Skip to main content

Advertisement

Log in

Factors limiting maximal performance in humans

  • Review Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Theoretical best performance times (t theor) in track running are calculated as follows. Maximal metabolic power (Ė max) is a known function of maximal oxygen uptake (O2max), of maximal anaerobic capacity (AnS) and of effort duration to exhaustion (t e): Ė max=f (t e). Metabolic power requirement (Ė r) to cover the distance (d) in the performance time t p is the product of the energy cost of locomotion per unit distance (C) and the speed: Ė r=C×d/t p. The time values for which Ė max (t e)=Ė r (t p), assumed to yield t theor, can be obtained for any given subject and distance provided thatO2max, AnS and C are known, and compared with actual best performances (t act). For 15 min≥t e≥100 s, the overall ratio t act/t theor was rather close to 1.0. To estimate the relative role of the different factors limitingO2max, several resistances to O2 transport are identified, inversely proportional to: alveolar ventilation (R V*), O2 transport by the circulation (R Q), O2 diffusion from capillary blood to mitochondria (R t), mitochondrial capacity (R m). Observed changes ofO2max are accompanied by measured changes of several resistances. The ratio of each resistance to the overall resistance can therefore be calculated by means of the O2 conductance equation. In exercise with large muscle groups (two legs), R Q is the major (75%) limiting factor downstream of the lung, its role being reduced to 50% during exercise with small muscle groups (one leg). R t and R m account for the remaining fractions. In normoxia R V* is negligible; at high altitude it increases progressively, together with R t and R m, at the expense of R Q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2a, b.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Alvarez-Ramirez J (2002) An improved Peronnet-Thibault mathematical model of human running performance Eur J Appl Physiol 86:517–525

    Google Scholar 

  • Arsac ML (2002) Effects of altitude on the energetics of human best performances in 100 metres running: a theoretical analysis. Eur J Appl Physiol 87:78–84

    Article  PubMed  Google Scholar 

  • Arsac ML, Locatelli E (2002) Modeling the energetics of 100-m running by using speed curves of world champions. J Appl Physiol 92:1781–1788

    Google Scholar 

  • Babcock MA, Pegelow DF, Harms CA, Dempsey JA (2002) Effects of respiratory muscle unloading on exercise-induced diaphragm fatigue. J Appl Physiol 93:201–206

    PubMed  Google Scholar 

  • Bassett DR, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32:70–84

    PubMed  Google Scholar 

  • Bergh U, Ekblom B, Åstrand P-O (2000) Maximal oxygen uptake "classical" versus "contemporary" viewpoints. Med Sci Sports Exerc 32:85–88

    CAS  PubMed  Google Scholar 

  • Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, Koralsztein JP (2000a) Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 81:188–196

    Google Scholar 

  • Billat VL, Morton, RH, Blondel N, Berthoin S, Bocquet V, Koralsztein JP, Barstow TJ (2000b) Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake. Eur J Appl Physiol 82:178–187

    Article  CAS  PubMed  Google Scholar 

  • Binzoni T, Ferretti G, Schenker K, Cerretelli P (1992) Phosphocreatine hydrolysis by 31P-NMR at the onset of constant load exercise in humans. J Appl Physiol 73:1644–1649

    CAS  PubMed  Google Scholar 

  • Brueckner JC, Atchou G, Capelli C, Duvallet A, Barrault D, Jousselin E, Rieu M, di Prampero PE (1991) The energy cost of running increases with the distance covered. Eur J Appl Physiol 62:385–389

    CAS  Google Scholar 

  • Capelli C (1999) Physiological determinants of best performances in human locomotion. Eur J Appl Physiol 80:298–307

    Article  CAS  Google Scholar 

  • Capelli C, Schena F, Zamparo P, Dal Monte A, Faina M, Prampero PE (di) (1998) Energetics of best performances in track cycling. Med Sci Sports Exerc 30:614–624

    CAS  PubMed  Google Scholar 

  • Cerretelli P, Prampero PE (di) (1987) Pulmonary gas exchange during exercise. In: Crystal RG, West JB, Barnes PG, Cherniack NS, Weibel EF (eds) The lung: scientific foundations, second edition, vol 2. Lippincott-Raven, Philadelphia, pp 2011–2020

  • Derchak PA, Sheel AW, Morgan BJ, Dempsey JA (2002) Effects of respiratory muscle work on muscle sympathetic nerve activity. J Appl Physiol 92:1539–1552

    PubMed  Google Scholar 

  • Ferretti G, di Prampero PE (1995) Factors limiting maximal oxygen consumption: effects of acute changes in ventilation. Respir Physiol 99:259–271

    Article  CAS  PubMed  Google Scholar 

  • Francescato MP, Cettolo V, Prampero PE (2003) Relationship between mechanical power, O2 consumption, O2 deficit and high energy phosphates during calf exercise in humans. Pflugers Arch 445:622−628

    CAS  PubMed  Google Scholar 

  • Grassi B (2000) Skeletal muscle VO2 on-kinetics: set by O2 delivery or by O2 utilization? New insights into an old issue. Med Sci Sports Exerc 32:108–116

    CAS  PubMed  Google Scholar 

  • Harms CG (2000) Effect of skeletal muscle demand on cardiovascular function. Med Sci Sports Exerc 32:94–99

    CAS  PubMed  Google Scholar 

  • Hepple RT (2000) Skeletal muscle: microcirculatory adaptation to metabolic demand. Med Sci Sports Exerc 32:117–123

    CAS  PubMed  Google Scholar 

  • Ingen Schenau GJ (van), Jacobs B, de Koning JJ (1991) Can cycle power predict sprint running performance? Eur J Appl Physiol 63:255–260

    Google Scholar 

  • Keller JB (1973) A theory of competitive running. Physics Today 26:43–47

    Google Scholar 

  • Lacour JR, Padilla-Magunacelaya S, Barthelemy JC, Dormois D (1990) The energetics of middle distance running. Eur J Appl Physiol 60:38–43

    CAS  Google Scholar 

  • Lindstedt SL, Conley KE (2001) Human aerobic performance: too much ado about limits to VO2. J Exp Biol 204:3195–3199

    CAS  PubMed  Google Scholar 

  • Noakes TD (1997) Challenging beliefs: ex Africa semper aliquid novi. Med Sci Sports Exerc 29:571–590

    CAS  PubMed  Google Scholar 

  • Noakes T (2000) Physiological capacity of the elite runner. In: Bangsbo J, Larsen HB (eds) Running and science – in an interdisciplinary perspective. Munskgaard, Copenhagen, pp 19–47

  • Olds TS, Norton KI, Craig NP (1993) Mathematical model of cycling performance. J Appl Physiol 75:730–737

    CAS  PubMed  Google Scholar 

  • Olds TS, Norton KI, Lowe LA, Olive S, Reay F, Ly S (1995) Modelling road cycling performance. J Appl Physiol 78:1596–1611

    CAS  PubMed  Google Scholar 

  • Péronnet F, Thibault G (1989) Mathematical analysis of running performance and world running records. J Appl Physiol 67:453–465

    CAS  PubMed  Google Scholar 

  • Piiper J (1990) Unequal distribution of blood flow in exercising muscle of the dog. Respir Physiol 80:113–128

    PubMed  Google Scholar 

  • Prampero PE (di) (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222

    PubMed  Google Scholar 

  • Prampero PE (di) (1984) I record del mondo di corsa piana. Riv Cult Sportiva 3:3–7

    Google Scholar 

  • Prampero PE (di) (1985) Metabolic and circulatory limitations to VO2max at the whole animal level. J Exp Biol 115:319–331

    PubMed  Google Scholar 

  • Prampero PE (di) (1989) Energetics of world records in human locomotion. In: Wieser W, Gnaiger E (eds) Energy transfomations in cells and organisms. Thieme, Stuttgart, pp 248–253

  • Prampero PE (di), Ferretti G (1990) Factors limiting maximal oxygen consumption in humans. Respir Physiol 80:113–128

    PubMed  Google Scholar 

  • Prampero PE (di), Atchou G, Brueckner JC, Moia C (1986) The energetics of endurance running. Eur J Appl Physiol 55:259–266

    Google Scholar 

  • Prampero PE (di), Capelli C, Pagliaro P, Antonutto G, Girardis M, Zamparo P, Soule RG (1993) Energetics of best performances in middle distance running J Appl Physiol 74:2318–2324

    Google Scholar 

  • Prampero PE (di), Francescato MP, Cettolo V (2003) Energetics of muscular exercise at work onset: the steady state approach. Pflugers Arch 445:741–746

    CAS  PubMed  Google Scholar 

  • Richardson RS (2000) What governs skeletal muscle VO2max? Med Sci Sports Exerc 32:100–107

    CAS  PubMed  Google Scholar 

  • Richardson RS, Harms HA, Grassi B, Hepple RT (2000) Skeletal muscle: master or slave of the cardiovascular system? Med Sci Sports Exerc 32:89–93

    CAS  PubMed  Google Scholar 

  • Saltin B, Strange S (1992) Maximal oxygen uptake: "old" and "new" arguments for a cardiovascular limitation. Med Sci Sports Exerc 24:30–37

    CAS  PubMed  Google Scholar 

  • Scherrer J, Monod H (1960) Le travail musculaire local et la fatigue chez l'homme. J Physiol (Paris) 52:419–501

    Google Scholar 

  • Sheel WA, Derchak PA, Morgan BJ, Pegelow DF, Jacques AJ, Dempsey JA (2001) Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow in humans. J Physiol (Lond) 537:277–289

    Google Scholar 

  • Sheel WA, Derchak PA, Pegelow DF, Dempsey JA (2002) Threshold effects of respiratory muscle work on limb vascular resistance. Am J Physiol 282:H1732–H1738

    CAS  Google Scholar 

  • Shephard RJ (1969) A non linear solution of the oxygen conductance equation: applications to performances at sea level and at an altitude. Int Z Angew Physiol 27:212–225

    CAS  PubMed  Google Scholar 

  • Shephard RJ (1976) Cardio-respiratory fitness – a new look at maximum oxygen intake. In: Jokl E, Anand RL, Stoboy H (eds) Advances in exercise physiology, vol 9. Medicine sport. Karger, Basel, pp 61–84

  • Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. I. Problem and strategy. Respir Physiol 44:1–10

    CAS  Google Scholar 

  • Wagner PD (1993) Algebraic analysis of the determinants of VO2max. Respir Physiol 93:221–237

    Article  CAS  PubMed  Google Scholar 

  • Wagner PD, Hoppeler H, Saltin B (1991) Determinants of maximal oxygen uptake. In: Crystal RG, West JB, Barnes PJ, Cherniack NS, Weibel ER (eds) The lung: scientific foundations. Raven, New York, pp 1585–1593

  • Weibel ER (1984) The pathway for oxygen: structure and function in the mammalian respiratory system. Harvard University Press, Cambridge, Mass., pp 1–425

    Google Scholar 

  • Wilkie DR (1980) Equations describing power input by humans as a function of duration of exercise. In: Cerretelli P, Whipp BJ (eds) Exercise bioenergetics and gas exchange. Elsevier, Amsterdam, pp 75–80

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Enrico di Prampero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

di Prampero, P.E. Factors limiting maximal performance in humans. Eur J Appl Physiol 90, 420–429 (2003). https://doi.org/10.1007/s00421-003-0926-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-003-0926-z

Keywords

Navigation