Article Text

other Versions

Download PDFPDF
Cardiopulmonary capacity and muscle strength in transgender women on long-term gender-affirming hormone therapy: a cross-sectional study
  1. Leonardo Azevedo Mobilia Alvares1,2,
  2. Marcelo Rodrigues Santos3,
  3. Francis Ribeiro Souza3,
  4. Lívia Marcela Santos2,
  5. Berenice Bilharinho de Mendonça1,
  6. Elaine Maria Frade Costa1,
  7. Maria Janieire Nazaré Nunes Alves3,
  8. Sorahia Domenice1
  1. 1 Unidade de Endocrinologia do Desenvolvimento, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, Brazil
  2. 2 Curso de Medicina, Centro Universitário São Camilo, Sao Paulo, Brazil
  3. 3 Unidade de Reabilitação Cardíaca e Fisiologia do Exercício, Universidade de São Paulo Instituto do Coração, Sao Paulo, Brazil
  1. Correspondence to Professor Leonardo Azevedo Mobilia Alvares, Unidade de Endocrinologia do Desenvolvimento, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, 05403-000, Brazil; leo_a_alvares{at}yahoo.com.br

Abstract

Objective For transgender women (TW) on oestrogen therapy, the effects of prior exposure to testosterone during puberty on their performance, mainly cardiopulmonary capacity (CPC), while exerting physical effort are unknown. Our objective was to evaluate CPC and muscle strength in TW undergoing long-term gender-affirming hormone therapy.

Methods A cross-sectional study was carried out with 15 TW (34.2±5.2 years old), 13 cisgender men (CM) and 14 cisgender women (CW). The TW received hormone therapy for 14.4±3.5 years. Bioimpedance, the hand grip test and cardiopulmonary exercise testing on a treadmill with an incremental effort were performed.

Results The mean VO2peak (L/min) was 2606±416.9 in TW, 2167±408.8 in CW and 3358±436.3 in CM (TW vs CW, p<0.05; TW vs CM, p<0.0001; CW vs CM, p<0.0001). The O2 pulse in TW was between that in CW and CM (TW vs CW, p<0.05, TW vs CM, p<0.0001). There was a high correlation between VO2peak and fat-free mass/height2 among TW (r=0.7388; p<0.01), which was not observed in the other groups. The mean strength (kg) was 35.3±5.4 in TW, 29.7±3.6 in CW and 48.4±6.7 in CM (TW vs CW, p<0.05; TW vs CM, p<0.0001).

Conclusion CPC in non-athlete TW showed an intermediate pattern between that in CW and CM. The mean strength and VO2 peak in non-athlete TW while performing physical exertion were higher than those in non-athlete CW and lower than those in CM.

  • Body composition
  • Exercise Test
  • Women
  • Cardiology

Data availability statement

All data relevant to the study are included in the article or uploaded as online supplemental information. Not applicable.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Data availability statement

All data relevant to the study are included in the article or uploaded as online supplemental information. Not applicable.

View Full Text

Footnotes

  • Contributors Study conception and design: LAMA and SD. Data acquisition and analysis: LAMA, MRS, FRS, LMS and M-JNNA. Manuscript drafting: LAMA and SD. Critical revision: SD, EMFC and BBM. Guarantor: LAMA.

  • Funding This research was supported by grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PNPD; institutional fellowship Grant 88887.362860/2019-00 to LAMA), and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Grants 308873/2018-1 (to SD).

  • Competing interests None declared.

  • Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.