops post-traumatic OA (PTOA; target population), when and how to intervene (target treatments), and what are the most important outcomes and methods to assess them.18

No clinical recommendations are available to guide interventions that might prevent symptomatic PTOA. Care pathways for people with knee injuries vary widely by practitioner, setting, diagnostic testing completed, surgery performed, length/content of care and payment model.19 Importantly, people at-risk of PTOA rarely seek or receive care promoting risk awareness or knee health.20–22 From a research perspective, heterogeneity in OA definitions, outcome domains and measures, prevents synthesis of results across the field.23–25

OPTIKNEE is an international group of clinician scientists, scientists, and patient and clinician partners working to optimise knee and overall health after a traumatic injury to prevent symptomatic knee PTOA. After multiple planning meetings (2017–2019) and a priority setting exercise in 2019 (Toronto, Canada), the OPTIKNEE group embarked on a consensus process. This paper reports the consensus process and its results: definitions and recommendations to guide clinical rehabilitation practice and research aimed at informing, developing, evaluating and implementing rehabilitation interventions to improve knee and overall health-related outcomes following a traumatic knee injury.

METHODS

Design and reporting

The OPTIKNEE consensus followed a seven-step hybrid approach guided by the RAND UCLA Appropriateness Method (RAM)23 and Nominal Group Technique26 (figure 1). The RAM is an established approach explicitly developed to leverage expert opinion in situations where evidence may be incomplete, while the Nominal Group Technique provides a structured approach to face-to-face meetings to facilitate widespread engagement of all participants. Reporting was informed by the Appraisal of Guidelines for Research and Evaluation statement (AGREE II)27 and Conducting and Reporting of Delphi Studies28 as appropriate. Box 1 outlines the methods for each consensus step including expert group selection. All systematic review protocols and consensus materials are freely available on the Open Science Framework at https://osf.io/7fxxu/.

Patient and public involvement

One individual with lived experience of ACL tear (and ACL reconstruction (ACLR)) and four clinicians (ie, physiotherapists and orthopaedic surgeons) contributed to the priority theme setting for the OPTIKNEE consensus. One patient partner and one clinician (sports and exercise medicine physician) were authors on the risk factor review,24 and one additional patient and clinician partner provided feedback on one of the intervention reviews.29 A patient partner and a clinician (physiotherapist) provided feedback on this manuscript.

Mitigation

Consensus exercises can be vulnerable to persuasion (bias) by the steering group30 and dominant personalities,31 lack generalisability and inadvertently suppress contrary opinions that may be vital for moving the field forward.32 Several steps were taken to mitigate these potential downfalls. Steering committee members did not participate in the small group conversations and only contributed to the full group discussions during the consensus meetings when invited, there was a need for clarification, or when they sought guidance from the larger group. We engaged an experienced external moderator (CLA) and used small group discussions, to mitigate the influence of dominant personalities and support all expert group members to contribute. Finally, the unique perspectives of the expert group members contributed to exploring each definition and recommendation through varied lenses.

Role of funding source

The initial priority setting exercise was funded by a Canadian Institutes of Health Research Planning and Dissemination grant (principal investigator JLW #161821). No financial support was received for the systematic reviews or consensus.

Dissemination plan

After the consensus voting was complete, we engaged a ‘knowledge broker’ (a person who promotes interaction between researchers and end users33) to develop and execute a
Consensus statement

Box 1 Consensus methods

1. Convene steering committee (September 2019)
 - Steering committee convened after a 2019 priority setting exercise* hosted by JLW, EMR and KMC.
 - Members included a balance of early (JLW and AGC) and later career (EMR and KMC) clinician scientists, from 3 continents, with expertise in knee injury and OA who had undertaken groundwork for the consensus since 2016.
 - One committee member specifically recruited for expertise in evidence synthesis (CBJ).
2. Develop guiding questions (September 2019)
 - To meet the consensus objectives, the steering committee developed five guiding questions:
 1. What is the burden of traumatic knee injuries?
 2. What are the risk factors for symptomatic and structural knee PTOA?
 3. What rehabilitation approaches and interventions should be used to prevent knee PTOA?
 4. What PROs can monitor important outcomes from traumatic knee injury to PTOA?
 5. What functional tests can monitor important outcome from traumatic knee injury to PTOA?
 - 6 experts (CAE, SF, MAR, BE0, EMM and MVm) were asked to co-lead a systematic review related to a guiding question (review leads).
 - Review leads identified other experts for their review teams, including as possible, a patient and a clinician partner.
 - Equity, Diversity and Inclusion: Experts were selected on their research activities related to traumatic knee injury and PTOA. Gender equity and diversity of career stage, race and geographical location was sought. Clinical rehabilitation experience in the field was viewed favourably.
4. Evidence synthesis to address guiding questions (August 2020–November 2021)
 - Single systematic reviews were conducted to address the burden, risk factor and PROs questions, while the intervention and functional outcomes questions were addressed in two reviews each.
 - Review protocols were registered on the Open Science Framework† (7 August 2020). The Cochrane Handbook1 informed conduct, and the PRISMA guidelines2 and PRISMA-Save extension, 3 informed reporting.
 - Search strategies developed with a librarian scientist, consistent across the population construct (traumatic knee injury and mean or median injury age ≤30 years): All reviews, except the risk factor review, focused on ACL and/or meniscal tears to reflect the majority of evidence. For the risk factor review, the population was expanded to evaluate PTOA risk across all knee injury types.
 - Risk-of-bias across included studies was assessed, and when appropriate, certainty of evidence rated.
 - Table 1 summarises review topics, objectives, synthesis type, risk-of-bias tools and certainty of evidence approach for each review.
 - Steering committee members and review leads met (video conferencing§) every 4-6 weeks (~1 hour) over the review protocol development and conduct stage to ensure consistency in conduct, provide methodological support, and navigate barriers encountered.
5. Generate consensus recommendations (November–December 2021)
 - Consensus recommendations were generated through an iterative process.
 - Review groups submitted clinical recommendations and research recommendations, each accompanied by a statement of supporting evidence.
 - Steering committee members reviewed recommendations, and when needed, requested additional recommendations based on other evidence sources including other systematic reviews, expert consensus, high quality original studies and/or expert opinion.
 - Clarity of draft recommendations were discussed during a videoconferencing meeting with review leads, refined and finalised¶. Draft definitions for commonly used terms across the recommendations were developed by the steering committee to ensure consistency and to facilitate discussions.
6. Revise recommendations (January–May 2022)
 - Draft definitions and recommendations were discussed during 6, 2-hour videoconferencing sessions and revised for voting.**
 - Before meetings, expert group members reviewed the intent of the definitions or recommendations¶, an evidence summary¶ and relevant OPTIKNEE systematic review(s).
 - At the start of each meeting attendees were reminded of the consensus goals, context (secondary prevention of PTOA) and guiding principles (inclusive respectful conversations, solution focused comments).
 - Each meeting included a presentations of definitions or recommendations and supporting evidence; small group breakout room discussions (~6/group); small group discussion summaries to the full group; full group discussion and summary.
 - Discussions were focused on the meaning and/or dissenting views of the definitions or recommendations.
 - Meetings were recorded, and facilitated by an expert external moderator (CLA).4 5 Small group discussions were led by expert group members, supported by a trainee (shared common definitions or recommendations slides and recorded breakout room interaction). Each small group prioritised specific definitions or recommendations to ensure all were discussed equally, but also discussed other items as time permitted.
 - After small groups shared their feedback, the full group elaborated on, or raised new discussion points. Experts could contribute to the discussion by using the raise hand or chat function, and key points were compiled using a real-time collaborative platform.††
 - After meetings, review leads and the steering committee incorporated the feedback and finalised the definitions and recommendations for voting.**
7. Rate recommendations (February–June 2022)
dissemination plan to increase awareness and catalyse adoption of the recommendations among patients, healthcare providers, researchers and other stakeholders (eg, sports organisations and clubs, athletic associations, funding agencies, scholarly societies and healthcare funders).

RESULTS

Expert group demographics

The expert group (n=36) of 33 clinician scientists (29 physiotherapists, 2 sport and exercise medicine physicians, 1 orthopaedic surgeon and 1 chiropractor), and 3 scientists (sports science and kinesiology) included 21 women, 15 men and 1 of undisclosed gender with a mean (SD) age of 41 (12) years. Thirty three either currently or previously had, a patient case-load, and 15 had lived experience of a traumatic knee injury. The group spanned career stages (10 professor or professor emeritus, 3 associate professor, 6 assistant professor, research fellow, instructor, or research associates and 17 trainees, including 1 Master, 8 PhD and 7 post-doctoral fellows) and 9 countries (10 Australia, 8 Canada, 5 Denmark, 5 Norway, 2 Netherlands, 3 USA, 2 Sweden, 1 Ireland and 1 Italy), and was predominantly white (92% white, 5% southeast Asian, 2% west Asian and 1% other). All experts were fluent in English. Individual involvement at each stage is outlined in the online supplemental file 2.

Evidence synthesis

The seven systematic reviews we conducted to synthesise the evidence (table 1), incorporated the findings of approximately 230 studies containing data from >133 000 persons with traumatic knee injuries. The seven systematic reviews, four performed quantitative syntheses, and all seven performed semi-quantitative or narrative syntheses.

Definitions

Twenty-six definitions were developed to facilitate discussions. Eight definitions (ie, rehabilitation, prevention, structural and symptomatic knee OA, knee injury, knee PTOA and early-onset knee PTOA) represented core consensus concepts and were discussed at the first consensus meeting. The remaining 17 definitions were provided to the expert group for reference (see online supplemental file 3). One draft core definition (pre-PTOA) was removed after discussion, because it replicated the concept of ‘at-risk’. The remaining 7 core definitions were deemed appropriate with agreement ranging from 7 to 9 (table 2). Voting distribution and dissenting viewpoints are summarised in the online supplemental file 3.

Recommendations

Figures 2–4 contain the 8 clinical (with 30 subcomponents) and 6 research (with 19 sub-components) recommendations, and a summary of their appropriateness based on expert group voting. A detailed summary of the supporting evidence, voting results and all dissenting viewpoints for all recommendations can be found in online supplemental file 3. The recommendations apply to any traumatic knee injury and/or associated surgery unless otherwise indicated. Symptomatic PTOA was prioritised over structural PTOA, given that pain, disability and impaired quality of life drive the burden of OA and the variable relationship between structure and symptoms. High level themes that unite the recommendations include an expanded focus beyond ACL tears, the complementary nature of exercise-based and surgical interventions, a lifespan approach to mitigating knee PTOA risk and person-centred approach.

Clinical recommendations: the 8 clinical recommendations address who to target, when and how to target and what outcomes to monitor to manage traumatic knee injuries and mitigate the burden of symptomatic knee PTOA. The certainty of evidence for the clinical recommendations ranged from expert opinion to a GRADE (Grading of Recommendations Assessment, Development and Evaluation) rating of moderate (burden, risk factors and interventions) or high (patient-reported outcomes (PROs), strength tests and functional performance tests). GRADE is a method for rating the certainty of evidence and strength of a recommendation. All eight recommendations were rated as appropriate except for two subcomponents related to adjunct treatments (blood-flow restriction training and whole-body vibration) to improve quadriceps strength after an ACL tear or ACLR, which were rated as uncertain (figures 2 and 3). The median (minimum–maximum) agreement across the clinical recommendations was 9 (4.5–9).

Research recommendations: the 6 research recommendations address priorities for knee injury and PTOA research, study design considerations and what outcomes to monitor. One additional draft recommendation (how to interpret outcome changes) was removed after the consensus meeting, because there was insufficient evidence available to inform a recommendation.
Clinical implications and call to action

Decades of research have established that traumatic knee injuries increase the risk of OA. Despite this, widespread clinical actions to promote knee health have not been implemented. There are many barriers to preventative healthcare for knee PTOA. Frontline healthcare providers tend to focus on acute knee injury recovery and return to activity/work/sport, and rarely prioritise their role in preventing knee PTOA or other long-term consequences. To complicate matters, people who experience knee injuries rarely understand their risk for OA, nor seek or receive care beyond the precipitating knee injury.20-22 More broadly, there is a lack of high level evidence and until now, consensus guidelines to guide treatment decisions. This has left clinicians guessing about whom to target, when and how to intervene and what outcomes to monitor.

The OPTIKNEE clinical recommendations are an important first step in overcoming barriers to prevent knee PTOA. The recommendations highlight the elevated risk for PTOA across people with a variety of traumatic knee injuries (including but beyond an ACL tear) and the need to promote knee and overall health in all patients. Considering the resource constraints of the clinical setting, the recommendations highlight PROs that assess multiple outcome domains (useful when deeper understanding is needed), and guidance on how to assess and interpret muscle function and functional performance when sophisticated equipment is, and is not, available. The recommendations highlight exercise-based interventions as core first-line treatments for knee injuries and PTOA prevention, and the importance of equipping patients with the knowledge and skills to self-manage their knee

Instead, guidance on interpreting changes in recommended PROs, muscle function and functional performance tests is provided in online supplemental file 4, and recommendation on thresholds for minimal important change, patient acceptable symptom state and treatment failure are summarised in the PROs systematic review.36 The certainty of evidence for the research recommendations ranged from expert opinion to a GRADE39 rating of moderate (burden, risk factors and interventions) or high (PROs, strength tests and functional performance tests). All 6 recommendations and subcomponents voted on were deemed appropriate (Figure 4), with the median (minimum–maximum) agreement across recommendations of 9 (7–9). Voting distribution and dissenting viewpoints are summarised in the online supplemental file 3.
Consensus statement

Table 2 Core definitions and voting results

<table>
<thead>
<tr>
<th>Word</th>
<th>Definition</th>
<th>Median</th>
<th>Minimum–maximum</th>
<th>Mode</th>
<th>Appropriateness</th>
<th>Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1.</td>
<td>Rehabilitation</td>
<td>A health strategy aimed at enabling people with a health condition reach and maintain their optimal physical, sensory, intellectual, psychological and social functional levels. It does so by providing them with the tools needed to attain independence and self-determination.</td>
<td>8</td>
<td>7–9</td>
<td>8</td>
<td>Appropriate</td>
</tr>
<tr>
<td>D2.</td>
<td>Prevention</td>
<td>Activities that mitigate modifiable risk factors for disease/illness. These activities can focus on reducing the risk of disease/illness in healthy individuals (primary prevention), early identification and reducing progression to disease or illness in individuals at high risk or with preclinical disease/illness (secondary prevention), or improving function and reducing disability in persons diagnosed with a disease/illness (tertiary prevention). In the context of OPTIKNEE, prevention refers to identifying and reducing progression from 'at-risk' to PTOA diagnosis in persons who have had a traumatic knee joint injury (secondary prevention).</td>
<td>8.5</td>
<td>5–9</td>
<td>9</td>
<td>Appropriate</td>
</tr>
<tr>
<td>D3.</td>
<td>Structural knee OA</td>
<td>Knee OA defined by the presence of structural features on imaging, or arthroscopy, which reach an established expert or consensus threshold of magnitude and character to be termed OA (eg, Kellgren and Lawrence grade, MRI-defined OA based on the MRI Osteoarthritis Knee Score and ICRS cartilage score).</td>
<td>9</td>
<td>7–9</td>
<td>9</td>
<td>Appropriate</td>
</tr>
<tr>
<td>D4.</td>
<td>Symptomatic knee OA</td>
<td>Knee OA defined by consensus-based clinical signs and symptoms (eg, ACR, NICE and EULAR definitions), excluding age restrictions, with or without the presence of structural features identified on imaging or arthroscopy.</td>
<td>9</td>
<td>7–9</td>
<td>9</td>
<td>Appropriate</td>
</tr>
<tr>
<td>D5.</td>
<td>Knee injury</td>
<td>Knee joint tissue damage or derangement resulting from a rapid or repeated transfer of kinetic energy.</td>
<td>8.5</td>
<td>5–9</td>
<td>9</td>
<td>Appropriate</td>
</tr>
<tr>
<td>D6.</td>
<td>Knee PTOA</td>
<td>Structural or symptomatic OA that develops following a traumatic knee joint injury.</td>
<td>9</td>
<td>4–9</td>
<td>9</td>
<td>Appropriate</td>
</tr>
<tr>
<td>D7.</td>
<td>Pre-PTOA</td>
<td>This definition was removed after the consensus meeting, because it was felt that it was captured by the concept of 'at-risk'.</td>
<td>7</td>
<td>3–9</td>
<td>7</td>
<td>Appropriate</td>
</tr>
<tr>
<td>D8.</td>
<td>Early-onset knee PTOA</td>
<td>Symptomatic or structural knee PTOA that develops in youth and young adults (ie, young people with old knees). Note: similar in concept to 'early-onset' as in 'early-onset' dementia.</td>
<td>7</td>
<td>3–9</td>
<td>7</td>
<td>Appropriate</td>
</tr>
</tbody>
</table>

*Adapted from Cochrane Group: https://rehabilitation.cochrane.org.
1 OA disease refers to the underlying biology and pathophysiology of OA characterised by structural alterations of the articular cartilage and subchondral bone60 61
2 OA illness refers to an individual’s feeling, or experience of OA characterised by pain, functional impairments, muscle weakness, joint stiffness and reduced quality of life.60 61
3 ACR, American College of Rheumatology; ICRS, International Cartilage Research Society; NICE, National Institutes for Health and Care Excellence; OA, osteoarthritis; PTOA, post-traumatic osteoarthritis.

health over their lifespan. Finally, as exercise is a behaviour, the recommendations recognise several behaviour change techniques, including goal setting (goal-based criteria), feedback on exercise (early supervision and semi-supervision) and social support (a collaborative therapeutic alliance and person-centred approach) as important for promoting exercise engagement.41

The clinical recommendations may not be as prescriptive as some may desire, due to a paucity of evidence. For example, the recommendations do not include a menu of specific exercises or detailed exercise dosages to reduce the risk of knee symptoms and PTOA. Instead, general principles that point to the value of resistance-based, neuromuscular control and plyometric exercises can be used to develop personalised exercise-based programmes.43–45 Clinicians can feel confident about the safety of open and closed chain exercises that target the quadriceps and hamstrings, and neuromuscular electrical stimulation to promote quadriceps strength. In contrast, the expert group recommends caution for the routine use of both blood-flow restriction training, and whole-body vibration to improve quadriceps strength, and against use of continuous passive motion, and knee bracing.

We expect the OPTIKNEE clinical recommendations will spark debate. Surfacing dissenting viewpoints among the expert group (see online supplemental file 3) is a strength of quality consensus statements33 46 and can promote shared decision-making with stakeholders (eg, patients). Expert group dissent centred around how to operationalise the decision that a patient has completed sufficient rehabilitation and should consider ACLR; the value of bracing early post-surgery to restrict motion (meniscal repair) or promote weight-bearing (ACLR) and to temper fear or anxiety of movement; and the feasibility of single domain PROs, hop test battery and formal muscle function (strength, endurance and power) testing in clinical settings.

Research implications and call to action

To move the field of PTOA prevention forward, unique challenges to study design and data synthesis need to be overcome. Some of the biggest hurdles are a lack of a standardised definition of early PTOA, the need for lengthy follow-up to assess for the development and/or progression of PTOA, and adequate participant retention and/or sample sizes to ensure sufficient participants to control for confounding factors (eg, injury type, injury management and physical activity). Data synthesis, which is a solution to the sample size barrier, is currently impeded by variability in outcomes measures, and the tests or instruments
Figure 2 Clinical recommendations 1–4 and appropriateness rating. *See online supplemental file 3 for level of supporting evidence, results of expert group appropriateness voting and dissenting viewpoints for all recommendations (and components). †Applicable to patients who have had an ACL tear and/or undergone an ACLR but may not apply to every individual and situation. The patient and healthcare provider should consider the unique features of a patient’s injury, the resources available to them and their unique situation when developing a treatment plan. ‡Choice of domain(s) will vary based on individual presentation, goals and practicality. Appropriateness rating: ✓ = recommendation is appropriate (median scores: ≥7/9), ? = recommendation is uncertain (median scores: 4–6), X = recommendation is not appropriate (median scores: 1–3). ACL, anterior cruciate ligament; ACLR, ACL reconstruction; OA, osteoarthritis; PTOA, post-traumatic osteoarthritis; QOL, quality of life.

A new approach to consensus

Consensus has been defined as ‘a formal process that aims to derive recommendations on a topic when evidence is NOT available’. As the definition implies, consensus is founded on understanding what evidence exists and what gaps remain. By identifying and making recommendations to bridge these gaps, consensus can unify and guide clinical practice, inspire discourse, push researchers to be more strategic and collaborative and combine collective resources to overcome the barriers.

Several unique design features of our consensus process included our hybrid approach (eg, RAM and Nominal Group Technique); broad guiding questions that required extensive evidence-synthesis; iterative process to develop and revise consensus definitions and recommendations; use of multiple short meetings instead of a traditional singular meeting and videoconferencing. Some features were planned ‘a priori’ (hybrid methods, broad guiding questions and extensive evidence-synthesis), while others were driven by necessity due to COVID-19 pandemic travel restrictions (multiple short meetings and videoconferencing). Others evolved out of opportunities that presented themselves (thorough and thoughtful recommendation iteration).
Consensus statement

<table>
<thead>
<tr>
<th>Clinical Recommendation*</th>
<th>Appropriateness Rating</th>
</tr>
</thead>
</table>
| C5. HOW TO MONITOR PATIENT-REPORTED OUTCOMES after a traumatic knee injury
Core clinical patient-reported outcomes to choose from to monitor MULTIPLE domains include: | ✓ | ? | ✓ |
- KOOS (composite score AND single domain scores for knee pain, other symptoms, function in daily living, function in sport/recreation, QOL)
- WOMET (overall composite score of knee-related physical symptoms, sports/recreation/work/lifestyle, and emotions: mensural only)

Other clinical patient-reported outcomes to choose from to monitor SINGLE domains include:
- Pain: Numerical Rating Scale or Visual Analogue Scale (bi)
- Knee-related QOL: ACL QOL Score (bi)
- Health-related QOL: Visual analogue scale®, or SF-12 (biil)
- Knee-related cognitive behavioural factors: ACLRSI Scale, K-SES, or TSK-11 (biv)
- Physical activity and sport participation: sport resumption and frequency® (biv)
- Participation in social roles, responsibilities and relationships: occupation, caregiving and community® (biv)
- Injury-related mental health: anxiety and depression® (biv)

| C6. HOW TO MONITOR MUSCLE FUNCTION® after a traumatic knee injury
Core clinical knee muscle function measures include: peak thigh muscle (knee extensor/flexor) strength (a). | ✓ | ? |
- Clinical measures of peak knee extensor/flexor strength include: a (as available):
- Computerized dynamometry (concentric isokinetic contraction at 260°/s) (bi)
- Hand-held dynamometry (isometric maximum effort) (bii)
- Weight machine (concentric isotonic 1RM knee extension or knee flexor) curl (bii)

Other important muscle function measures include: thigh muscle endurance (ci) and power (ciil), and trunk, hip, and leg muscle function (di).

| C7. HOW TO MONITOR FUNCTIONAL PERFORMANCE® after a traumatic knee injury
Core clinical functional performance measures include: hopping (a). | ✓ | ? |
- Clinical measures to estimate hop performance include: a battery (bi) of forward (single and repeated), diagonal and/or vertical hop (bii) tests.

Other important clinical measures of functional performance include: balance, agility or other tasks meaningful to the patient® (di).

| C8. HOW TO INTERPRET PATIENT-REPORTED, MUSCLE FUNCTION, AND FUNCTIONAL PERFORMANCE
To interpret the change (a) and current state (b) of an outcome, ask if the patient if they have noticed a meaningful change, and if their current state is acceptable/satisfactory. To better understand a patient’s experience of an outcome, ask about individual PRO® responses (c).

Other recommended measures include: baseline and follow-up score, and direction of change (either improvement or deterioration) in the outcome(s) (di), if the patient felt the change was meaningful (diil), and if they feel that their current state of that outcome is acceptable/satisfactory® (diili).

Figure 3 Clinical recommendations 5–8 and appropriateness rating. *See online supplemental file 3 for level of supporting evidence, results of expert group appropriateness voting and dissenting viewpoints for all recommendations (and components). See supplementary file for examples. Appropriateness rating: ✓ = recommendation is appropriate (median scores: ≥7/9), ? = recommendation is uncertain (median scores: 4–6) and X = recommendation is not appropriate (median scores 1–3). Instrument choice will vary by individual presentation, goals, practicality, and instrument availability. Domains and instruments are presented alphabetically. Licensing requirements may apply but might be available through an employer.® The capacity of a muscle to do work (eg, strength, power and endurance). Strength tests should only be performed when safe. Isometric scores are not interchangeable with isokinetic or isotonic scores. As hand-held dynamometry can underestimate strength, it is important to secure the femur, have the patient push into resistance generated by a fixed belt and for re-assessment to be conducted by the same assessor. 1RM should be based on the average of at least two measures of maximum effort.® The action of carrying out or accomplishing a movement, movement task or movement activity. Hop tests should only be performed when safe. Test choice may be influenced by individual presentation, goals, practicality, and availability of space. Test is presented in alphabetical order as there is insufficient evidence to inform the ‘best’ test or ‘best’ order. ACL, anterior cruciate ligament; ACL-QOL, ACL quality-of-life score; ACLR, ACL reconstruction; ACL-RSI, ACL Return to Sport after Injury Scale; IKDC-SK, International Knee Documentation Committee Subjective Knee Form; K-SES, Knee Self-Efficacy Scale; KOOS, Knee Injury and Osteoarthritis Outcome Score; PTOA, post-traumatic osteoarthritis; QOL, quality of life; RM, repetition maximum; TSK, Tampa Scale of Kinesiophobia; WOMET, Western Ontario Meniscal Evaluation Tool.

The most unique feature was that the consensus meeting was broken into short (2-hour) meetings spread out over several months compared with a more traditional one-off intensive multiday meeting. This provided experts ample time to prepare for individual topics and engage in a more fulsome discussion without the fatigue that can set in during ‘marathon’ meetings. The time between meetings also allowed for considerable reflection, which we believe led to more mature recommendations which most in the expert group found highly appropriate. We also identified benefits associated with the use of videoconferencing. In particular, the small group discussions (virtual breakout rooms), large group discussions and chat function provided multiple opportunities and means to engage experts in the conversation. A skilled moderator was essential to mitigating the bias of any dominant personalities. Finally, the use of a real-time collaborative platform (Padlet) helped to reduce redundancy in conversations and gave experts the confidence that their feedback was recorded and would be taken into consideration as the definitions and recommendations were revised in preparation for voting.

Strengths of the consensus process include an extensive evidence-synthesis, open access to a priori systematic review protocols and consensus materials, reproducible and structured approach to consensus and voting, mitigation strategies to address dominant personalities, and confidential rating by experts. Despite deliberate efforts to generate diversity within the expert panel (ie, gender, race, geography and career stage) we acknowledge that we lack perspectives of persons from racial groups and from middle- to low-income countries. Considered alongside the fact that most of the primary studies included in the systematic reviews were conducted in high-income countries, the recommendations may have limited applicability beyond white communities and middle- to low-income countries. Whenever possible the recommendations include freely available resources (ie, PROs) and less resource intensive options (ie, strength and functional performance testing). The perspectives of patients,
Research Recommendations and Appropriateness Rating

Research Recommendation

<table>
<thead>
<tr>
<th>R1. PRIORITIES for knee injury and knee PTOA OA research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritise symptomatic knee PTOA with or without the presence of structural features, over structural PTOA (a).</td>
</tr>
<tr>
<td>Reach consensus on how to define, measure and report symptomatic and structural knee PTOA to facilitate data synthesis (b).</td>
</tr>
<tr>
<td>Assess the association between social determinants of health (including sex, gender, race), and PTOA to understand disparities (c).</td>
</tr>
<tr>
<td>Appropriateness Rating</td>
</tr>
<tr>
<td>✔ a b c</td>
</tr>
</tbody>
</table>

R2. STUDY DESIGN to identify risk factors for PTOA, and assess rehabilitation interventions after a traumatic knee injury

| Include participants with ACL tear (including ACL deficient) and/or non-ACL tear related injuries (a, d). |
| Report structural knee OA overall and by medial tibiofemoral, lateral tibiofemoral and patellofemoral joint compartments (b). |
| Conduct RCTs of rehabilitation interventions with follow-up >5 years to assess the effect on symptomatic and structural knee PTOA (c). |
| **Appropriateness Rating** |
| a b c d |

R3. WHAT OUTCOMES DOMAIN TO MONITOR after a traumatic knee injury

| Core research outcome domains include: knee-related pain, other symptoms, adverse events (e.g., subsequent injury, giving way), cognitive/behavioural factors, physical function (e.g., self-reported, performance-based, muscle function) QOL, and overall physical activity and sport participation and participant global assessment (ai-viii). |
| Other important research outcome domains include: adioposity, health-related QOL, injury-related costs, comorbidities, participation in social roles (e.g., occupation, care-giving, community participation), imaging (structural) and molecular biomarkers, and injury-related mental health (e.g., anxiety, depression) (bi-viii). |
| **Consider monitoring outcomes across the timespan from injury to OA diagnosis (c).** |

R4. HOW TO MONITOR PATIENT-REPORTED OUTCOMES after a traumatic knee injury

| Research PBOs for other single domains include: EQ-SD Index, SF-12 or SF-36 (health-related QOL); occupation, caregiving and community participation in social roles (e.g., occupation, care-giving, community participation); imaging (structural) and molecular biomarkers, and injury-related mental health (e.g., anxiety, depression) (bi-viii). |
| Research PROs for multiple domains include: IKDC-SKF, KOOS, or WOMET (bi). |

R5. HOW TO MONITOR MUSCLE FUNCTION after a traumatic knee injury

| Core research knee muscle function measures include: peak thigh muscle (knee extensor/flexor) strength (a). |
| Research measures of knee extensor/flexor strength (most to least rigorous, include: computerized dynamometry, concentric isokinetic contraction ≥65°/s), HHD (isometric max effort) with weight machine (concentric isotonic 1 RM knee extension or flexor curl) (bi-bil). |
| Other important research measures of knee muscle function include: muscle endurance (c), power (cii), morphology (cii), and neurophysiology (cii), and function of the lower leg, hip and trunk muscles (cii). |

R6. HOW TO MONITOR FUNCTIONAL PERFORMANCE after a traumatic knee injury

| Core research measures of functional performance include: hop performance (a). |
| Research measures of hop performance include: battery of forward (single and repeated), diagonal and/or vertical hop tests (bi-bil). |
| Core research hop tests include: CHT (diagonal), SHT (single-forward), THT and, 6-m TH (repeated-forward), and VHI (c-cv). |
| Other important research measures of functional performance include: balance, agility or other tasks meaningful to the patient (c). |

Figure 4

Research recommendations and appropriateness rating. *See online supplemental file 3 for level of supporting evidence, results of expert group appropriateness voting and dissenting viewpoints for all recommendations (and components).**

Conclusion

The OPTIKNEE consensus meetings produced 8 clinical and 6 research recommendations based on a rigorous approach and extensive evidence synthesis. The recommendations can be used to increase awareness about, and advocate for preventing the long-term consequences of traumatic knee injuries. The clinical recommendations can guide rehabilitation practice to improve health outcomes following knee injury. Clinician scientists and researchers can use the definitions and research recommendations to develop, test and implement evidence-based interventions for knee injury.
Consensus statement

Box 2 How to apply the OPTIKNEE clinical recommendations

Which patients to discuss and address the risk of knee PTOA with?
⇒ All people with single and multi-structure knee injuries have an elevated risk for PTOA and should be aware of it.
⇒ Those with high risk (ie, intra-articular damage) or symptoms (eg, pain) and/or functional restrictions (eg, less physically active) persisting beyond usual recovery times, or with subsequent knee injury should be taught how to manage this risk.

What can be done to help reduce a patient’s risk of knee PTOA and when to do it?
⇒ Collaborate with the patient to meet their informational needs for knee health and OA (education), guide them to self-manage and teach them how to avoid or address risk factors for non-traumatic OA (eg, weight gain, inactivity and thigh muscle weakness) through person-centred goals.
⇒ Start these efforts as close to the time of their knee injury as possible and continue across the lifespan.

What is evidence-based care for ACL tears?
⇒ In most cases, treatment of an ACL tear should start with education and exercise-based rehabilitation (not surgery).
⇒ Ask the patient who they want to work with to make decisions about their knee health and who needs to be ‘in the room’ for decisions.
⇒ Start a dialogue with the patient (and other stakeholders) about their goals, fears or anxieties, preferences, available resources and go-no-go criteria for non-surgical care, ACLR, supervised rehabilitation, return to activity (training, sport and occupation as appropriate) and ongoing self-management.
⇒ The patient should guide the choice and setting for exercise therapy, but it should include weight-bearing, mobility and open and closed kinetic chain resistance-based neuromuscular control and plyometric exercises that target the leg muscles (specifically, the quadriceps and hamstring) with a dose sufficient to stimulate physiological adaptation.
⇒ To promote the patient’s engagement in their exercise program, co-develop short, intermediate and long-term SMART (specific, measurable, attainable, relevant and timebound) goals.
⇒ Guide patients through progressively challenging movement patterns (that are relevant to their lifestyle) to detect motions associated with anxiety or fear, and then encourage them to mindfully explore and expose themselves to that motion or its subcomponents.

What are the most important outcomes to monitor after traumatic knee injury and best options to do it?
⇒ Choose PROs, muscle strength tests and hop tests based on each patient’s presentation and goals, and the available resources.
⇒ PROs that assess multiple outcome domains and provide a composite score across various knee injury types may be most practical.
⇒ Some PROs are freely available while other have licencing requirements but could be available through your employer.

<table>
<thead>
<tr>
<th>Core outcomes to monitor*</th>
<th>Recommended options*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple domain</td>
<td>KOOS (composite of knee pain, other symptoms, function in sport/recreation and QOL)†</td>
</tr>
<tr>
<td></td>
<td>IKDC (composite of knee symptoms, function and sports activities)</td>
</tr>
<tr>
<td></td>
<td>WOMET (composite of knee physical symptoms, sports/recreation/work/lifestyle and emotions)†</td>
</tr>
<tr>
<td>Knee pain</td>
<td>KOOS pain subscale†</td>
</tr>
<tr>
<td></td>
<td>VAS or NRS</td>
</tr>
<tr>
<td>Other knee symptoms§</td>
<td>KOOS symptoms subscale†</td>
</tr>
<tr>
<td>Knee-related adverse events§</td>
<td>Number of ipsilateral and contralateral knee injuries, including graft tears</td>
</tr>
<tr>
<td></td>
<td>Number of locking or giving away episodes</td>
</tr>
<tr>
<td>Knee-related cognitive behavioural factors§</td>
<td>TSK-11 (fear or anxiety of motion)</td>
</tr>
<tr>
<td></td>
<td>K-SES (knee self-efficacy)</td>
</tr>
<tr>
<td></td>
<td>ACL-RSI (knee confidence and psychological readiness)¶</td>
</tr>
<tr>
<td>Self-reported physical function</td>
<td>KOOS function in daily living subscale†</td>
</tr>
<tr>
<td></td>
<td>KOOS function in sport and recreation subscale†</td>
</tr>
<tr>
<td>Muscle function**</td>
<td>Peak knee extensor/flexor strength with computerised dynamometry (concentric isokinetic ≥60°/s)</td>
</tr>
<tr>
<td></td>
<td>Peak knee extensor/flexor strength with HHD (isometric maximum effort)§</td>
</tr>
<tr>
<td></td>
<td>Peak knee extensor/flexor strength with weight machine (concentric 1RM)††</td>
</tr>
<tr>
<td>Functional performance† †</td>
<td>One or a combination of the SHT, THT, 6 m THT, CHT or VHT</td>
</tr>
<tr>
<td></td>
<td>A battery of forward (SHT, THT and 6 m THT), diagonal (CHT) and vertical (VHT) hop tests§§</td>
</tr>
<tr>
<td>Knee-related QOL</td>
<td>KOOS QOL subscale†</td>
</tr>
<tr>
<td></td>
<td>ACL QOL¶</td>
</tr>
<tr>
<td>Physical activity and sport participation§</td>
<td>Step count</td>
</tr>
<tr>
<td></td>
<td>Minutes of moderate to vigorous physical activity</td>
</tr>
<tr>
<td></td>
<td>Questions about sport resumption, frequency</td>
</tr>
</tbody>
</table>

⇒ Other outcomes that might be important to consider are body weight, health-related QOL, the patient’s occupation, care-giving and community roles and injury-related mental health such as depression and anxiety.
⇒ Only refer the patient for diagnostic imaging if you need the results to direct treatment.

Continued
Box 2 Continued

How and when should monitoring important outcomes be done after a traumatic knee injury?

⇒ Consider assessing at least 1 multidomain PRO, 1 knee extensor and flexor strength test, and 1 hop test at patients’ first and last treatment session, and every 4–6 weeks in between (as applicable).
⇒ Consider asking patients to complete PROs in the waiting room before their treatment session.

What is the best way to interpret and record the current state and change of important outcomes?

⇒ Ask the patient if they feel their current state is acceptable/satisfactory and if they have noticed a meaningful change in the outcome.
⇒ Consider asking the patient about responses to individual PROs items to understand their experience.
⇒ Record the baseline and follow-up score, change in direction (improvement or deterioration) in the outcome, if the patient felt the change was meaningful and if they feel that their current state is acceptable/satisfactory.

*Outcomes and measures are presented in no particular order.
†Freely available at www.koos.nu.
‡For use after meniscal injuries only.
§See online supplemental file 4 for further examples.
¶For use after ACL tear injuries only.

**The capacity of a muscle to do work (eg, strength, power and endurance).
††The action of carrying out or accomplishing a movement, movement task or movement activity.
§§Hop tests should only be performed when it is safe.

rehabilitation programmes, and facilitate data synthesis to reduce the burden of OA.

Author affiliations
1Department of Physical Therapy, The University of British Columbia, Vancouver, British Columbia, Canada
2Arthritis Research Canada, Vancouver, British Columbia, Canada
3Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
4La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
5Department of Physiotherapy and Occupational Therapy, Copenhagen University Hospital, København, Denmark
6Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
7Division of Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway
8Department of Interdisciplinary Health Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
9Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
10The Research Unit PROgrez, Department of Physiotherapy and Occupational Therapy, Naestved-Slægelse-Ringsted Hospitals, Slægelse, Region Zealand, Denmark
11Centre for Health Exercise and Sports Medicine, Department of Physiotherapy, University of Melbourne, Melbourne, Victoria, Australia
12Family of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund University, Lund, Sweden
13Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Canada
14Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund University, Lund, Sweden
15Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
16McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
17Research Unit for General Practice, Department of Public Health, University of Southern Denmark, Odense, Denmark
18Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, Oslo, Norway
19Department of Physical Therapy and Education, College of Health Sciences, Western University of Health Sciences, Lebanon, Oregon, USA
20School of Allied Health, University of Limerick, Limerick, Ireland
21Department of Orthopaedic Surgery, Erasmus MC Medical University Center, Rotterdam, Netherlands
22Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
23Department of Physiotherapy, The University of British Columbia, Vancouver, British Columbia, Canada
24Research Unit for General Practice, Department of Public Health, University of Southern Denmark, Odense, Denmark
25Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, Oslo, Norway
26Department of Physical Therapy and Education, College of Health Sciences, Western University of Health Sciences, Lebanon, Oregon, USA
27Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund University, Lund, Sweden
28Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
29McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
30Twitter Jackie L Whittaker @jwhittak_physio, Adam G Culvenor @agculvenor, Carsten Bogh Juhl @BoghJuhl, Bjørnar Berg @berg_bjornar, Alessio Erica @a_bricca, Stephanie Rose Filbay @stephfilbay, Pietur Holm @PHM_Holm, Erin Maci @Erin_Maci, Anouk P Urhauser @AnoukUrhauser, Clare L Ardem @clare_ardern, Andrea M Bruder @AndreaBruder, Garrett S Bullock @DRGSBullcock, Allison M Ezzat @AllisonEzzat, Michael Girwood @m_girwood, Melissa Haberfield @melhabphysio, Mick Hughes @mckvughwes, Linna Holm Ingelsrud @Linngelsrud, Karim M Khan @KarimMkhan, Christina Y Le @yeophysio, Justin M Lancell @JayLo19, Matilde Lundberg @LundbergMatilde, Max Miciaek @MaxMiciaik, Britt Elin Øiestad @Britt_Elin, Brooke Patterson @knee_Howell, Anu M Raasänen @amraisanen, Søren T Skou @STSkou, Jonas Thorb Lund @jtthorlund, Clodagh Toomey @clo2me, Linda K Truong @LKTphysio, Thomas James West @tsewmot, James Justin Young @James_J_Young, Carolyn Emery @CarolynAEmery, Marienke van Middelkoop @mvannmiddles, Ewa M Roos @ewa_roos and Kay M Crosley @kaymcrosley

Acknowledgements The authors would like to express our deepest thanks to Alison Hoens who is the knowledge broker for the OPTIKNEE consensus.

Contributors AGC, ARF, CE, EM, ERM, KMC, STS, JBT and JLV participated in the OPTIKNEE planning meetings (2017–2019). JLV, ER and KMC hosted the 2019 priority setting meeting. JLV, AGC, AME, AHR, BP, CE, CT, CYL, EM, ERM, JBT, KMC, LKT, LS, MAR, MM, MV, SRF and STS participated in the priority setting meeting. JLV, KMC, AGC and ER were involved in the design of the consensus. JLV coordinated the consensus. JLV, AGC, BB, AB, SRF, PH, EM, APU, CE, MAR, MV, MVM, MSK, MV, MVM, MV, SRF and STS participated in the priority setting meeting.
Patient consent for publication
Not applicable.

Ethics approval
Not applicable.

Provenance and peer review
Not commissioned; externally peer reviewed.

Supplemental material
This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

REFERENCES

