Skip to main content
Log in

Neuromuscular and biomechanical landing performance subsequent to ipsilateral semitendinosus and gracilis autograft anterior cruciate ligament reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The hamstrings musculature is a vital component of an intricate dynamic knee joint restraint mechanism. However, there is evidence based on research studies suggesting potential deficits to this complex mechanism due to donor site morbidity resulting from harvest of the ipsilateral semitendinosus and gracilis autograft (ISGA) for anterior cruciate ligament reconstruction (ACLR). The purpose of this retrospective research study was to investigate the effects of ISGA ACLR on neuromuscular and biomechanical performance during a single-leg vertical drop landing (VDL), a functional task and associated mechanism of anterior cruciate ligament disruption during physical activity. Fourteen physically active participants 22.5 ± 4.1 years of age and 21.4 ± 10.7 months post ISGA ACLR underwent bilateral neuromuscular, biomechanical and isokinetic strength and endurance evaluations matched to 14 control participants by sex, age, height and mass. Kinetic and kinematic data was obtained with 3-D motion analyses utilizing inverse dynamics while performing single-leg VDLs from a height of 30 cm. Integrated surface electromyography (SEMG) assessments of the quadriceps, hamstrings and gastrocnemius musculature were also conducted. Additionally, knee joint flexion strength (60° s−1) and endurance (240° s−1) measurements were tested via isokinetic dynamometry. No significant differences existed in hip and net summated extensor moments within or between groups. The ISGA ACLR participants recorded significantly decreased peak vertical ground reaction force (VGRF) landing upon the involved lower extremity compared to uninvolved (P = 0.028) and matched (P < 0.0001) controls. Participants having undergone ISGA ACLR also displayed greater peak hip joint flexion angles landing upon the involved lower extremity compared to uninvolved (P = 0.020) and matched (P = 0.026) controls at initial ground contact. The ISGA ACLR group furthermore exhibited increased peak hip joint flexion angles landing upon the involved lower extremity compared to uninvolved (P = 0.019) and matched (P = 0.007) controls at peak VGRF. Moreover, ISGA ALCR participants demonstrated greater peak knee (P = 0.005) and ankle (P = 0.017) joint flexion angles when landing upon the involved lower extremity compared to the matched control at peak VGRF. The ISGA ACLR group produced significantly greater reactive muscle activation of the vastus medialis (P = 0.013), vastus lateralis (P = 0.008) and medial hamstrings (P = 0.024) in the involved lower extremity compared to the matched control. The ISGA ACLR participants also exhibited greater preparatory (P = 0.033) and reactive (P = 0.022) co-contraction muscle activity of the quadriceps and hamstrings landing upon the involved lower extremity compared to the matched control. In addition, the ISGA ACLR group produced significantly less preparatory (P = 0.005) and reactive (P = 0.010) muscle activation of the gastrocnemius in the involved lower extremity compared to the uninvolved control. No significant differences were present in hamstrings muscular strength and endurance. Harvest of the ISGA for purposes of ACLR does not appear to result in significant neuromuscular, biomechanical or strength and endurance deficiencies due to donor site morbidity. However, it is evident that this specific population exhibits unique neuromuscular and biomechanical adaptations aimed to stabilize the knee previously subjected to ACL trauma and safeguard the ISGA ACLR joint. Co-contraction of quadriceps and hamstrings as well as inhibition of gastrocnemius muscle activation may serve to moderate excessive loads exposed to the intra-articular ISGA during single-leg VDLs. Furthermore, greater muscle activation of the hamstrings in conjunction with increased peak hip, knee and ankle joint flexion angles may assist in enhancing acceptance of VGRF transferred through the kinetic chain following single-leg VDLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adamczyk G (2002) ACL—deficient knee. Acta Clinica 2(1):11–16

    Google Scholar 

  2. Aglietti P, Buzzi R, Zaccherotti G, De Biase P (1994) Patellar tendon versus double looped semitendinosus and gracilis grafts for anterior cruciate ligament reconstruction. Am J Sports Med 22(2):211–218

    Article  PubMed  CAS  Google Scholar 

  3. Arnold MP, Lie DTT, Verdonschot N, de Graaf R, Amis AA, van Kampen A (2005) The remains of anterior cruciate ligament graft tension after cyclic knee motion. Am J Sports Med 33(4):536–542

    Article  PubMed  Google Scholar 

  4. Aune AK, Holm I, Risberg MA, Jensen HK, Steen H (2001) Four-strand hamstring tendon autograft compared with patellar tendon bone autograft for anterior cruciate ligament reconstruction. Am J Sports Med 29(6):722–728

    PubMed  CAS  Google Scholar 

  5. Baratta RV, Solomonow M, Zhou B, Letson D, Chuinard R, D’Ambrosia R (1988) Muscular co-activation: the role of the antagonist musculature in maintaining knee stability. Am J Sports Med 16:113–122

    Article  PubMed  CAS  Google Scholar 

  6. Butler RJ, Crowell HP, Davis IM (2003) Lower extremity stiffness: implications for performance and injury. Clinc Biomech 18:511–517

    Article  Google Scholar 

  7. Christina KA, White SC, Gilchrist LA (2001) Effect of localized muscle fatigue on vertical ground reaction forces and ankle joint motion during running. Hum Mov Sci 20(3):257–276

    Article  PubMed  CAS  Google Scholar 

  8. Colby SM, Hintermeister RA, Torry MR, Steadman JR (1999) Lower limb stability with ACL impairment. J Orthop Sports Phys Ther 29(8):444–454

    PubMed  CAS  Google Scholar 

  9. Daniel DM, Stone ML, Dobson BE (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22:632–644

    Article  PubMed  CAS  Google Scholar 

  10. Decker MJ, Torry MR, Noonan TJ, Riviere A, Sterett WI (2002) Landing adaptations after acl reconstruction. Med Sci Sports Exerc 34(9):1408–1413

    Article  PubMed  Google Scholar 

  11. Decker MJ, Torry MR, Wyland DJ, Sterett WI, Steadman JR (2003) Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clinc Biomech 18:662–669

    Article  Google Scholar 

  12. Delagi EF, Perotto A, Lazzetti J, Morrison D (1975) Anatomic guide for the electromyographer the limbs, Charles C Thomas, Springfield, Illinois

    Google Scholar 

  13. Demont RG, Lephart SM, Giraldo JL, Swanik CB, Fu FH (1999) Muscle preactivity of anterior cruciate ligament-deficient and -reconstructed females during functional activities. J Athl Train 34(2):115–120

    PubMed  Google Scholar 

  14. Devita P, Skelly WA (1992) Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc 24(1):108–115

    PubMed  CAS  Google Scholar 

  15. DeLee JC, Craviotto DF (1991) Rupture of the quadriceps tendon after a central third patellar tendon anterior cruciate ligament reconstruction. Am J Sports Med 19:415–416

    Article  PubMed  CAS  Google Scholar 

  16. Draganich LF, Jaeger RJ (1989) Co-activation of the hamstrings and quadriceps during extension of the knee. J Bone Joint Surg 71(A):1075–1081

    PubMed  CAS  Google Scholar 

  17. Dufek JS, Bates BT (1990) The evaluation and prediction of impact forces during landings. Med Sci Sports Exerc 22(2):370–377

    PubMed  CAS  Google Scholar 

  18. Dufek JS, Bates BT (1991) Biomechanical factors associated with injury during landing in jump sports. Sports Med 12(5):326–337

    Article  PubMed  CAS  Google Scholar 

  19. Ernst GP, Saliba E, Diduch DR, Hurwitz SR, Ball DW (2000) Lower-extremity compensations following anterior cruciate ligament reconstruction. Phys Ther 80(3):251–260

    PubMed  CAS  Google Scholar 

  20. Feagin JA, Lambert KL (1985) Mechanism of injury and pathology of anterior cruciate ligament injuries. Orthop Clinc North Am 169(1):41–45

    Google Scholar 

  21. Feiring DC, Ellenbecker TS, Derscheid GL (1990) Test-retest reliability of the biodex isokinetic dynamometer. J Orthop Sports Phys Ther 11(7):298–300

    PubMed  CAS  Google Scholar 

  22. Fleming BC, Renstrom PA, Ohlen G, Johnson RJ, Peura GD, Beynnon BD, Badger GJ (2001) The gastrocnemius muscle is an antagonist of the anterior cruciate ligament reconstruction. J Orthop Res 19:1178–1184

    Article  PubMed  CAS  Google Scholar 

  23. Fu FH, Bennett CH, Latterman C, Benjamin C (1999) Current trends in anterior cruciate ligament reconstruction part 1: biology and biomechanics of reconstruction. Am J Sports Med 27(6):820–830

    Google Scholar 

  24. Goodwin PC, Koorts K, Mack R, Mai SM, Morrissey MC, Hooper DM (1999) Reliability of leg muscle electromyography in vertical jumping. Eur J Appl Physiol 79:374–378

    Article  CAS  Google Scholar 

  25. Graf B, Uhr F (1988) Complications of intra-articular anterior cruciate reconstruction. Clin Sports Med 7:835–848

    PubMed  CAS  Google Scholar 

  26. Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ (2000) Knee strength deficits after hamstring tendon and patellar tendon anterior cruciate ligament reconstruction. Med Sci Sports Exerc 32(8):1472–1479

    Article  PubMed  CAS  Google Scholar 

  27. Hirokawa S, Solomonow Z, Luo Z, Lu Y, D’Ambrosia R (1991) Muscular co-conraction and control of knee stability. J Electromyogr Kinesiol 1(3):199–208

    Article  Google Scholar 

  28. Hughston JC (1985) Complications of anterior cruciate ligament surgery. Orthop Clin North Am 16:237–240

    PubMed  CAS  Google Scholar 

  29. Kannus P (1994) Isokinetic evaluation of muscular performance: implications for muscle testing and rehabilitation. Int J Sports Med 15:S11–S18

    Article  PubMed  Google Scholar 

  30. Kullmer K, Letsch R, Turowski B (1994) Which factors influence the progression of degenerative osteoarthritis after acl surgery? Knee Surg Sports Traumatol Arthrosc 2:80–84

    Article  PubMed  CAS  Google Scholar 

  31. Lephart SM, Fu FH (2000) Proprioception and neuromuscular control in joint stability. Human Kinetics, USA

  32. Limbird TJ, Shiavi R, Frazer M, Borra H (1988) EMG profiles of knee joint musculature during walking: changes induced by anterior cruciate ligament deficiency. J Orthop Res 6:630–638

    Article  PubMed  CAS  Google Scholar 

  33. Liu-Ambrose T (2003) The anterior cruciate ligament and functional stability of the knee joint. BC Med J 45(10):495–499

    Google Scholar 

  34. Marder RA, Raskind JR, Carroll M (1991) Prospective evaluation of arthroscopically assisted anterior cruciate ligament reconstruction. Am J Sports Med 19(5):478–484

    Article  PubMed  CAS  Google Scholar 

  35. Montgomery LC, Douglass LW, Deuster PA (1989) Reliability of an isokinetic test of muscle strength and endurance. J Ortho Sports Phys Ther February:315–322

  36. McNair PJ, Marshall RN, Matherson JA (1990) Important features associated with acute anterior cruciate ligament injury. NZ Med J 103(901):537–539

    CAS  Google Scholar 

  37. McNair PJ, Marshall RN (1994) Landing characteristics in participants with normal and anterior cruciate ligament deficient joints. Arch Phys Med Rehab 75:584–590

    CAS  Google Scholar 

  38. Noyes FR, Mooar PA, Matthews DS, Butler DL (1983) The symptomatic anterior cruciate ligament-deficient knee Part I: The long term functional disability in athletically active individuals. J Bone Joint Surg Am 65(A):154–162

    PubMed  CAS  Google Scholar 

  39. Noyes FR, Matthews DS, Mooar PA, Grood ES (1983) The symptomatic anterior cruciate ligament-deficient knee. Part II: The results of rehabilitation, activity modification, and counseling on functional disability. J Bone Joint Surg (Am) 65(A):163–174

    CAS  Google Scholar 

  40. O’Connor JJ (1993) Can muscle co-contraction protect knee ligaments after injury or repair? J Bone Joint Surg Br 75:41–48

    PubMed  CAS  Google Scholar 

  41. Richards JD (1999) The measurement of human motion: a comparison of commercially available systems. Hum Mov Sci 18:589–602

    Article  Google Scholar 

  42. Roe J, Pinczewski LA, Russell VJ, Salmon LJ, Kawamata T, Chew M (2005) A 7-year follow-up of patellar tendon and hamstring tendon grafts for athroscopic anterior cruciate ligament reconstruction. Am J Sports Med 33(9):1337–1345

    Article  PubMed  Google Scholar 

  43. Rozzi SL, Lephart SM, Gear WS, Fu FH (1999) Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med 27(3):312–319

    PubMed  CAS  Google Scholar 

  44. Rudolph KS, Axe MJ, Snyder-Mackler L (2000) Dynamic stability after ACL injury: who can hop? Knee Surg, Sports Traumatol, Arthrosc 8:262–269

    Article  CAS  Google Scholar 

  45. Rudroff T (2003) Functional capacity is enhanced with semitendinosus than patellar tendon ACL repair. Med Sci Sports Exerc 35(9):1486–1492

    Article  PubMed  Google Scholar 

  46. Safran MR, Caldwell GLJ, Fu FH (1994) Proprioception considerations in surgery. J Sport Rehab 3:105–115

    Google Scholar 

  47. Shelbourne KD, Whitaker HJ, McCarroll JR (1990) Anterior cruciate ligament injury: evaluation of intraarticular reconstruction of acute tears without repair. Two to seven year followup of 155 athletes. Am J Sports Med 18:484–489

    Article  PubMed  CAS  Google Scholar 

  48. Shelbourne KD, Gray T (1997) Anterior cruciate ligament reconstruction with autogenous patellar tendon graft followed by accelerated rehabilitation. A two-to-nine-year followup. Am J Sports Med 25(6):786–795

    Article  PubMed  CAS  Google Scholar 

  49. Swanik CB, Lephart SM, Giraldo JL, Demont RG, Fu FH (1999) Reactive muscle firing of anterior cruciate ligament-injured females during functional activities. J Athl Train 34(2):121–129

    PubMed  Google Scholar 

  50. Vaughan CL, Davis BL, O’Connor JC (1999) Dynamics of human gait, 2nd edn. JC Kiboho Publishers, Cape Town

    Google Scholar 

  51. Viola RW, Sterett WI, Newfield D, Steadman JR, Torry MR (2000) Internal and external tibial rotation after anterior cruciate ligament reconstruction using ipsilateral semitendinosus and gracilis tendon autografts. Am J Sports Med 28(4):552–555

    PubMed  CAS  Google Scholar 

  52. Wilk et al (1994) The relationship between subjective knee scores, isokinetic testing and functional testing of the ACL-reconstructed knee. J Orthop Sports Phys Ther 20:60–73

  53. Wilson TW, Zafuta MP, Zobitz M (1999) A biomechanical analysis of matched bone-patellar-tendon-bone and double-looped semitendinosus and gracilis grafts. Am J Sports Med 27(2):202–207

    PubMed  CAS  Google Scholar 

  54. Winter DA (1980) Overall principle of lower limb support during stance phase of gait. J Biomech 13:923–927

    Article  PubMed  CAS  Google Scholar 

  55. Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA (2005) The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am J Sports Med 34(2):269–274

    Article  PubMed  Google Scholar 

  56. Wojtys EM, Huston LJ (2000) Longitudinal effects of anterior cruciate ligament injury and patellar tendon autograft reconstruction on neuromuscular performance. Am J Sports Med 28(3):336–344

    PubMed  CAS  Google Scholar 

  57. Yasuda K, Tsujino J, Ohkoshi Y, Tanabe Y, Kaneda K (1995) Graft site morbidity with autogenous semitendinosus and gracilis tendons. Am J Sports Med 19(5):478–484

    Google Scholar 

Download references

Acknowledgments

This study was funded by the National Athletic Trainers’ Association Research and Education Foundation Osternig Masters Grant 310MGP002. The authors thank Drs. James J Irrgang and Jay N Hertel for collaborating with this research study. The authors also express gratitude to Drs. David A Stone, Hussein A Elkousy as well as Mr Robert O Blanc and Buddy Morris for consultation, service and support. Experiments conducted in this research study complied with all current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampietro L. Vairo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vairo, G.L., Myers, J.B., Sell, T.C. et al. Neuromuscular and biomechanical landing performance subsequent to ipsilateral semitendinosus and gracilis autograft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthr 16, 2–14 (2008). https://doi.org/10.1007/s00167-007-0427-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-007-0427-4

Keywords

Navigation