Skip to main content
Log in

Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

This review paper presents, in the first part, the different classes of contrast media that are already used or are in development for cardiac magnetic resonance imaging. A classification of the different types of contrast media is proposed based on the distribution of the compounds in the body, their type of relaxivity and their potential affinity to particular molecules. In the second part, the different uses of the extracellular type of T1-enhancing contrast agent for myocardial imaging is covered from the detection of stable coronary artery disease to the detection and characterization of chronic infarction. A particular emphasis is placed on the clinical use of gadolinium-chelates, which are the universally used type of MRI contrast agent in the clinical routine. Both approaches, first-pass magnetic resonance imaging (FP-MRI) as well as delayed-enhanced magnetic resonance imaging (DE-MRI), are covered in the different situations of acute and chronic myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol 142:619–624

    PubMed  CAS  Google Scholar 

  2. Fritz-Hansen T, Rostrup E, Sondergaard L et al (1998) Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI. Magn Reson Med 40:922–929

    Article  PubMed  CAS  Google Scholar 

  3. Arheden H, Saeed M, Higgins CB et al (2000) Reperfused rat myocardium subjected to various durations of ischemia: estimation of the distribution volume of contrast material with echo-planar MR imaging. Radiology 215:520–528

    PubMed  CAS  Google Scholar 

  4. Saeed M, Higgins CB, Geschwind JF, Wendland MF (2000) T1-relaxation kinetics of extracellular, intracellular and intravascular MR contrast agents in normal and acutely reperfused infarcted myocardium using echo-planar MR imaging. Eur Radiol 10:310–318

    Article  PubMed  CAS  Google Scholar 

  5. Wendland MF, Saeed M, Lauerma K et al (1997) Alterations in T1 of normal and reperfused infarcted myocardium after Gd-BOPTA versus GD-DTPA on inversion recovery EPI. Magn Reson Med 37:448–456

    Article  PubMed  CAS  Google Scholar 

  6. Flacke SJ, Fischer SE, Lorenz CH (2001) Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: normal distribution and elevation in acute and chronic infarction. Radiology 218:703–710

    PubMed  CAS  Google Scholar 

  7. Port M, Corot C, Rousseaux O et al (2001) P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results. Magma 12:121–127

    Article  PubMed  CAS  Google Scholar 

  8. Roberts HC, Saeed M, Roberts TP, Muhler A, Brasch RC (1999) MRI of acute myocardial ischemia: comparing a new contrast agent, Gd-DTPA-24-cascade-polymer, with Gd-DTPA. J Magn Reson Imaging 9:204–208

    Article  PubMed  CAS  Google Scholar 

  9. Jerosch-Herold M, Wilke N, Wang Y et al (1999) Direct comparison of an intravascular and an extracellular contrast agent for quantification of myocardial perfusion. Cardiac MRI Group. Int J Card Imaging 15:453–464

    Article  PubMed  CAS  Google Scholar 

  10. Krombach GA, Higgins CB, Chujo M, Saeed M (2002) Blood pool contrast-enhanced MRI detects suppression of microvascular permeability in early postinfarction reperfusion after nicorandil therapy. Magn Reson Med 47:896–902

    Article  PubMed  CAS  Google Scholar 

  11. Krombach GA, Wendland MF, Higgins CB, Saeed M (2002) MR imaging of spatial extent of microvascular injury in reperfused ischemically injured rat myocardium: value of blood pool ultrasmall superparamagnetic particles of iron oxide. Radiology 225:479–486

    Article  PubMed  Google Scholar 

  12. Dewey M, Kaufels N, Laule M et al (2004) Assessment of myocardial infarction in pigs using a rapid clearance blood pool contrast medium. Magn Reson Med 51:703–709

    Article  PubMed  Google Scholar 

  13. Dewey M, Kaufels N, Laule M et al (2004) Magnetic resonance imaging of myocardial perfusion and viability using a blood pool contrast agent. Invest Radiol 39:498–505

    Article  PubMed  Google Scholar 

  14. Marchal G, Ni Y, Herijgers P et al (1996) Paramagnetic metalloporphyrins: infarct avid contrast agents for diagnosis of acute myocardial infarction by MRI. Eur Radiol 6:2–8

    Article  PubMed  CAS  Google Scholar 

  15. Pislaru SV, Ni Y, Pislaru C et al (1999) Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. Circulation 99:690–696

    PubMed  CAS  Google Scholar 

  16. Saeed M, Bremerich J, Wendland MF et al (1999) Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats. Radiology 213:247–257

    PubMed  CAS  Google Scholar 

  17. Saeed M, Lund G, Wendland MF et al (2001) Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation 103:871–876

    PubMed  CAS  Google Scholar 

  18. Weissleder R, Lee AS, Khaw BA, Shen T, Brady TJ (1992) Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182:381–385

    PubMed  CAS  Google Scholar 

  19. Perez JM, Josephson L, Weissleder R (2004) Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chembiochem 5:261–264

    Article  PubMed  CAS  Google Scholar 

  20. Bache RJ, Schwartz JS (1982) Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow. Circulation 65:928–935

    PubMed  CAS  Google Scholar 

  21. Klocke FJ, Simonetti OP, Judd RM et al (2001) Limits of detection of regional differences in vasodilated flow in viable myocardium by first-pass magnetic resonance perfusion imaging. Circulation 104:2412–2416

    Article  PubMed  CAS  Google Scholar 

  22. Lee DC, Simonetti OP, Harris KR et al (2004) Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 110:58–65

    Article  PubMed  Google Scholar 

  23. Al-Saadi N, Nagel E, Gross M et al (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101:1379–1383

    PubMed  CAS  Google Scholar 

  24. Schwitter J, Nanz D, Kneifel S et al (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103:2230–2235

    PubMed  CAS  Google Scholar 

  25. Nagel E, Klein C, Paetsch I et al (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437

    Article  PubMed  Google Scholar 

  26. Paetsch I, Jahnke C, Wahl A et al (2004) Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 110:835–842

    Article  PubMed  CAS  Google Scholar 

  27. Slavin GS, Wolff SD, Gupta SN, Foo TK (2001) First-pass myocardial perfusion MR imaging with interleaved notched saturation: feasibility study. Radiology 219:258–263

    PubMed  CAS  Google Scholar 

  28. Wilke N, Jerosch-Herold M, Wang Y et al (1997) Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 204:373–384

    PubMed  CAS  Google Scholar 

  29. Epstein FH, London JF, Peters DC et al (2002) Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction. Magn Reson Med 47:482–491

    Article  PubMed  Google Scholar 

  30. Schreiber WG, Schmitt M, Kalden P et al (2002) Dynamic contrast-enhanced myocardial perfusion imaging using saturation-prepared TrueFISP. J Magn Reson Imaging 16:641–652

    Article  PubMed  Google Scholar 

  31. Lauerma K, Virtanen KS, Sipila LM, Hekali P, Aronen HJ (1997) Multislice MRI in assessment of myocardial perfusion in patients with single-vessel proximal left anterior descending coronary artery disease before and after revascularization. Circulation 96:2859–2867

    PubMed  CAS  Google Scholar 

  32. Fenchel M, Helber U, Simonetti OP et al (2004) Multislice first-pass myocardial perfusion imaging: Comparison of saturation recovery (SR)-TrueFISP-two-dimensional (2D) and SR-TurboFLASH-2D pulse sequences. J Magn Reson Imaging 19:555–563

    Article  PubMed  Google Scholar 

  33. Di Bella EV, Parker DL, Sinusas AJ (2005) On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 54:1295–1299

    Article  PubMed  Google Scholar 

  34. Markl M, Alley MT, Elkins CJ, Pelc NJ (2003) Flow effects in balanced steady state free precession imaging. Magn Reson Med 50:892–903

    Article  PubMed  CAS  Google Scholar 

  35. Giang TH, Nanz D, Coulden R et al (2004) Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience. Eur Heart J 25:1657–1665

    Article  PubMed  CAS  Google Scholar 

  36. Arai AE (2000) Magnetic resonance first-pass myocardial perfusion imaging. Top Magn Reson Imaging 11:383–398

    Article  PubMed  CAS  Google Scholar 

  37. Haase A (1990) Snapshot FLASH MRI. Applications to T1, T2, and chemical-shift imaging. Magn Reson Med 13:77–89

    Article  PubMed  CAS  Google Scholar 

  38. Wedeking P, Sotak CH, Telser J et al (1992) Quantitative dependence of MR signal intensity on tissue concentration of Gd(HP-DO3A) in the nephrectomized rat. Magn Reson Imaging 10:97–108

    Article  PubMed  CAS  Google Scholar 

  39. Wilke N, Kroll K, Merkle H et al (1995) Regional myocardial blood volume and flow: first-pass MR imaging with polylysine-Gd-DTPA. J Magn Reson Imaging 5:227–237

    Article  PubMed  CAS  Google Scholar 

  40. Saeed M, Wendland MF, Yu KK et al (1994) Identification of myocardial reperfusion with echo planar magnetic resonance imaging. Discrimination between occlusive and reperfused infarctions. Circulation 90:1492–1501

    PubMed  CAS  Google Scholar 

  41. Maki JH, Chenevert TL, Prince MR (1998) Contrast-enhanced MR angiography. Abdom Imaging 23:469–484

    Article  PubMed  CAS  Google Scholar 

  42. Canet E, Douek P, Janier M et al (1995) Influence of bolus volume and dose of gadolinium chelate for first-pass myocardial perfusion MR imaging studies. J Magn Reson Imaging 5:411–415

    Article  PubMed  CAS  Google Scholar 

  43. Wilke N, Simm C, Zhang J et al (1993) Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 29:485–497

    Article  PubMed  CAS  Google Scholar 

  44. Christian TF, Rettmann DW, Aletras AH et al (2004) Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 232:677–684

    Article  PubMed  Google Scholar 

  45. Kostler H, Ritter C, Lipp M et al (2004) Prebolus quantitative MR heart perfusion imaging. Magn Reson Med 52:296–299

    Article  PubMed  Google Scholar 

  46. Neyran B, Janier MF, Casali C, Revel D, Canet Soulas EP (2002) Mapping myocardial perfusion with an intravascular MR contrast agent: robustness of deconvolution methods at various blood flows. Magn Reson Med 48:166–179

    Article  PubMed  Google Scholar 

  47. Carme S, Maï W, Mazzadi A et al (2006) Importance of parametric mapping and deconvolution in analyzing MR myocardial perfusion images. Invest Radiol 41(4):374–383

    Article  PubMed  Google Scholar 

  48. Bremerich J, Buser P, Bongartz G et al (1997) Noninvasive stress testing of myocardial ischemia: comparison of GRE-MRI perfusion and wall motion analysis to 99 mTc-MIBI-SPECT, relation to coronary angiography. Eur Radiol 7:990–995

    Article  PubMed  CAS  Google Scholar 

  49. Saeed M, Wendland MF, Lauerma K et al (1995) First-pass contrast-enhanced inversion recovery and driven equilibrium fast GRE imaging studies: detection of acute myocardial ischemia. J Magn Reson Imaging 5:515–523

    Article  PubMed  CAS  Google Scholar 

  50. Saeed M, Wendland MF, Szolar D et al (1996) Quantification of the extent of area at risk with fast contrast-enhanced magnetic resonance imaging in experimental coronary artery stenosis. Am Heart J 132:921–932

    Article  PubMed  CAS  Google Scholar 

  51. Sakuma H, Wendland MF, Saeed M et al (1995) Multislice measurement of first-pass transit of gadobenate dimeglumine in normal and ischemic myocardium in dogs. Acad Radiol 2:864–870

    Article  PubMed  CAS  Google Scholar 

  52. Schwitter J, Saeed M, Wendland MF et al (1999) Assessment of myocardial function and perfusion in a canine model of non-occlusive coronary artery stenosis using fast magnetic resonance imaging. J Magn Reson Imaging 9:101–110

    Article  PubMed  CAS  Google Scholar 

  53. Szolar DH, Saeed M, Wendland MF et al (1996) MR imaging characterization of postischemic myocardial dysfunction (“stunned myocardium”): relationship between functional and perfusion abnormalities. J Magn Reson Imaging 6:615–624

    Article  PubMed  CAS  Google Scholar 

  54. Wendland MF, Saeed M, Masui T, Derugin N, Higgins CB (1993) First pass of an MR susceptibility contrast agent through normal and ischemic heart: gradient-recalled echo-planar imaging. J Magn Reson Imaging 3:755–760

    Article  PubMed  CAS  Google Scholar 

  55. Schwitter J, Saeed M, Wendland MF et al (1997) Influence of severity of myocardial injury on distribution of macromolecules: extravascular versus intravascular gadolinium-based magnetic resonance contrast agents. J Am Coll Cardiol 30:1086–1094

    Article  PubMed  CAS  Google Scholar 

  56. Yu KK, Saeed M, Wendland MF et al (1993) Comparison of T1-enhancing and magnetic susceptibility magnetic resonance contrast agents for demarcation of the jeopardy area in experimental myocardial infarction. Invest Radiol 28:1015–1023

    Article  PubMed  CAS  Google Scholar 

  57. Been M, Smith MA, Ridgway JP et al (1988) Serial changes in the T1 magnetic relaxation parameter after myocardial infarction in man. Br Heart J 59:1–8

    Article  PubMed  CAS  Google Scholar 

  58. de Roos A, van Voorthuisen AE (1991) Magnetic resonance imaging of the heart: perfusion, function, and structure. Curr Opin Radiol 3:525–532

    PubMed  Google Scholar 

  59. Higgins CB (1994) Contribution of MR imaging in ischemic heart disease. J Magn Reson Imaging 4:233-234

    Article  PubMed  CAS  Google Scholar 

  60. Dulce MC, Duerinckx AJ, Hartiala J et al (1993) MR imaging of the myocardium using nonionic contrast medium: signal-intensity changes in patients with subacute myocardial infarction. AJR Am J Roentgenol 160:963–970

    PubMed  CAS  Google Scholar 

  61. Eichstaedt HW, Felix R, Dougherty FC et al (1986) Magnetic resonance imaging (MRI) in different stages of myocardial infarction using the contrast agent gadolinium-DTPA. Clin Cardiol 9:527–535

    Article  PubMed  CAS  Google Scholar 

  62. Van Dijkman PR, Van der Wall EE, De Roos A et al (1991) Acute, subacute, and chronic myocardial infarction: quantitative analysis of gadolinium-enhanced MR images. Radiology 180:147–151

    PubMed  Google Scholar 

  63. Cullen JH, Horsfield MA, Reek CR et al (1999) A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 33:1386–1394

    Article  PubMed  CAS  Google Scholar 

  64. Judd RM, Lugo-Olivieri CH, Arai M et al (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910

    PubMed  CAS  Google Scholar 

  65. Rogers WJ Jr, Kramer CM, Geskin G et al (1999) Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation 99:744–750

    PubMed  Google Scholar 

  66. Lim TH, Choi SI (1999) MRI of myocardial infarction. J Magn Reson Imaging 10:686–693

    Article  PubMed  CAS  Google Scholar 

  67. Van Rossum AC, Visser FC, Van Eenige MJ et al (1990) Value of gadolinium-diethylene-triamine pentaacetic acid dynamics in magnetic resonance imaging of acute myocardial infarction with occluded and reperfused coronary arteries after thrombolysis. Am J Cardiol 65:845–851

    Article  PubMed  Google Scholar 

  68. Dendale P, Franken PR, Block P, Pratikakis Y, De Roos A (1998) Contrast enhanced and functional magnetic resonance imaging for the detection of viable myocardium after infarction. Am Heart J 135:875–880

    Article  PubMed  CAS  Google Scholar 

  69. Saeed M, Wendland MF, Masui T, Higgins CB (1994) Reperfused myocardial infarctions on T1- and susceptibility-enhanced MRI: evidence for loss of compartmentalization of contrast media. Magn Reson Med 31:31–39

    Article  PubMed  CAS  Google Scholar 

  70. Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM (2002) Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 105:224–229

    Article  PubMed  Google Scholar 

  71. Pennell DJ, Sechtem UP, Higgins CB et al (2004) Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J 25:1940–1965

    Article  PubMed  Google Scholar 

  72. Selvanayagam JB, Porto I, Channon K et al (2005) Troponin elevation after percutaneous coronary intervention directly represents the extent of irreversible myocardial injury. Insights from cardiovascular magnetic resonance imaging. Circulation 111:1027–1032

    Article  PubMed  CAS  Google Scholar 

  73. Ingkanisorn WP, Rhoads KL, Aletras AH, Kellman P, Arai AE (2004) Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J Am Coll Cardiol 43:2253–2259

    Article  PubMed  Google Scholar 

  74. Haase J, Bayar R, Hackenbroch M et al (2004) Relationship between size of myocardial infarctions assessed by delayed contrast-enhanced MRI after primary PCI, biochemical markers, and time to intervention. J Interv Cardiol 17:367–373

    Article  PubMed  Google Scholar 

  75. Choi KM, Kim RJ, Gubernikoff G et al (2001) Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104:1101–1107

    Article  PubMed  CAS  Google Scholar 

  76. Arteaga C, Revel D, Zhao S et al (1999) Myocardial “low reflow” assessed by Dy-DTPA-BMA-enhanced first-pass MR imaging in a dog model. J Magn Reson Imaging 9:679–684

    Article  PubMed  CAS  Google Scholar 

  77. Bremerich J, Wendland MF, Arheden H et al (1998) Microvascular injury in reperfused infarcted myocardium: noninvasive assessment with contrast-enhanced echoplanar magnetic resonance imaging. J Am Coll Cardiol 32:787–793

    Article  PubMed  CAS  Google Scholar 

  78. Canet E, Revel D, Sebbag L et al (1995) Noninvasive assessment of no-reflow phenomenon in a canine model of reperfused infarction by contrast-enhanced magnetic resonance imaging. Am Heart J 130:949–956

    Article  PubMed  CAS  Google Scholar 

  79. Gerber BL, Rochitte CE, Melin JA et al (2000) Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation 101:2734–2741

    PubMed  CAS  Google Scholar 

  80. Kim RJ, Hillenbrand HB, Judd RM (2000) Evaluation of myocardial viability by MRI. Herz 25:417–430

    Article  PubMed  CAS  Google Scholar 

  81. Rochitte CE, Lima JA, Bluemke DA et al (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98:1006–1014

    PubMed  CAS  Google Scholar 

  82. Wu KC, Kim RJ, Bluemke DA et al (1998) Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J Am Coll Cardiol 32:1756–1764

    Article  PubMed  CAS  Google Scholar 

  83. Gerber BL, Garot J, Bluemke DA, Wu KC, Lima JA (2002) Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 106:1083–1089

    Article  PubMed  Google Scholar 

  84. Taylor AJ, Al-Saadi N, Abdel-Aty H et al (2004) Detection of acutely impaired microvascular reperfusion after infarct angioplasty with magnetic resonance imaging. Circulation 109:2080–2085

    Article  PubMed  Google Scholar 

  85. Saeed M, Wendland MF, Watzinger N, Akbari H, Higgins CB (2000) MR contrast media for myocardial viability, microvascular integrity and perfusion. Eur J Radiol 34:179–195

    Article  PubMed  CAS  Google Scholar 

  86. Wendland MF, Saeed M, Lund G, Higgins CB (1999) Contrast-enhanced MRI for quantification of myocardial viability. J Magn Reson Imaging 10:694–702

    Article  PubMed  CAS  Google Scholar 

  87. Choi SI, Choi SH, Kim ST et al (2000) Irreversibly damaged myocardium at MR imaging with a necrotic tissue-specific contrast agent in a cat model. Radiology 215:863–868

    PubMed  CAS  Google Scholar 

  88. Ni Y, Pislaru C, Bosmans H et al (2001) Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial viability with MR imaging. Eur Radiol 11:876–883

    Article  PubMed  CAS  Google Scholar 

  89. Oshinski JN, Yang Z, Jones JR, Mata JF, French BA (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104:2838–2842

    Article  PubMed  CAS  Google Scholar 

  90. Fieno DS, Kim RJ, Chen EL et al (2000) Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 36:1985–1991

    Article  PubMed  CAS  Google Scholar 

  91. Kim RJ, Fieno DS, Parrish TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    PubMed  CAS  Google Scholar 

  92. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  93. Moon JC, McKenna WJ, McCrohon JA et al (2003) Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol 41:1561–1567

    Article  PubMed  Google Scholar 

  94. McCrohon JA, Moon JC, Prasad SK et al (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108:54–59

    Article  PubMed  CAS  Google Scholar 

  95. Bogaert J, Dymarkowski S (2005) Delayed contrast-enhanced MRI: use in myocardial viability assessment and other cardiac pathology. Eur Radiol 15(Suppl 2):B52–B58

    PubMed  Google Scholar 

  96. Hillenbrand HB, Kim RJ, Parker MA, Fieno DS, Judd RM (2000) Early assessment of myocardial salvage by contrast-enhanced magnetic resonance imaging. Circulation 102:1678–1683

    PubMed  CAS  Google Scholar 

  97. Saeed M, Lee RJ, Weber O et al (2005) Scarred myocardium imposes additional burden on remote viable myocardium despite a reduction in the extent of area with late contrast MR enhancement. Eur Radiol 16:1–10

    Google Scholar 

  98. Selvanayagam JB, Kardos A, Francis JM et al (2004) Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation 110:1535–1541

    Article  PubMed  Google Scholar 

  99. Kellman P, Arai AE, McVeigh ER, Aletras AH (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47:372–383

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Croisille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croisille, P., Revel, D. & Saeed, M. Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside. Eur Radiol 16, 1951–1963 (2006). https://doi.org/10.1007/s00330-006-0244-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0244-z

Keywords

Navigation