Skip to main content
Log in

Abstract

A stochastic complexity analysis is applied to centre-of-pressure (COP) time series, by using different complexity features, namely the spectral entropy, the approximate entropy, and the singular value decomposition spectrum entropy. A principal component analysis allows an estimate of the overall signal complexity in terms of the ensemble complexity score; the difference in values between open-eyes (OE) and closed-eyes (CE) trials is used for clustering purposes. In experiments on healthy young adults, the complexity of the mediolateral component is shown not to depend on the manipulation of vision. Conversely, the increase of the anteroposterior complexity in OE conditions can be statistically significant, leading to a functional division of the subjects into two groups: the Romberg ratios (RRs), namely the ratios of the CE measure to the OE measure, are: RR=1.19±0.15 (group 1 subjects), and RR=1.05±0.14 (group 2 subjects). Multivariate statistical techniques are applied to the complexity features and the parameters of a postural sway model recently proposed; the results suggest that the complexity change is the sign of information-generating behaviours of postural fluctuations, in the presence of a control strategy which aims at loosening long-range correlation and decreasing stochastic activity when visual feedback is allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Basilevsky, A. (1994): ‘Statistical factor analysis and Related methods: theory and applications’ (John Wiley & Sons)

  • Beran, J. (1994): ‘Statistics for long-memory processes’ (Chapman and Hall)

  • Broomhead, D. S. andKing, G. P. (1986): ‘Extracting qualitative dynamics from experimental data’,Physica D,20,pp. 217–236

    Article  MathSciNet  Google Scholar 

  • Carroll, J. P. andFreedman, W. (1993): ‘Nonstationary properties of postural sway’,J. Biomech.,26, pp. 409–416

    Article  Google Scholar 

  • Collins, J. J. andDe Luca, C. J. (1993): ‘Open-loop and closed-loop control of posture: a random-walk analysis of centre-of-pressure trajectories’,Exp. Brain Res.,95, pp. 308–318

    Article  Google Scholar 

  • Collins, J. J. andDe Luca, C. J. (1994): ‘Random walking during quiet standing’,Phys. Rev. Lett.,73, pp. 764–767

    Google Scholar 

  • Collins, J. J. andDe Luca, C. J. (1995): ‘The effects of visual input on open-loop and closed-loop postural control mechanisms’,Exp. Brain Res.,103, pp. 151–163

    Article  Google Scholar 

  • Deriche, M. andTewfik, A. H. (1993): ‘Signal modeling with filtered discrete fractional noise processes’,IEEE Trans. Signal Process.,SP-41, pp. 2839–2849

    Google Scholar 

  • Fraser, A. M. andSwinney, H. L. (1986): ‘Independent coordinates for strange attractors from mutual information’,Phys. Rev. A,33, pp. 1134–1140

    Article  MathSciNet  Google Scholar 

  • Fukuoka, Y., Tanaka, K., Ishida, I. andMinamitani, H. (1999): ‘Characteristics of visual feedback in postural control during standing’,IEEE Trans. Rehab. Eng.,RE-7, pp. 427–434

    Google Scholar 

  • Fukunaga, K. (1990): ‘Introduction to statistical pattern recognition’ (Academic Press)

  • Higuchi, T. (1988): ‘Approach to an irregular time series on the basis of the fractal theory’,Physica D,31, pp. 277–283

    Article  MATH  MathSciNet  Google Scholar 

  • Hosking, J. R. M. (1981): ‘Fractional differencing’,Biometrika,68, pp. 165–176

    MATH  MathSciNet  Google Scholar 

  • Ishida, I. andMiyazaki (1987): ‘Maximum likelihood identification of a posture control system’,IEEE Trans. Biomed. Eng.,BME-34, pp. 1–5

    Google Scholar 

  • Ishida, A., Imai, S. andFukuoka, Y. (1997): ‘Analysis of the posture control system under fixed and sway-referenced support conditions’,IEEE Trans. Biomed. Eng.,BME-44, pp. 331–336

    Google Scholar 

  • Johansson, R., Magnusson, M. andÅkesson, M. (1988): ‘Identification of human postural dynamics’,IEEE Trans. Biomed. Eng.,BME-35, pp. 858–869

    Google Scholar 

  • Kaplan, D. T., Furman, M. I. andPincus, S. (1990): ‘Techniques for analyzing complexity in heart rate and beat-to-beat blood pressure signals’ in ‘IEEE computers in cardiology’ (IEEE Computer Society Press, Los Alamitos, CA), pp. 243–246

    Google Scholar 

  • Kasdin, N. J. (1995): ‘Discrete simulation of colored noise and stochastic processes and 1/f power law noise generation’,Proc. IEEE,83, pp. 802–827

    Article  Google Scholar 

  • Lacour, M., Barthelemy, J., Borel, L., Magnan, J., Xerri, C., Chays, A. andOuaknine, M. (1997): ‘Sensory strategies in human postural control before and after unilateral vestibular neurotomy’,Exp. Brain Res.,115, pp. 300–310

    Article  Google Scholar 

  • Mandelbrot, B. andVan Ness, J. W. (1968): ‘Fractional Brownian motions, fractional noises and applications’,SIAM Rev.,10, pp. 422–437

    Article  MathSciNet  Google Scholar 

  • Marple, S. L. (1987): ‘Digital spectral analysis with applications’ (Prentice-Hall)

  • Newell, K. M., Sloubonov, S. M. andSloubonova, E. S. (1997): ‘Stochastic processes in postural centre-of-pressure profiles’,Exp. Brain Res.,113, pp. 158–164

    Google Scholar 

  • Onaral, B., Cammarota, J. P. (1995): ‘Complexity, scaling and fractals in biomedical signals’ inBronzino, J. D. (Ed.): ‘CRC biomedical engineering handbook’, pp. 933–944

  • Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M. andStanley, H. E. (1992): ‘Long-range correlations in nucleoide sequences’,Nature,356, pp. 168–170

    Article  Google Scholar 

  • Pincus, S. (1991): ‘Approximate entropy as a measure of system complexity’,Proc. Natl. Acad. Sci. USA,88, pp. 2297–2301

    MATH  MathSciNet  Google Scholar 

  • Prieto, T. E., Myklebust, J. B., andMyklebust, B. M. (1993): ‘Characterization and modelling of postural steadiness in the elderly: A review’,IEEE Trans. Rehab. Eng.,RE-1, pp. 26–34

    Google Scholar 

  • Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., andMyklebust, B. M. (1996): ‘Measures of postural steadiness: difference between healthy young and elderly adults’,IEEE Trans. Biomed. Eng.,BME-43, pp. 956–966

    Google Scholar 

  • Rezek, I. A. andRoberts, S. J. (1998): ‘Stochastic complexity measures for physiological signal analysis’,IEEE Trans. Biomed. Eng.,BME-45, pp. 1186–1191

    Google Scholar 

  • Riley, M. A., Balasubramaniam, R. andTurvey, M. T. (1999): ‘Recurrence quantification analysis of postural fluctuations’,Gait & Posture,9, pp. 65–78

    Article  Google Scholar 

  • Riley, M. A., Mitra, S., Stoffregen, T. A. andTurvey, M. T. (1997a): ‘Influences of body lean and vision on unperturbed postural sway’,Motor Control,1, pp. 229–246

    Google Scholar 

  • Riley, M. A., Wong, S., Mitra, S. andTurvey, M. T. (1997b): ‘Common effects of touch and vision on postural parameters’,Exp. Brain Res.,117, pp. 165–170

    Article  Google Scholar 

  • Roberts, S. J., Penny, W. andRezek, I. (1999): ‘Temporal and spatial complexity measures for electroencephalogram based brain-computer interfacing’,Med. Biol. Eng. Comp.,37, pp. 93–98

    Google Scholar 

  • Sabatini, A. M. (2000): ‘A statistical mechanical analysis of postural sway using non-Gaussian FARIMA stochastic models’,IEEE Trans. Biomed. Eng.,BME-47, pp. 1219–1227

    Google Scholar 

  • Slepian, D. (1978): ‘Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case’,Bell Syst. Tech. J.,57, pp. 1371–1430

    MATH  Google Scholar 

  • Thomson, D. J. (1982): ‘Spectrum estimation and harmonic analysis’,Proc. IEEE,70, pp. 1055–1096

    Google Scholar 

  • Winter, D. A. (1990): ‘Biomechanics and motor control of human movement’ (Wiley and Sons)

  • Winter, D. A., Prince, F., Frank, J. S., Powell, C. andZabjek, K. F. (1996): ‘Unified theory regarding A/P and M/L balance in quiet stance’,J. Neurophysiol.,75, pp. 2334–2343

    Google Scholar 

  • Ziblut, J. P. andWebber, C. L. (1992): ‘Embeddings and delays as derived from quantification of recurrence plots’,Phys. Lett. A,171, pp. 199–203

    Google Scholar 

  • Ziblut, J. P., Giuliani, A. andWebber, C. L. (1998): ‘Recurrence Quantification Analysis and principal components in the detection of short complex signals’,Phys. Lett A,237, pp. 131–135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Sabatini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabatini, A.M. Analysis of postural sway using entropy measures of signal complexity. Med. Biol. Eng. Comput. 38, 617–624 (2000). https://doi.org/10.1007/BF02344866

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344866

Keywords

Navigation