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Abstract
Objective  To determine how distinct combinations of 
resistance training prescription (RTx) variables (load, sets 
and frequency) affect muscle strength and hypertrophy.
Data sources  MEDLINE, Embase, Emcare, SPORTDiscus, 
CINAHL, and Web of Science were searched until 
February 2022.
Eligibility criteria  Randomised trials that included 
healthy adults, compared at least 2 predefined conditions 
(non-exercise control (CTRL) and 12 RTx, differentiated 
by load, sets and/or weekly frequency), and reported 
muscle strength and/or hypertrophy were included.
Analyses  Systematic review and Bayesian network 
meta-analysis methodology was used to compare RTxs 
and CTRL. Surface under the cumulative ranking curve 
values were used to rank conditions. Confidence was 
assessed with threshold analysis.
Results  The strength network included 178 studies 
(n=5097; women=45%). The hypertrophy network 
included 119 studies (n=3364; women=47%). All 
RTxs were superior to CTRL for muscle strength and 
hypertrophy. Higher-load (>80% of single repetition 
maximum) prescriptions maximised strength gains, 
and all prescriptions comparably promoted muscle 
hypertrophy. While the calculated effects of many 
prescriptions were similar, higher-load, multiset, thrice-
weekly training (standardised mean difference (95% 
credible interval); 1.60 (1.38 to 1.82) vs CTRL) was 
the highest-ranked RTx for strength, and higher-load, 
multiset, twice-weekly training (0.66 (0.47 to 0.85) 
vs CTRL) was the highest-ranked RTx for hypertrophy. 
Threshold analysis demonstrated these results were 
extremely robust.
Conclusion  All RTx promoted strength and hypertrophy 
compared with no exercise. The highest-ranked 
prescriptions for strength involved higher loads, whereas 
the highest-ranked prescriptions for hypertrophy included 
multiple sets.
PROSPERO registration number  CRD42021259663 
and CRD42021258902.

Introduction
Skeletal muscle is critical for numerous functional 
and metabolic processes essential to good health. 
Resistance training (RT), muscle contraction against 
external weight, potently increases muscle strength 
and mass (hypertrophy), improves physical perfor-
mance, provides a myriad of metabolic-health 

benefits and combats chronic disease risk.1–4 Although 
endogenous biological and physiological factors are 
pertinent to maximising RT-induced skeletal muscle 
adaptations,5 6 RT programming variables can affect 
RT adaptations.7–13 Therefore, a RT prescription 
(RTx) should be determined appropriately. Each RTx 
is comprised of a distinct combination of RT vari-
ables, and the most-studied RTx variables include the 
load lifted per repetition, sets per exercise (generally 

WHAT IS ALREADY KNOWN ON THIS TOPIC

fi	 Resistance training with varying numbers of 
variables (load, sets, weekly frequency) potently 
increases muscle strength and mass.

fi	 Resistance training prescription involves 
multiple variables, but the optimal resistance 
training prescription remains contentious.

fi	 Network meta-analysis allows simultaneous 
comparisons between multiple resistance 
training prescriptions.

WHAT THIS STUDY ADDS

fi	 This network meta-analysis is the largest 
synthesis of resistance training prescription 
data from randomised trials.

fi	 All resistance training prescriptions are better 
than no exercise for strength and hypertrophy 
in healthy adults.

fi	 The top-ranked prescriptions for strength 
were characterised by higher loads and the 
top-ranked prescriptions for hypertrophy were 
characterised by multiple sets.

fi	 All resistance training prescriptions increased 
strength and hypertrophy, suggesting that 
healthy adults can adopt a resistance training 
prescription of their choice and preference.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY
fi	 Since all protocols increased strength and 

hypertrophy, rather than determining an 
‘optimal’ protocol, future work could determine 
minimal ‘doses’ of resistance exercise and 
practices to promote engagement and 
adherence in this health-promoting form of 
exercise
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involving a single RT manoeuvre or muscle group) and weekly 
frequency (the number of RT sessions completed per week).

Guideline developers rely on systematic reviews and meta-
analyses for determining recommendations, as these study 
designs are, in most cases, the most robust forms of evidence.14 
Indeed, various meta-analyses have provided seminal evidence 
on the univariate impact of load,15–18 sets19–22 or frequency23–27 
to improve muscle strength, mass and physical function. 
However, these univariate analyses limit RT guideline develop-
ment because individual RT variables are neither mutually exclu-
sive nor prescribed independently; rather, several variables are 
collectively inherent to any RTx. Comparisons between multi-
variate RT prescriptions are needed to advance optimal RTx 
guidelines.

Pairwise meta-analyses are methodologically constrained 
to only comparing two RTxs.28 Several RTxs are conceiv-
able, and multiple pairwise meta-analyses are unlikely to yield 
congruent insights. Network meta-analysis (NMA) expands on 
pairwise meta-analysis by permitting the simultaneous compar-
ison of multiple treatments.29 NMA leverages direct and indi-
rect evidence to produce enhanced effect estimates between 
all treatments, even when some comparisons have never been 
tested in randomised trials.30 Additionally, NMA permits the 
rank-ordering of all included treatments and the incorporation 
of data from multi-arm trials.28 Within exercise science, NMA 
has been used to compare different types of exercise31–34; within 
RT, NMA has only been used to compare different load doses.35 
Importantly, NMA can compare several multivariate RTxs.

The purpose of this systematic review and NMA was to deter-
mine how different RTxs affect muscle strength, hypertrophy 
and physical function in healthy adults. Specifically, we sought 
to compare distinct combinations of RTx variables—load, sets 
and frequency—and non-exercising control groups. For each 
outcome, we used NMA to integrate data from randomised 
trials.

Methods
Protocol and registration
This review was conducted according to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses extension 
statement for network meta-analyses (PRISMA-NMA)36 and 
Cochrane Handbook for Systematic Reviews of Interventions.37 
The PRISMA-NMA checklist is provided in online supplemental 
appendix 1. This review combines NMAs registered in the Inter-
national Prospective Register of Systematic Reviews (https://
www.crd.york.ac.uk/prospero/).

Eligibility criteria
The eligibility criteria are detailed in table  1. Only trials that 
included healthy adults ≥18 years old, were randomised, 
compared at least 2 of 13 unique conditions (box  1), and 
measured muscle strength, size and/or physical function were 
included. Physical function was subdivided into three domains: 
mobility, the ability to physically move; balance, the ability to 
maintain a body position during a task; and gait speed, the time 
taken to locomote over a given distance. Trials that included 
athletes, persons with comorbidities or military persons; 
spanned <6 weeks; involved unsupervised RT (eg, home-based 
exercise); were reported in a non-English language; or were 
non-randomised were excluded.

Condition coding framework
Arms of included studies were classified as 1 of 12 RTxs or non-
exercise control (CTRL). Each RTx was classified based on the 

load, set and frequency prescription (box 1). RTxs were denoted 
with a three-character acronym—XY#—where X is load (H, 
≥80% one-repetition maximum (1RM); L, <80% 1RM); Y is 
sets (M, multiset; S, single-set); and # is the weekly frequency 
(3, ≥3 days/week; 2, 2 days/week; 1, 1 day/week), respectively. 
For example, HM2 denotes higher-load, multiset, twice-weekly 
RT within this framework. CTRL was comprised of subjects who 
received no intervention.

Search strategy
MEDLINE, Embase, Emcare, SPORTDiscus, CINAHL and Web 
of Science were systematically searched until 7 February 2022. 
Multiple experts developed the search strategy, which included 
subject headings and keywords specific to the research question 
and each database. No language nor study design limits were used 
in the search strategy. The complete search strategy is provided 
in online supplemental appendix 2. Relevant systematic reviews 
(online supplemental appendix 3) were manually selected, and 
the references were scrutinised for eligibility.

Study selection and data extraction
All records underwent title/abstract screening by two indepen-
dent reviewers, with discrepancies resolved by a third reviewer. 
The full text of potentially eligible reports was then assessed 
for inclusion by two independent reviewers, with discrepancies 
resolved by a third reviewer. Reports deemed eligible for inclu-
sion then underwent data extraction.

Data from included studies were extracted independently by 
pairs of reviewers, with any discrepancies resolved by consensus 
with a third reviewer (BSC or JCM). Extracted data included 
study and participant characteristics, RTx details and measure-
ments of muscle strength and/or size (online supplemental 
appendix 4). Measures of mobility, balance and/or gait speed 
were extracted when the mean participant age was ≥55 years 
old. Authors of studies with missing data were contacted twice 
with a request for the missing data. The systematic review 
software Covidence (Veritas Health Innovation, Melbourne, 
Australia. Available at www.covidence.org) was used for record 
screening and data extraction.

Mean change from baseline and SD change (SDchange) from base-
line were the outcomes of interest and extracted when reported. 
When unreported, SD was calculated with SEs, CIs, p values or 
t-statistics,37 and SDchange was imputed from pre-SD and post-SD 
values with a correlation coefficient of 0.5.35 RT loads reported 
as repetition maximum (RM) were converted to a percentage 
of one-repetition maximum (%1RM) with the equation: 
%1RM=100−(RM(2.5)).38 The highest-ranked measurement 
was extracted, per predetermined hierarchy (online supple-
mental appendix 5), when multiple measurements were reported 
for a single outcome (eg, MRI and ultrasonography for muscle 
size). The longest period that all conditions were unchanged 
from baseline was analysed when the outcome(s) of interest were 
measured at multiple time points.37 Cohorts randomised sepa-
rately but reported together (eg, young and old39) were analysed 
independently. Within-group outcomes reported by participant 
sex were grouped by condition.37 40

Risk of bias
Reviewers independently evaluated the within-study risk of bias 
using the Cochrane Risk of Bias V.2.0. tool.41 Signalling questions 
and criteria were followed to inform the risk of bias appraisals 
for the intention-to-treat effect. Articles were assessed in dupli-
cate at the strength and hypertrophy outcome level for bias: (1) 
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arising from the randomisation process, (2) due to deviations 
from intended interventions, (3) due to missing outcome data, 
(4) in the measurement of the outcome and (5) in the selection 
of reported result. Every domain was determined to be of high, 
moderate (some concerns) or low risk of bias, and studies were 
subsequently given an overall classification of high, moderate or 
low risk of bias. Any disagreement was resolved by consensus 
(BSC and JCM).

Statistical analysis
Standardised mean differences (SMD), adjusted for small-
sample size bias,42 were calculated as the summary statistic 
because each outcome was measured with various tools.37 
The direction of effect was standardised to analyse mobility, 
gait speed and balance to ensure consistency of desirable 
outcomes.43 When multiple studies compared two condi-
tions, random-effects pairwise meta-analyses were conducted 
to identify comparison-level heterogeneity, publication bias, 
outliers and influential cases.40 44 To account for within-trial 
correlations in multi-arm trials (≥3 conditions), the SE in 
the base/reference arm was calculated as the square root 
of the covariance between calculated effects,45 assuming a 
correlation of 0.5 between effect sizes.46

NMA integrated all direct evidence, with one network 
constructed for each outcome. NMA models were fitted 

within a Bayesian framework using Markov chain Monte 
Carlo methods.47 Four chains were run with non-informative 
priors. There were 50 000 iterations per chain; the first 
20 000 were discarded as burn-in iterations. Values were 
collected with a thinning interval of 10. Convergence was 
evaluated by visual inspection of trace plots48 and the poten-
tial scale reduction factor. Both fixed-effects and random-
effects models were fit, and the more parsimonious model 
was used for analysis.49 Model fit was assessed with the 
deviance information criterion (DIC) and posterior mean 
residual deviance.49 50 Heterogeneity was assessed by exam-
ining the between-study SD (τ) and 95% credible intervals 
(95% CrI). Global inconsistency was assessed by comparing 
model fit, DIC and variance parameters between the NMA 
model and an unrelated mean effects (UME) model.51 Local 
inconsistency was assessed with the node-splitting method,52 
and inconsistency was considered to be detected when the 
Bayesian p value<0.05. Forest plots and league tables were 
generated to display relative effects. Surface under the cumu-
lative ranking curve values were used to rank-order each 
condition from top-to-bottom; additionally, the probability 
of each condition ranking in the top three was calculated as 
a percentage of the area under the curve. NMA results were 
presented as posterior SMD and 95% CrI, interpreted as a 
range in which a parameter lies with a 95% probability.53

Table 1  Study inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Population
►► Humans ≥18 years old.
►► Generally healthy (no disease condition indicated other than sarcopenia).
►► Community-dwelling adults.

Intervention
►► Upper-body, lower-body and/or whole-body resistance training.
►► RTx aligns with one predefined node; specifically, exercises performed:
►► with high(H; ≥80% 1 RM or ≥8 RM) or low(L; <80% 1 RM or >8 RM) load, AND
►► for a single (S) or multiple (M) sets, AND
►► once-weekly (1), twice-weekly (2) or at least thrice-weekly (3).
►► Intervention duration ≥6 weeks.

Comparison
►► RTx variable (load, sets or frequency) differentially prescribed between training groups
►► Eligible RTx compared with CTRL.

Outcome
►► Eligible outcome(s) assessed pre-intervention and post-intervention.

Muscle strength:
►► 1RM test.
►► Isometric maximum voluntary contraction.
►► Isokinetic maximum voluntary contraction.

Muscle size: Fat-free mass, fat-free and bone-free mass, lean mass, whole-muscle cross-sectional area or volume or 
thickness or muscle fibre cross-sectional area. Eligible measurement instruments:

►► Ultrasonography.
►► MRI.
►► CT.
►► Bioelectrical impedance.
►► Dual-energy X-ray absorptiometry.
►► Hydrostatic weighing.
►► Air displacement plethysmography.
►► Microscopy.

Physical function: Assessed physical function in older adults (mean age ≥55 years old) in the domain(s):
►► Mobility: (defined as a person’s ability to move physically, eg, Timed Up and Go Test, Chair Rise Sit to Stand).
►► Balance: (defined as the ability to maintain a controlled body position during a given task, eg, Berg Balance Test, 

Sit and Reach Test).
►► Gait speed: (defined as the time it takes to cover a given distance, eg, 6 Minute Walk Test, or 25 Foot Walk Test).

Study design
►► Randomised trial.
►► Reported in English.

Population
►► Non-human species.
►► <18 years old.
►► Persons with or at risk for comorbidities (eg, 

cardiovascular disease, type II diabetes, type 
I diabetes, cancer, peripheral artery disease, 
osteoarthritis).

►► Persons that are injured (eg, musculoskeletal-related 
fracture and/or repair).

►► Athletes or military personnel.
►► Explicitly mentions obese and/or overweight 

participants.
►► Individuals that are hospitalised (inpatient/outpatient/

rehabilitation).
►► Individuals living in long-term care homes.

Intervention
►► Resistance training involved added intervention (eg, 

blood flow restriction)
►► RTx does not align with one node (eg, load 60–90% 

1RM).
►► Explicitly mentions unsupervised resistance training.
►► Resistance training familiarisation/lead-in >4 weeks.
►► CTRL received treatment beyond habitual lifestyle (eg, 

nutritional advice, lifestyle consultation).
Comparison

►► Eligible RTx not compared with another eligible RTx 
nor CTRL.

Outcome
►► No measure of muscle strength, size, mobility, gait 

speed or balance.
Study design

►► Non-randomised trials.
►► Systematic reviews (ie, systematic reviews; meta-

analyses review; meta-regressions; umbrella reviews; 
network meta-analyses).

►► Narrative reviews.
►► Observational studies (eg, retrospective, prospective 

or longitudinal).

CTRL, non-exercise control; 1RM, one-repetition maximum; RTx, resistance training prescription.
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Confidence in recommendations
The robustness of recommendations was assessed with threshold 
analysis.47 54 Several factors, including bias and sampling error, 
can influence NMA results. Threshold analysis determines how 
much the included evidence could change—for any reason—be-
fore treatment recommendations differ and identifies the subse-
quent treatment recommendation.55 Identifying the robustness 
of results with threshold analysis permits guideline devel-
opers to have appropriate confidence levels in the reported 
recommendations.

Sensitivity analysis and network meta-regression
Sensitivity analyses were conducted to explore the impact of 
outliers, influential cases and sources of network inconsistency 
on model fit, relative effects and treatment rankings. The first 
sensitivity analysis excluded studies identified during pair-
wise meta-analyses and node-splitting, and the second sensi-
tivity analysis excluded node(s) comprised of only one study. 
Network meta-regression (NMR), assuming independent 
treatment interactions,56 was performed to determine if addi-
tional factors improved model fit and altered treatment effects. 
NMR covariates included age, training status, the proportion 
of females, duration, volitional fatigue, relative weekly volume 
load, outcome measurement tool, outcome measurement region 
and publication year. Missing data on covariates were managed 
through multivariate imputation by chained equations (n impu-
tations=20).57 NMR is detailed in online supplemental appendix 
12.

All analyses were performed in R V.4.0.4 using the packages: 
‘esc’,58 to calculate SMD; ‘dmetar’,40 to conduct pairwise meta-
analyses and assess comparison-level heterogeneity; ‘multinma’,47 
to conduct NMA, NMR and consistency testing; ‘nmathresh’,54 
to perform thresholding; and ‘mice’,59 to perform multiple 

imputation. Figures were created with multinma,47 metafor60 
ggplot2,61 and GraphPad Prism (V.9.1.0 for Windows, GraphPad 
Software, San Diego, California, USA, www.graphpad.com). All 
code was made publicly available (see Data Sharing Statement).

Equity, diversity and inclusion statement
Our author group comprises various disciplines, career stages 
and genders. Data collection, analysis and reporting methods 
were not altered based on regional, educational or socioeco-
nomic differences of the community in which the included 
studies were conducted. The only consistently reported equity, 
diversity and inclusion-relevant variable on which we have anal-
ysed the data is biological sex.

Results
Included studies
The systematic search yielded 16 880 records after duplicates 
were removed. Following title/abstract screening, 1051 full texts 
were assessed for inclusion. A total of 192 articles were included 
in this review (figure 1). Characteristics of included studies are 
detailed in the online supplemental appendix 6.

Network geometry
Network geometry for strength is displayed in figure 2A. The 
strength NMA (178 studies, n=5097) included 13 conditions 
and 32 direct comparisons. The three largest nodes were CTRL 
(n=1321), LM3 (n=1133) and LM2 (n=710), and the three 
smallest nodes were HM1 (n=54), LS1 (n=34), and HS1 
(n=13). The most common comparisons were LM3 versus 
CTRL (51 studies), HM3 versus LM3 (32 studies), HM3 versus 
CTRL (30 studies) and LM2 versus CTRL (30 studies).

Network geometry for hypertrophy is displayed in figure 2B. 
The hypertrophy NMA (119 studies, n=3364) included 11 
conditions—no studies included HS1 or LS1—and 24 direct 
comparisons. The three largest nodes were CTRL (n=847), 
LM3 (n=810) and LM2 (n=548), and the three smallest nodes 
were HS3 (n=60), HS2 (n=21) and HM1 (n=11). The most 

Box 1  Description of predefined conditions

Condition acronym – condition description
CTRL – non-exercise control.
LS1 – lower load, single set/exercise, 1 day/week day/week 

resistance training.
LS2 – lower load, single set/exercise, 2 days/week days/week 

resistance training.
LS3 – lower load, single set/exercise, ≥3 days/week resistance 

training.
LM1 – lower load, multiple sets/exercise, 1 day/week day/

week resistance training.
LM2 – lower load, multiple sets/exercise, 2 days/week days/

week resistance training.
LM3 – lower load, multiple sets/exercise, ≥3 days/week 

resistance training.
HS1 – higher load, single set/exercise, 1 day/week day/week 

resistance training.
HS2 – higher load, single set/exercise, 2 days/week days/week 

resistance training.
HS3 – higher load, single set/exercise, ≥3 days/week resistance 

training.
HM1 – higher load, multiple sets/exercise, 1 day/week day/

week resistance training.
HM2 – higher load, multiple 2 sets/exercise, 2 days/week days/

week resistance training.
HM3 – higher load, multiple sets/exercise, ≥3 days/week 

resistance training.

Figure 1  PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) flow diagram of study selection.
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common comparisons were LM3 versus CTRL (35 studies), 
HM3 versus LM3 (22 studies), LM2 versus CTRL (18 studies) 
and HM3 versus CTRL (17 studies).

Risk of bias
Within-study risk of bias was moderate–high for both strength 
and hypertrophy outcomes. In the strength network, 22%, 67% 
and 1% of studies had a high, moderate or low risk of bias, 
respectively. In the hypertrophy network, 18%, 82% and 0% 
of studies had a high, moderate or low risk of bias, respectively. 
Study-level risk of bias assessments for both strength and hyper-
trophy is detailed in online supplemental appendix 7.

RTxs versus CTRL
The relative effect of each RTx compared with CTRL on muscle 
strength is displayed in figure  3A. The posterior SMD for all 
prescriptions ranged from 0.75 to 1.60, with the largest relative 
effect from HM3 (1.60 (1.38 to 1.82)). Compared with CTRL, 
the relative effect of LS1 (0.75 (−0.16 to 1.68)) and HS1 (0.79 
(−0.88 to 2.45)) were the only comparisons that the 95% CrI 
crossed zero.

The relative effect of each RTx compared with CTRL on 
muscle hypertrophy is displayed in figure  3B. The posterior 
SMD for all RTx ranged from 0.10 to 0.66, with the largest 
relative effect from HM2 (0.66 (0.47 to 0.85)). Compared with 
CTRL, the relative effect of HS2 (0.10 (-0.57 to 0.80)), HS3 

Figure 3  Forest plots displaying network estimates for relative effects of resistance training prescriptions versus non-exercising control for strength 
(A) and hypertrophy (B). Each resistance training prescription (RTx) is denoted with a three-character acronym—XY#—where X is load (H, ≥80% 
1-repetition maximum (1RM); L, <80% 1 RM); Y is sets (M, multiset; S, single-set); and # is the weekly frequency (3, ≥3 days/week; 2, 2 days/week; 1, 
1 day/week), respectively. For example, ‘HM2’ denotes higher-load, multiset, twice-weekly training. CTRL, non-exercising control; SMD, standardised 
mean difference; 95% CrI, 95% credible interval.

Figure 2  Network geometry for all available studies evaluating strength (A) and hypertrophy (B). Each node represents a unique condition, and the 
size of each node is proportional to the sample size per condition. Each edge represents direct evidence, and the width of each edge is proportional to 
the number of studies comparing connected nodes. Resistance training prescriptions are denoted with a three-character acronym—XY#—where X is 
load (H, ≥80% 1-repetition maximum (1RM); L, <80% 1 RM); Y is sets (M, multiset; S, single-set); and # is the weekly frequency (3, ≥3 days/week; 2, 2 
days/week; 1, 1 day/week), respectively. For example, ‘HM2’ denotes higher-load, multiset, twice-weekly training. CTRL, non-exercising control group.
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(0.34 (−0.02 to 0.71)) and HM1 (0.40 (−0.35 to 1.17)) were 
the only comparisons that the 95% CrI crossed zero.

Comparing RTxs
The relative effects from all 133 network comparisons for muscle 
strength and hypertrophy are displayed in table 2. For compar-
isons between RTxs (ie, not CTRL), the 95% CrI excluded zero 
for 13.6% (9/66) and 2.2% (1/45) of comparisons in the strength 
and hypertrophy NMA, respectively. For muscle strength, there 
was a 95% probability that HM2 yields a larger relative effect 
than LS1, LS2, LS3, LM2 and LM3 and that HM3 yields a larger 
relative effect than LS2, LS3, LM2 and LM3. There was a 95% 
probability for muscle hypertrophy that HM2 yields a larger 
relative effect than LS3.

Ranking conditions
Figure  4 displays the probability that each condition would 
rank in the top three best interventions for muscle strength and 
hypertrophy, such that scores closer to 100% indicate a greater 
chance of ranking in the top three. HM3 (85.5%), HM2 (83.5%) 
and HM1 (60.5%) were most likely to rank in the top three for 
muscle strength. HM2 (86.9%), LM1 (48.7%) and LM2 (48.3%) 
were most likely to rank in the top three for muscle hypertrophy. 
CTRL was the only condition with a 0% chance for strength and 
hypertrophy. Posterior rankings and distribution curves for all 
conditions are reported in the online supplemental appendix 8.

Network inconsistency
Model fit outputs and node-splitting plots are reported in the 
online supplemental appendix 9. In the strength network, the 
UME model (DIC=402.3) was not meaningfully different than 
the random-effects NMA model (DIC=400.8). Node-splitting 
was performed on 29 comparisons; the only significant difference 
was LM1 versus HM1 (p<0.01). In the hypertrophy network, 
the UME model (DIC=143.1) was meaningfully different than 
the random-effects NMA model (DIC=137.8). Node-splitting 
was performed on 22 comparisons; the only significant differ-
ence was LS2 versus CTRL (p<0.01).

Threshold analysis
Threshold analysis results for strength and hypertrophy are 
shown in online supplemental appendix 10. HM3 was the top-
ranked condition for strength; however, 65 comparisons indi-
cated some sensitivity to the level of uncertainty and potential 
biases in the evidence. The revised top-ranked strength condition 
was HM2 in 92% (60/65) or HM1 in 8% (5/65) of comparisons. 
HM2 was the top-ranked condition for hypertrophy, and this 
finding was robust. Two comparisons indicated some sensitivity 
to the level of uncertainty and potential biases in the evidence, 
and HM1 was the revised top-ranked condition in both cases.

Sensitivity analyses
Sensitivity analysis results are displayed in the online supple-
mental appendix 11. For both the strength and hypertrophy 
NMAs, the second sensitivity analysis (discussed herein) most 
improved model fit. The strength network included 155 studies 
(n=4397) and 11 conditions (LS1 and HS1 excluded). The rela-
tive effects for all RTx versus CTRL were tempered, such that 
posterior SMDs ranged from 0.77 to 1.49, with the largest rela-
tive effect from HM2 (1.49 (1.29 to 1.70)) and smallest from 
LS3 (0.77 (0.56 to 0.98)). The 95% CrI for each RTx versus 
CTRL excluded zero. There was a 95% probability that HM2 
yields larger relative effects than LS2, LS3, LM1, LM2, LM3 

and HS3; that HM3 was superior to LS2, LS3, LM1, LM2 and 
LM3; and that LM2 was superior to LS3. HM2 (99.9%) and 
HM3 (95.7%) remained most likely to rank in the top three for 
muscle strength.

The hypertrophy network included 115 studies (n=3240) and 
9 conditions (HS2 and HM1 excluded). The relative effect for 
each RTx versus CTRL was roughly unchanged, with the largest 
relative effect from HM2 (0.59 (0.39 to 0.78)) and the smallest 
from HS3 (0.30 (−0.05 to 0.66)). Between prescriptions, there 
was a 95% probability that LM2 was superior to LS3. HM2 
(82.8%) and LM2 (80.4%) remained most likely to rank in the 
top three for muscle hypertrophy.

Network meta-regression
Network meta-regression results are displayed in the online 
supplemental appendix 12. Model fit was not meaningfully 
different than the unadjusted model for all covariates, except 
relative weekly volume load, which worsened model fit. Age, 
training status, proportion of females, duration, volitional 
fatigue, relative weekly volume load, outcome measurement 
tool, outcome measurement region and publication year did 
not yield any obvious modifying effect on the relative effect for 
each RTx versus CTRL, and data-sparse nodes reduced estimate 
precision.

Physical function
Physical function results are reported in the online supplemental 
appendix 13. Few studies assessed mobility (25 studies, n=859, 
age (mean)=68 years), gait speed (15 studies, n=488, 68 years) 
and balance/flexibility (11 studies, n=323, 68 years). Compared 
with CTRL, there was a 95% probability that LM2, LM3 and 
HM3 improved mobility and gait speed, while HM3 was the 
only condition that improved balance/flexibility (figure 5). No 
differences were found between RT prescriptions for any phys-
ical function outcome.

Discussion
Twelve distinct RT prescriptions and non-exercising control 
groups were compared using network meta-analysis to deter-
mine their effect on gains in muscle strength, hypertrophy and 
improvements in physical function in healthy adults. Compared 
with no exercise, most load, sets and frequency combinations 
increased muscle strength and hypertrophy, indicating that 
several RTx resulted in beneficial skeletal muscle adaptations. 
RT with higher loads characterised the top-ranked strength 
prescriptions, and RT with multiple sets characterised the 
top-ranked hypertrophy prescriptions. A diverse range of RT 
prescriptions improved physical function, but evidence scar-
city limited insights. Guideline developers and practitioners 
may consider these results when forming recommendations and 
prescribing RT for healthy adults.

Network meta-analysis has previously been used to compare 
different types of exercise31–34 and doses of RT load.35 In the 
NMA by Lopez et al,35 23 (n=582) and 24 (n=604) studies were 
included in the strength and hypertrophy networks, respectively. 
The present strength (178 studies, n=5097) and hypertrophy 
(119 studies, n=3364) networks were much larger, and this is 
likely attributable to Lopez et al35 excluding studies not including 
RT to momentary muscular failure and our more comprehensive 
search strategy (262935 vs 16 880 records identified). This NMA, 
to our knowledge, represents the largest synthesis of RT data 
from randomised trials.
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All loads, sets and frequency combinations increased muscle 
strength and size compared with CTRL. There was a 95% 
probability that RT with at least two sets or two sessions per 
week increased strength (figure 3A), and training with at least 
two sets and two sessions per week resulted in hypertrophy 
(figure 3B). Considering only the lower credible interval limit, 
each RTx induced at least a moderate (SMD>0.47) and small 
(SMD>0.16) increase in muscle strength and mass, respectively. 
Such certainty is not possible for all prescriptions, though, 
because the 95% CrI crossed zero for two RTx for strength 
(HS1 and LS1) and three RTx for hypertrophy (HM1, HS2 and 
HS3), meaning these prescriptions might increase, not change 
or decrease muscle strength and size. However, we posit that 
this is unlikely to represent an ineffectiveness of those partic-
ular RTx and that imprecise network estimates confound these 
findings. These strength (HS1 and LS1) and hypertrophy (HM1, 
HS2 and HS3) nodes included <60 participants and contrib-
uted little direct evidence (figure 2). Within each study testing 
these prescriptions, strength increased significantly compared 
with CTRL/baseline in all cases and hypertrophy increased from 
baseline in most cases. Those prescribing RT can be confident 
that all RTxs increased strength and hypertrophy compared with 
no exercise.

Network comparisons suggest that most RT prescriptions 
were comparable for strength and hypertrophy. The 95% CrI 
contained zero for a striking 91% (101/111) of all between-RTx 
comparisons (table 2). Nine of the 10 comparisons that did not 
contain zero were between HM2 or HM3 and a lower-load 
RTx for strength, suggesting higher-load, multiset programmes 
caused the largest strength gains. This result remained after sensi-
tivity analyses (online supplemental appendix 11) and aligned 
with previous meta-analyses that found higher-load RT yields 
the largest strength gains.17 18 35 A critical point for practitioners 
is that lower-load RT prescriptions increase strength compared 
with no exercise. All RT prescriptions may comparably promote 
muscle hypertrophy, and the influence of load was less apparent. 
The lack of importance of load for hypertrophy is supported 
by other analyses,16 17 35 62 but performing RT to momentary 
muscular failure (fatigue) has been posited as a key component 
for RT-induced hypertrophy with lower loads.62 Network meta-
regression for exercise ‘failure’ (fatigue) did not improve model 
fit nor substantially alter network estimates, suggesting that 
lifting to fatigue does not suitably explain the observed hypertro-
phic response. Our finding in this domain agrees with previous 
work,63 suggesting that untrained individuals still achieve large 
gains in skeletal muscle mass without performing RT to failure. 

Performing RT to momentary muscular failure may, however, 
be increasingly important for trained individuals.13 For both 
strength and hypertrophy, though, there was a large credible 
interval surrounding the non-significant effect estimate for many 
comparisons between RTxs, so a wide range of different effects 
are possible for these comparisons. The available evidence does 
not permit definitive, statistically valid conclusions about the 
equivalency of each RTx, despite most comparisons between 
RTxs not being statistically significantly different from each 
other.

Prescriptions for RT with higher loads were more likely to 
rank in the top three for strength than all lower-load prescrip-
tions, and RT prescriptions with multiple sets per exercise were 
most likely to rank in the top three for hypertrophy (figure 4). 
Rankings are sensitive to uncertainties within the network,28 
but posterior ranking credible intervals supported higher-load, 
multiset programmes being the highest-ranked for strength and 
multiple sets or multiple sessions being the highest-ranked for 
hypertrophy. Notably, sets and frequency are major components 
of RT volume, a key factor for hypertrophy.21 64–66 The proba-
bility of each condition ranking in the top three was calculated 
because the top-ranked RTx does not necessarily reflect the best 
intervention for all individuals.67 Personal preferences, including 
disliking higher loads or time constraints, including an inability 
to train more than once weekly, can be observed while still bene-
fiting from RT. In our view, especially given the low participa-
tion rates in RT, practitioners should not avoid prescribing, nor 
should individuals be discouraged from completing non-top-
ranked RTx. While all prescriptions increased muscle strength 
and mass, the top-ranked prescriptions involved higher loads for 
strength and higher volume for hypertrophy. We do not know 
how these RTx affect relevant health outcomes. Some data 
suggest that health benefits exist with low time commitment 
(30–60 min/week) to RT and greater time commitment with 
reduced health benefits.4 68

Ours is the first review to assess confidence in RTx recom-
mendations with threshold analysis. Several factors can influence 
NMA results,55 and the robustness of treatment recommenda-
tions should be considered when interpreting results. Previous 
methods to evaluate the confidence of meta-analytical findings 
do not consider how potentially influencing factors can change 
treatment recommendations55 69 70 or are not yet developed for 
Bayesian NMA.71 Threshold analysis determines how much the 
available evidence could change before recommendations differ 
and identifies a new top-ranked treatment.54 55 Sixty-five direct 
comparisons were identified that could potentially impact the 

Figure 4  Probability for each condition ranking in the top three most effective for strength (A) and hypertrophy (B). Scores closer to 100% indicate 
a greater chance of being ranked in the top three. Resistance training prescriptions are denoted with a three-character acronym—XY#—where X is 
load (H, ≥80% 1-repetition maximum (1RM); L, <80% 1 RM); Y is sets (M, multiset; S, single-set); and # is the weekly frequency (3, ≥3 days/week; 2, 2 
days/week; 1, 1 day/week), respectively. For example, ‘HM2’ denotes higher-load, multiset, twice-weekly training. CTRL, non-exercising control group.
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recommendation of HM3 as the top-ranked strength treatment; 
however, the revised treatment recommendation was HM2 
in 60 of these cases and HM1 in the other five cases (online 

supplemental appendix 10), suggesting that performing RT with 
higher loads and multiple sets/exercise are robust recommenda-
tion for optimising RT-induced strength gains. The top-ranked 
RTx for hypertrophy—HM2—was sensitive to the uncertainty 
of only two comparisons, and HM1 was the revised recommen-
dation because both comparisons were from the same multi-arm 
study.72 Furthermore, 127 of the 161 direct comparisons would 
need to change by more than four SDs to alter HM2 as the top 
recommendation for hypertrophy. The optimised recommenda-
tions of higher load, multiple-set programmes for strength and 
HM2 for hypertrophy were extremely robust.

Current guidelines collectively advise healthy adults to 
complete RT at least twice weekly.10–12 73 The results herein 
support these recommendations and should not deter practi-
tioners from promoting existing guidelines to improve strength 
and hypertrophy, nor do these results contradict the effectiveness 
of guidelines incorporating additional RTx variables, such as rest 
intervals and contraction type and velocity.10 12 However, our 
results support RT at less than recommended often-cited levels 
for enhancing strength and hypertrophy. Most individuals do not 
meet current guidelines, and RTx complexities may impede the 
adoption of RT. Minimal-dose approaches have been proposed 
to reduce barriers to RT,74 and our results strongly support the 
WHO’s claim, ‘Doing some activity is better than none’.73 While 
others attempt to optimise RTx,75 we propose that, for most 
adults, regularly engaging in any RTx is more important than 
training to optimise strength and hypertrophy outcomes. Our 
analysis found multiple RTx comparable for healthy adults to 
increase muscle strength and mass. Thus, adults should engage in 
RT, even if they cannot meet existing recommendations.

Limitations
Risk of bias was frequently introduced by protocol deviations, 
randomisation procedures and selection of the reported result 
for both outcomes (online supplemental appendix 7). All three 
domains were regularly rated “Some concerns” because partic-
ipants were aware of the intervention, appropriate analyses to 
estimate the effect of assignment were not performed and rando-
misation, concealment and prespecified analysis procedures 
were rarely reported. Double-blinding RT is unfeasible, but the 
remaining issues are prevalent and reoccurring in RT research.76 
Researchers should preregister analysis plans and report rando-
misation procedures to reduce bias.

Several limitations require acknowledgement and consider-
ation when interpreting the findings of this review. Well-trained 
elite athletes/military persons and individuals with chronic 
disease were excluded, so the results should be translated to 
these populations with caution and additional insights.13 77–79 
Mobility, gait speed and balance/flexibility findings should 
also be interpreted with caution due to the limited evidence 
available, which could be attributed to including only healthy 
older (>55 year) adults (eg, not frail). The coding framework Figure 5  (Continued)

Figure 5  Forest plots displaying network estimates for relative 
effects of resistance training prescriptions versus non-exercising control 
for mobility (A), gait speed (B) and balance/flexibility. Each resistance 
training prescription (RTx) is denoted with a three-character acronym—
XY#—where X is load (H, ≥80% 1-repetition maximum (1RM); L, <80% 
1 RM); Y is sets (M, multiset; S, single-set); and # is the weekly frequency 
(3, ≥3 days/week; 2, 2 days/week; 1, 1 day/week), respectively. For 
example, ‘HM2’ denotes higher-load, multiset, twice-weekly training. 
CTRL, non-exercising control; SMD, standardised mean difference; 95% 
CrI, 95% credible interval.
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for RT prescriptions prevented the inclusion of periodized RT 
programmes overlapping conditions (eg, loads ranging from 
60–90% 1RM) from being captured in the network. Initially, our 
objective was to further divide the load and set prescriptions; 
however, this yielded sparse, disconnected networks, violating 
a critical assumption of NMA.49 The continuous RTx variables 
investigated herein (load, sets, frequency) were classified cate-
gorically, so future work could use dose-response/model-based 
NMA methods to explore these RTx variables as continuous 
predictors.80 81 Several acute RT variables were not factored 
into the included RT prescriptions (eg, inter-set rest, time under 
tension, repetition velocity, volitional fatigue, tempo); where 
possible, NMR was used to explore if these factors improved 
model fit and altered effects. Results from NMR are correlative, 
however, and should be interpreted cautiously.82 Nonetheless, 
many variables (inter-set rest, tempo, time under tension) were 
reported too infrequently for inclusion as covariates. Calcu-
lating the relative weekly volume load (ie, load × repetitions/set 
× number of sets × number of exercises × weekly frequency), 
which should impact results,21 also required approximations 
that hindered model fit. The principle of specificity17 (ie, the 
similarity between training and testing movement) and approx-
imations of muscle mass (,83 eg, lean mass) could infringe on 
transitivity assumptions37 when integrating results from multiple 
studies and NMR with the covariates measurement tool and 
region were imperfect solutions. Including one measurement 
per outcome for each study may limit the totality of evidence 
captured by this review, so future methodological work could 
explore the integration of multiple correlated effect sizes in 
NMA, as in recent pairwise meta-analyses.63 84 Increasingly, 
within-subject models are used due to their increased statistical 
power.85 To our knowledge, however, no methods are avail-
able to account for the additional correlation when including 
within-subject and between-subject comparisons in NMA. With 
consideration for these limitations, guideline developers and 
practitioners can obtain meaningful insights from this analysis.

Conclusion
This NMA represents the largest synthesis of RTx data from 
randomised trials. Most RTx increased muscle strength and mass 
compared with no exercise. Top-ranked prescriptions for muscle 
strength were characterised by lifting heavier loads, and multiple 
sets characterised top-ranked prescriptions for muscle hyper-
trophy. Guideline developers and practitioners should encourage 
the adoption of RT since all RTx can increase muscle strength 
and mass in healthy adults. The effects on health outcomes of 
various RTx remain largely unknown.
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