Skip to main content
Log in

Mechanics of crural fascia: from anatomy to constitutive modelling

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Ten dissections of inferior limbs and histological studies were performed to describe the structural conformation of the muscular fascia of the leg (crural fascia) and to propose a constitutive model to be adopted for the analysis of its biomechanical behaviour. The crural fascia had a mean thickness of 924 μm and was composed of three layers (mean thickness 277.6 μm) of parallel, collagen fibre bundles separated by a thin layer of loose connective tissue (mean thickness 43 μm). Only a few elastic fibres were highlighted. The disposition of the collagen fibres gives the crural fascia anisotropic characteristics. In addition, their crimped conformation is the cause of the non-linear elastic behaviour of the tissue. Both these aspects are included in the constitutive model. The constitutive modelling of the crural fascia represents a useful tool to rationally interpret the correlation between functional behaviour and structural conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bermudez K, Knudson MM, Morabito D, Kessel O (1988) Fasciotomy, chronic venous insufficiency, and the calf muscle pump. Arch Surg 133:1356–1361

    Google Scholar 

  2. Bogduk N, Macintosh JE (1984) The applied anatomy of the thoracolumbar fascia. Spine 9:164–170

    Article  PubMed  CAS  Google Scholar 

  3. Fawcett DW (1994) Bloom and Fawcett: a textbook of histology, 12th edn. Chapman & Hall, New York

    Google Scholar 

  4. Flory PJ (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838

    Article  CAS  Google Scholar 

  5. Gerlach UJ, Lierse W (1990) Functional construction of the superficial and deep fascia system of the lower limb in man. Acta Anat 139:11–25

    Article  PubMed  CAS  Google Scholar 

  6. Geneser F (1986) Textbook of histology. Munksgaard Lea & Febiger, Copenhagen

    Google Scholar 

  7. Gurtin ME (1981) An introduction to continuum mechanics. Academic, San Diego

    Google Scholar 

  8. Hammer WI (2007) Functional soft-tissue examination and treatment by manual methods, 3rd edn. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  9. Holzapfel GA, Gasser TC (2001) A viscoelastic model for fibre-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190:4379–4403

    Article  Google Scholar 

  10. Langevin HM, Sherman KJ (2007) Pathophysiological model for chronic low back pain integrating connective tissue and nervous system mechanisms. Med Hypotheses 68:74–80

    Article  PubMed  Google Scholar 

  11. Marsden JE, Hughes TJR (1968) Mathematical foundations of elasticity. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  12. Martini FH, Timmons MJ, Tallitsch RB (2003) Human anatomy, 4th edn. Prentice-Hall, New Jersey

    Google Scholar 

  13. Maurel W, Wu Y, Magnenat Thalmann N, Thalmann D (1997) Biomechanical models for soft tissue simulation. Springer, New York

    Google Scholar 

  14. Myers T (2001) Anatomy trains. Churchill Livingstone, Oxford

    Google Scholar 

  15. Natali AN, Pavan PG, Carniel EL, Dorow C (2004) Visco-elastic response of the periodontal ligament: an experimental-numerical analysis. Connect Tissue Res 45:222–230

    Article  PubMed  CAS  Google Scholar 

  16. Natali AN, Pavan PG, Carniel EL, Lucisano ME, Taglialavoro G (2005) Anisotropic elasto-damage constitutive model for the biomechanical analysis of tendons. Med Eng Phys 27:209–214

    Article  PubMed  CAS  Google Scholar 

  17. Natali AN, Carniel EL, Pavan PG, Sander FG, Dorow C, Geiger M (2008) A constitutive model for the analysis of the biomechanical response of the periodontal ligament. J Biomech Eng-T ASME 130(3):031004

    Article  Google Scholar 

  18. Paoletti S (2002) Les Fascias: Rôle des tissus dans la mécanique humaine. Sully, Vannes

    Google Scholar 

  19. Rolf IP (1997) Rolfing. Mediterranee, Roma

    Google Scholar 

  20. Singh N, Sidawy AN, Bottoni CR, Antedomenico E, Gawley TS, Harada D, Gillespie DL, Uyehara CF, Cordts PR (2006) Physiological changes in venous hemodynamics associated with elective fasciotomy. Ann Vasc Surg 20:301–305

    Article  PubMed  Google Scholar 

  21. Spencer AJM (1984) Continuum theory of the mechanics of fibre-reinforced composites. Springer, New York

    Google Scholar 

  22. Standring S, Ellis H, Healy J, Johnson D, Williams A (2005) Gray’s anatomy, 39th edn. Churchill Livingstone, London

    Google Scholar 

  23. Stecco C, Porzionato A, Macchi V, Tiengo C, Parenti A, Aldegheri R, Delmas V, De Caro R (2006) Histological characteristics of the deep fascia of the upper limb. Ital J Anat Embryol 111:105–110

    PubMed  Google Scholar 

  24. Stecco C, Gagey O, Macchi V, Porzionato A, De Caro R, Aldegheri R, Delmas V (2007) Tendinous muscular insertions onto the deep fascia of the upper limb First part: anatomical study. Morphologie 91:29–37

    PubMed  CAS  Google Scholar 

  25. Stecco C, Gagey O, Belloni A, Pozzuoli A, Porzionato A, Macchi V, Aldegheri R, De Caro R, Delmas V (2007) Anatomy of the deep fascia of the upper limb Second part: study of innervation. Morphologie 91:38–43

    PubMed  CAS  Google Scholar 

  26. Stecco C, Porzionato A, Macchi V, Stecco A, Vigato E, Parenti A, Delmas V, Aldegheri R, De Caro R (2008) The expansions of the pectoral girdle muscles onto the brachial fascia: morphological aspects and spatial disposition. Cells Tissues Organs 188:320–329

    Article  PubMed  Google Scholar 

  27. Stecco L (2004) Fascial manipulation for musculoskeletal pain. Piccin, Padova

    Google Scholar 

  28. Tiller WA (1987) What do electrodermal diagnostic acupuncture instruments really measure. Am J Acupunct 15:18–23

    Google Scholar 

  29. Vidal BC, Mello ML (2008) Optical anisotropy of collagen fibers of rat calcaneal tendons: an approach to spatially resolved supramolecular organization. Acta Histochem: 07.005

  30. Yahia LH, Pigeon P, DesRosiers EA (1993) Viscoelastic properties of the human lumbodorsal fascia. J Biomed Eng 15:425–429

    Article  PubMed  CAS  Google Scholar 

  31. Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele De Caro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stecco, C., Pavan, P.G., Porzionato, A. et al. Mechanics of crural fascia: from anatomy to constitutive modelling. Surg Radiol Anat 31, 523–529 (2009). https://doi.org/10.1007/s00276-009-0474-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-009-0474-2

Keywords

Navigation