Skip to main content
Log in

Experimental muscle pain decreases the frequency threshold of electrically elicited muscle cramps

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study in humans tested the hypothesis that nociceptive muscle afferent input facilitates the occurrence of muscle cramps. In 13 healthy adults, muscle cramps were experimentally induced in the foot by stimulating the tibialis posterior nerve at the ankle with 2-s bursts of stimuli separated by 30 s, with stimulation frequency increasing by 2-Hz increments from 10 Hz until the cramp appeared. The minimum stimulation frequency that induced the cramp was defined “cramp frequency threshold”. In 2 days, elicitation of the cramp was performed in the two-feet with and without (baseline condition) injection of hypertonic (painful condition) or isotonic (control condition) saline into the deep midportion of the flexor hallucis brevis muscle, from where surface EMG signals were recorded. The cramp frequency threshold was lower for the painful condition with respect to its baseline (mean ± SE, hypertonic saline: 25.7 ± 2.1 Hz, corresponding baseline: 31.2 ± 2.8 Hz; P < 0.01) while there was no difference between the threshold with isotonic injection with respect to baseline. EMG average rectified value and power spectral frequency were higher during the cramp than immediately before the stimulation that elicited the cramp (pre-cramp: 13.9 ± 1.6 μV and 75.4 ± 3.8 Hz, respectively; post-cramp: 19.9 ± 3.2 μV and 101.6 ± 6.0 Hz; P < 0.05). The results suggest that nociceptive muscle afferent activity induced by injection of hypertonic saline facilitates the generation of electrically elicited muscle cramps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Andreani CM, Hill JM, Kaufman MP (1997) Responses of group III and IV muscle afferents to dynamic exercise. J Appl Physiol 82:1811–1817

    Google Scholar 

  • Baldissera F, Cavallari P, Dworzak F (1994) Motor neuron ‘bistability’. A pathogenetic mechanism for cramps and myokymia. Brain 117:929–939

    Article  PubMed  Google Scholar 

  • Bertolasi L, De Grandis D, Bongiovanni LG, Zanette GP, Gasperini M (1993) The influence of muscular lengthening on cramps. Ann Neurol 33:176–180

    Article  PubMed  CAS  Google Scholar 

  • Campanini I, Merlo A, Degola P, Merletti R, Vezzosi G, Farina D (2007) Effect of electrode location on EMG signal envelope in leg muscles during gait. J Electromyogr Kinesiol (in press)

  • Denny-Brown D, Foley JM (1948) Myokymia and the benign fasciculation of muscular cramps. Trans Assoc Am Physicians 61:88–96

    Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    PubMed  CAS  Google Scholar 

  • Farina D, Gazzoni M, Merletti R (2003) Assessment of low back muscle fatigue by surface EMG signal analysis: methodological aspects. J Electromyogr Kinesiol 13:319–332

    Article  PubMed  Google Scholar 

  • Farina D, Arendt-Nielsen L, Merletti R, Graven-Nielsen T (2004) Effect of experimental muscle pain on motor unit firing rate and conduction velocity. J Neurophysiol 91:1250–1259

    Article  PubMed  Google Scholar 

  • Graven-Nielsen T, Mcardle A, Phoenix J, Arendt-Nielsen L, Jensen TS, Jackson MJ, Edwards RH (1997) In vivo model of muscle pain: quantification of intramuscular chemical, electrical, and pressure changes associated with saline-induced muscle pain in humans. Pain 69:137–143

    Article  PubMed  CAS  Google Scholar 

  • Graven-Nielsen T, Lund H, Arent-Nielsen L, Danneskiold-Samsoe B, Bliddal H (2002) Inhibition of maximal voluntary contraction force by experimental muscle pain: a centrally mediated mechanism. Muscle Nerve 26:708–712

    Article  PubMed  Google Scholar 

  • Hayward L, Wesselmann U, Rymer WZ (1991) Effects of muscle fatigue on mechanically sensitive afferents of slow conduction velocity in the cat triceps surae. J Neurophysiol 65:360–370

    PubMed  CAS  Google Scholar 

  • Jovanovic K, Anastasijevic R, Vuco J (1990) Reflex effects on gamma fusimotor neurones of chemically induced discharges in small diameter muscle afferents in decerebrate cats. Brain Res 521:89–94

    Article  PubMed  CAS  Google Scholar 

  • Kastenbauer T, Irsigler P, Sauseng S, Grimm A, Prager R (2004) The prevalence of symptoms of sensorimotor and autonomic neuropathy in Type 1 and Type 2 diabetic subjects. J Diabetes Complicat 18:27–31

    Article  PubMed  Google Scholar 

  • Kaufman MP, Longhurst JC, Rybicki KJ, Wallach JH, Mitchell JH (1983) Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J Appl Physiol 55:105–112

    PubMed  CAS  Google Scholar 

  • Kaufman MP, Rybicki KJ, Waldrop TG, Ordway GA (1984) Effect of ischemia on responses of group III and IV afferents to contraction. J Appl Physiol 57:644–650

    PubMed  CAS  Google Scholar 

  • Kendall FFP, Kendall E, McCreary BT (1993) Muscle testing and function Baltimore. Williams and Wilkins, Baltimore

    Google Scholar 

  • Kniffki KD, Mense S, Schmidt RF (1978) Responses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation. Exp Brain Res 61:511–522

    Google Scholar 

  • Kumazawa T, Mizumura K (1977) Thin-fibre receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J Physiol 273:179–194

    PubMed  CAS  Google Scholar 

  • Lambert E (1968) Electromyography in amyotrophic lateral sclerosis. In: Norris FH, Kurland LT (eds) Motor neuron diseases; research on amyotrophic lateral sclerosis and related disorders. Grune and Stratton, New York, pp 135–153

    Google Scholar 

  • Laursen RJ, Graven-Nielsen T, Jensen TS, Arendt-Nielsen L (1999) The effect of differential and complete nerve block on experimental muscle pain in humans. Muscle Nerve 22:1564–1570

    Article  PubMed  CAS  Google Scholar 

  • Layzer RB (1985) Diagnosis of neuromuscular disorders. In: Layzer RB (ed) Neuromuscular manifestation of systemic disease. Davis, Philadelphia, pp 19–22

    Google Scholar 

  • Layzer RB, Rowland LP (1971) Cramps. N Engl J Med 285:31–40

    Article  PubMed  CAS  Google Scholar 

  • Ljubisavljevic M, Anastasijevic R (1994) Fusimotor-induced changes in muscle spindle outflow and responsiveness in muscle fatigue in decerebrate cats. Neuroscience 63:339–348

    Article  PubMed  CAS  Google Scholar 

  • Ljubisavljevic M, Arnastasljevic R, Trifunjagic D (1995) Changes in fusimotor discharge rate provoked by isotonic fatiguing muscle contractions in decerebrate cats. Brain Res 673:126–132

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Miyano H, Sadoyama T (1985) The position of innervation zones in the biceps brachii investigated by surface electromyography. IEEE Trans Biomed Eng 32:36–42

    Article  PubMed  CAS  Google Scholar 

  • McGee SR (1990) Muscle cramps. Arch Intern Med 150:511–518

    Article  PubMed  CAS  Google Scholar 

  • Mense S (1993) Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54:241–289

    Article  PubMed  CAS  Google Scholar 

  • Mense S, Stahnke M (1983) Responses in muscle afferent fibers of slow conduction velocity to contractions and ischemia in the cat. J Physiol 342:383–397

    PubMed  CAS  Google Scholar 

  • Mense S, Meyer H (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol 363:403–417

    PubMed  CAS  Google Scholar 

  • Merletti R, Farina D, Granata A (1999) Non-invasive assessment of motor unit properties with linear electrode arrays. Electroencephalogr Clin Neurophysiol Suppl 50:293–300

    PubMed  CAS  Google Scholar 

  • Miller TM, Layzer RB (2005) Muscle cramps. Muscle Nerve 32:431–442

    Article  PubMed  Google Scholar 

  • Mills KR, Newham DJ, Edwards RHT (1982) Severe muscle cramps relieved by transcutaneous nerve stimulation: case report. J Neurol Neurosurg Psychiatry 45:539–542

    Article  PubMed  CAS  Google Scholar 

  • Norris FH, Gasteiger EL, Chatfield PO (1957) An electromyographic study of induced and spontaneous muscle cramps. Electroencephalogr Clin Neurophysiol 9:139–147

    Article  PubMed  Google Scholar 

  • Obi T, Mizoguchi K, Matsuoka H, Takatsu M, Nishimura Y (1993) Muscle cramp as the result of impaired GABA function—an electrophysiological and pharmacological observation. Muscle Nerve 16:1228–1231

    Article  PubMed  CAS  Google Scholar 

  • Paintal AS (1960) Functional analysis of group III afferent fibres of mammalian muscles. J Physiol 152:250–270

    PubMed  CAS  Google Scholar 

  • Parisi L, Serrao M, Rossi P, Valente G, Fattaposta F, Pierelli F, Amabile G (2000) Afterdischarge activity in neuropathic patients with frequent muscle cramps. Acta Neurol Scand 102:359–362

    Article  PubMed  CAS  Google Scholar 

  • Parisi L, Amabile G, Valente G, Calandriello E, Fattapposta F, Rossi P, Pierelli F, Serrao M (2003) Muscular cramps: a new proposal of classification. Acta Neurol Scand 107:176–186

    Article  PubMed  CAS  Google Scholar 

  • Roeleveld K, Van Engelen BGM, Stegeman DF (2000) Possible mechanisms of muscle cramp form temporal and spatial surface EMG characteristics. J Appl Physiol 88:1698–1706

    Article  PubMed  CAS  Google Scholar 

  • Ross BH, Thomas CK (1995) Human motor unit activity during induced muscle cramp. Brain 118(Pt 4):983–993

    Article  PubMed  Google Scholar 

  • Rossi A, Decchi B (1997) Changes in Ib heteronymous inhibition to soleus motoneurones during cutaneous and muscle nociceptive stimulation in humans. Brain Res 774:55–61

    Article  PubMed  CAS  Google Scholar 

  • Rossi A, Decchi B, Ginanneschi F (1999) Presynaptic excitability changes of group Ia fibres to muscle nociceptive stimulation in humans. Brain Res 818:12–22

    Article  PubMed  CAS  Google Scholar 

  • Rowland LP (1985) Cramps, spasms and muscle stiffness. Rev Neurol 141:261–273

    PubMed  CAS  Google Scholar 

  • Saito M, Suehara M, Nagata A, Kanzato N, Arimura K (1998) Afterdischarges following F waves observed in a patient with tetanus. Electromyogr Clin Neurophysiol 38:377–380

    PubMed  CAS  Google Scholar 

  • Schwellnus MP (1999) Skeletal muscle cramps during exercise. Phys Sportsmed 27:109–115

    CAS  PubMed  Google Scholar 

  • Sejersted OM, Sjogaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80:1411–1481

    PubMed  CAS  Google Scholar 

  • Serrao M, Rossi P, Cardinali P, Valente G, Parisi L, Pierelli F (2000) Gabapentin treatment for muscle cramps: an open-label trial. Clin Neuropharmacol 40:45–49

    Article  Google Scholar 

  • Serratrice G, Mei N, Pellissier JF, Cros D (1980) Cutaneous and muscular unmyelinated afferent fibres. Clinical, histological and experimental study. Possible explanation of muscular cramps. Sem Hop 56:665–670

    Google Scholar 

  • Stone MB, Edwards JE, Babington JP, Ingersoll CD, Palmieri RM (2003) Reliability of an electrical method to induce muscle cramp. Muscle Nerve 27:122–123

    Article  PubMed  Google Scholar 

  • Svensson P, Graven-Nielsen T, Matre DA, Arendt-Nielsen L (1998) Experimental muscle pain does not cause long-lasting increases in resting EMG activity. Muscle Nerve 21:1382–1389

    Article  PubMed  CAS  Google Scholar 

  • Wolfe GI, Barohon RJ (2002) Painful peripheral neuropathy. Curr Treat Options Neurol 4:177–188

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Farina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrao, M., Arendt-Nielsen, L., Ge, HY. et al. Experimental muscle pain decreases the frequency threshold of electrically elicited muscle cramps. Exp Brain Res 182, 301–308 (2007). https://doi.org/10.1007/s00221-007-0985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-0985-1

Keywords

Navigation