Supplementary table 1. Overview of study characteristics | Study | Exercise protocol | Type of Cooling | Method of
Cooling | Change in exercise performance | Change in temperature | Ambient conditions | Conclusion | |-----------------------------|---|-----------------|---|--|---|--|---| | Arngrimsson et al. 2004(11) | 5-km running time trial | Precooling | Cooling vest
during warm-up | 1.3% improvement in time trial performance | Trec 0.2°C↓
Tskin 1.8°C↓ | 32°C
50% rh | Cooling vest improved 5-km run performance | | Burdon et al. 2013(43) | 90 minute steady
state exercise (60%
of VO ₂ max), 4
kJ/kg self-paced
time trial | Precooling | Ice slurry ingestion (-1°C), 25 gr every 5 minutes during steady state exercise | 10.5% improvement in time trial performance | No differences in Tc or Tskin | 32°C
40% rh | Ice slurry ingestion improved exercise performance | | Byrne et al. 2011(37) | Self-paced 30 min cycling time trial | Precooling | Cold water ingestion (2°C) 3x300 ml | 2.8% improvement in covered distance | Reduced Trec until
25 minutes of
exercise | 32°C
60% rh | Precooling enhances exercise performance | | Castle et al. 2006(18) | Intermittent cycling sprints: Twenty 2-min periods | Precooling | 20 min of cooling with: (a) Ice vest (10.7°C) (b) Cold water immersion (17.8°C) (c) Ice packs covering upper legs (-16°C) | Increased peak
power output for
last sprint over
penultimate
No differences in
peak power output
or work done
4% increase in
peak power output
and an improved
work done during
each sprint | Reduced Tskin
until sprint 4
Reduced Tskin
during whole
protocol
Reduced Tskin
until sprint 4 | 34°C
52% rh
34°C
52% rh
34°C
52% rh | Leg cooling offering a more ergogenic effect on the peak power output than upper body or whole body cooling | | Cotter et al. 2000(19) | 20 min cycling (65% of VO ₂ max), 15 min self-paced time trial | Precooling | Ice vest and cold air exposure (3°C) | 16% improvement
in mean power
output | Trec 0.5°C↓ | 35°C
60% rh | Precooling improved endurance exercise performance | | Duffield et al
2003(20) | 80 minute intermittent, repeat sprint cycling exercise | Precooling | Ice cooling jacket
(5 min before
exercise) and
during recovery
periods | No improvement of performance | No differences in Tc and Tskin | 30°C
60% rh | Ice vest cooling did
not improve
performance | | Study | Exercise protocol | Type of Cooling | Method of
Cooling | Change in exercise performance | Change in temperature | Ambient conditions | Conclusion | |---------------------------|--|-------------------------|---|---|---|----------------------------------|---| | Siegel et al.
2012(31) | Running until
exhaustion at first
ventilator threshold | Precooling | 30 min of cooling with: (a) 7.5 g/kg of ice slurry ingestion (-1°C) (b) Cold water immersion (24°C) | improvement in time to exhaustion 21.6% improvement in time to exhaustion | Trec 0.43°C ↓ prior to exercise Trec 0.25°C↓ prior to exercise | 34°C
55% rh
34°C
55% rh | Ice ingestion and cold water immersion increased total time to exhaustion | | Skein et al. 2012
(41) | 50 min intermittent sprint exercise | Precooling | Cold water immersion (10°C) | No difference in total distance covered | Mean Tc 0.57°C↓ during exercise | 31°C
33% rh | Precooling did not improve performance | | Stanley et al. 2010(32) | 75 min cycling at 60% of peak power output + 0.75x30 min performance trial | Precooling | 1 liter in 50 min of -0.8°C ice or 18.4°C fluid | No changes in performance time trial | Tc 0.4°C↓ prior to exercise | 34°C
60% rh | No effects of precooling on exercise performance | | Stevens et al. 2013(42) | Simulated Olympic
distance triathlon
(self-paced 10 km
running time trial) | Precooling | Ice slurry ingestion (< 1°C) | 2.5% improvement in 10 km time trial finishing time | Lower intragastric temperature till 1.5 km | 34°C
25% rh | Ice slurry ingestion improved 10 km running performance | | Tyler et al. 2010(35) | Study A: 75 min
running 60% of
VO ₂ max and a 15
min self-paced time
trial
Study B: 15 min
running time trial | Cooling during exercise | Neck collar (-80°C, left in ambient conditions for 5 min before use) | Study A: 5.9% improvement of covered distance during time trial Study B: no difference in distance covered between trials | Study A: no
difference in neck
Tskin
Study B: Neck
Tskin is lower in
cooling condition | 30°C
50% rh
30°C
50% rh | Cooling the neck can improve exercise performance in a hot environment. | | Tyler et al.
2011a(33) | 90 min preloaded
running trial (75
min 60% of VO ₂
max and 15 min
self-paced | Cooling during exercise | Neck collar (-80°C,
left in ambient
conditions for 10
min before use) | 7.0% improvement in time trial performance | Neck temperature
is reduced by
wearing a neck
collar | 30°C
53% rh | Neck cooling improved time trial performance | | Tyler et al.
2011b(34) | Running at 70% of VO ₂ until exhaustion | Cooling during exercise | Neck collar (-80°C, left in ambient conditions for 5 min before use) | 13.5% improvement of exercise time until exhaustion | Neck Tskin is
reduced
Trec= 0.43↑ | 32°C
53% rh | Cooling the neck increased the time until exhaustion | | Study | Exercise protocol | Type of Cooling | Method of
Cooling | Change in exercise performance | Change in temperature | Ambient
conditions | Conclusion | |---------------------------|--------------------------|-----------------|---------------------------------|----------------------------------|---|-----------------------|---| | Ückert et al.
2007(36) | Incremental running test | Precooling | Cooling vest (0-5°C) for 20 min | 7.3% improvement in running time | Tc and Tskin 0.2°C and 0.8°C↓ at start exercise | 30-32°C
50% rh | Precooling improved running performance | $Tc = core \ body \ temperature; \ Tskin = skin \ temperature; \ Trec = rectal \ temperature; \ Ttymp = tympanic \ temperature; \ Teso = esophageal \ temperature; \ VO_2 \ max = maximal \ oxygen \ consumption; \ rh = relative \ humidity$