Responses

Download PDFPDF
Distinct effects of acute exercise and breaks in sitting on working memory and executive function in older adults: a three-arm, randomised cross-over trial to evaluate the effects of exercise with and without breaks in sitting on cognition
Compose Response

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests

PLEASE NOTE:

  • Responses are moderated before posting and publication is at the absolute discretion of BMJ, however they are not peer-reviewed
  • Once published, you will not have the right to remove or edit your response. Removal or editing of responses is at BMJ's absolute discretion
  • If patients could recognise themselves, or anyone else could recognise a patient from your description, please obtain the patient's written consent to publication and send them to the editorial office before submitting your response [Patient consent forms]
  • By submitting this response you are agreeing to our full [Response terms and requirements]

Vertical Tabs

Other responses

Jump to comment:

  • Published on:
    How does BDNF affect cognitive function during exercise?
    • Yeshun Wu, MD Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
    • Other Contributors:
      • Zijun Chen, MD
      • Jiahao Duan, MD
      • Bin Zhu, MD
      • Ling Yang, MD

    Dear editor,
    We have read with great interest the article by Wheeler et al1 showing distinct effects of exercise with and without breaks in sitting on cognition. In this study, they also demonstrated that both activity conditions increase serum brain-derived neurotrophic growth factor (BDNF) levels. Although we highly appreciate the efforts of the authors to explore potential mechanisms, we suggest that the followings need to be addressed.
    BDNF is an important member of the neurotrophic factors family which enhances neuronal development and plasticity. It is synthesized as the N-glycosylated precursor (brain-derived neurotrophic factor precursor, proBDNF), and secreted into cell matrix processed by Golgi complex. Additionally, BDNF is a novel kind of myokines produced by skeletal muscle after the muscle contraction immediately. Hayashi and coworkers2 observed that both exercise and electrical muscle stimulation could increase the mRNA and protein expression of BDNF in skeletal muscle of rats. In addition, exercise could also enhance gene expression of BDNF and other neuroprotective factors in hippocampus via peroxisome proliferator-activated receptor gamma coactivator-1α-fibronectin type III domain-containing protein 5/irisin (PGC-1α-FNDC5/irisin) pathway.3
    BDNF has been reported to play a pivotal role in the improvement of learning and memory function, which might be associated with the phosphorylation of tropomyosin-related kinase B (TrkB) in cognitive-...

    Show More
    Conflict of Interest:
    None declared.