Skip to main content

Advertisement

Log in

Effects of intermittent hypoxic training on cycling performance in well-trained athletes

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effects of a short-term period of intermittent hypoxic training (IHT) on cycling performance in athletes. Nineteen participants were randomly assigned to two groups: normoxic (NT, n = 9) and intermittent hypoxic training group (IHT, n = 10). A 3-week training program (5 × 1 h–1 h 30 min per week) was completed. Training sessions were performed in normoxia (∼30 m) or hypoxia (simulated altitude of 3,000 m) for NT and IHT group, respectively. Each subject performed before (W0) and after (W4) the training program, three cycling tests including an incremental test to exhaustion in normoxia and hypoxia for determination of maximal aerobic power \( (\ifmmode\expandafter\dot\else\expandafter\.\fi{V}{\text{O}}_{{2\max }} ) \) and peak power output (PPO) as well as a 10-min cycle time trial in normoxia (TT) to measure the average power output (P aver). No significant difference in \( \ifmmode\expandafter\dot\else\expandafter\.\fi{V}{\text{O}}_{{2\max }} \) was observed between the two training groups before or after the training period. When measured in normoxia, the PPO significantly increased (P < 0.05) by 7.2 and 6.6% in NT and IHT groups, respectively. However, only the IHT group significantly improved (11.3%; P < 0.05) PPO when measured in hypoxia. The NT group improved (P < 0.05) P aver in TT by 8.1%, whereas IHT group did not show any significant difference. Intermittent training performed in hypoxia was less efficient for improving endurance performance at sea level than similar training performed in normoxia. However, IHT has the potential to assist athletes in preparation for competition at altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Billat V (2001) Interval training for performance: a scientific and empirical practice. Part 1: aerobic interval training. Sports Med 31(1):13–31

    Article  PubMed  CAS  Google Scholar 

  • Boning D (1997) Altitude and hypoxia training—a short review. Int J Sports Med 18:565–570

    Article  PubMed  CAS  Google Scholar 

  • Calbet JA, Boushel R, Lundby C (2005) Comments on point:counterpoint “Positive effects of intermittent hypoxia (live high:train low) on exercise performance are/are not mediated primarely by augmented red cell volume”. J Appl Physiol 100:749

    Article  Google Scholar 

  • Dick FW (1992) Training at altitude in practice. Int J Sports Med 13(suppl 1):S203–S206

    PubMed  Google Scholar 

  • Dufour SP, Ponsot E, Zoll J, Doutreleau S, Lonsdorfer-Wolf E, Geny B, Lampert E, Fluck M, Hoppeler H, Billat V, Mettauer B, Richard R, Lonsdorfer J (2006) Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. J Appl Physiol 100:1238–1248

    Article  PubMed  CAS  Google Scholar 

  • Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C (1989) Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 66:1785–1788

    PubMed  CAS  Google Scholar 

  • Eckardt KU, Kurtz A, Bauer C (1990) Triggering of erythropoietin production by hypoxia is inhibited by respiratory and metabolic acidosis. Am J Physiol 258:R678–R683

    PubMed  CAS  Google Scholar 

  • Fulco CS, Rock PB, Cymerman A (2000) Improving athletic performance: is altitude residence or altitude training helpful? Aviat Space Environ Med 71:162–171

    PubMed  CAS  Google Scholar 

  • Garcia N, Hopkins SR, Powell FL (2000) Effects of intermittent hypoxia on the isocapnic hypoxic ventilatory response and erythropoiesis in humans. Respir Physiol 123:39–49

    Article  PubMed  CAS  Google Scholar 

  • Geiser J, Vogt M, Billeter R, Zuleger C, Belforti F, Hoppeler H (2001) Training high-living low: changes of aerobic performance and muscle structure with training at simulated altitude. Int J Sports Med 22:579–585

    Article  PubMed  CAS  Google Scholar 

  • Hendriksen IJ, Meeuwsen T (2003) The effect of intermittent training in hypobaric hypoxia on sea-level exercise: a cross-over study in humans. Eur J Appl Physiol 88:396–403

    PubMed  Google Scholar 

  • Hoppeler H, Fluck M (2003) Plasticity of skeletal muscle mitochondria: structure and function. Med Sci Sports Exerc 35:95–104

    Article  PubMed  CAS  Google Scholar 

  • Huang SY, Alexander JK, Grover RF, Maher JT, McCullough RE, McCullough RG, Moore LG, Sampson JB, Weil JV, Reeves JT (1984) Hypocapnia and sustained hypoxia blunt ventilation on arrival at high altitude. J Appl Physiol 56:602–606

    PubMed  CAS  Google Scholar 

  • Ishihara A, Itoh K, Itoh M, Hirofuji C, Hayashi H (1994) Hypobaric-hypoxic exposure and histochemical responses of soleus muscle fibers in the rat. Acta Histochem 96:74–80

    PubMed  CAS  Google Scholar 

  • Itoh K, Itoh M, Ishihara A, Hirofuji C, Hayashi H (1995) Influence of 12 weeks of hypobaric hypoxia on fibre type composition of the rat soleus muscle. Acta Physiol Scand 154:417–418

    Article  PubMed  CAS  Google Scholar 

  • Katayama K, Sato Y, Ishida K, Mori S, Miyamura M (1998) The effects of intermittent exposure to hypoxia during endurance exercise training on the ventilatory responses to hypoxia and hypercapnia in humans. Eur J Appl Physiol Occup Physiol 78:189–194

    Article  PubMed  CAS  Google Scholar 

  • Katayama K, Sato Y, Morotome Y, Shima N, Ishida K, Mori S, Miyamura M (1999) Ventilatory chemosensitive adaptations to intermittent hypoxic exposure with endurance training and detraining. J Appl Physiol 86:1805–1811

    PubMed  CAS  Google Scholar 

  • Katayama K, Matsuo H, Ishida K, Mori S, Miyamura M (2003) Intermittent hypoxia improves endurance performance and submaximal exercise efficiency. High Alt Med Biol 4:291–304

    Article  PubMed  Google Scholar 

  • Katayama K, Sato Y, Matsuo H, Ishida K, Iwasaki K, Miyamura M (2004) Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes. Eur J Appl Physiol 92:75–83

    Article  PubMed  Google Scholar 

  • Levine BD (2002) Intermittent hypoxic training: fact and fancy. High Alt Med Biol 3:177–193

    Article  PubMed  Google Scholar 

  • Mujika I, Busso T, Lacoste L, Barale F, Geyssant A, Chatard JC (1996) Modeled responses to training and taper in competitive swimmers. Med Sci Sports Exerc 28:251–258

    PubMed  CAS  Google Scholar 

  • Ponsot E, Dufour SP, Zoll J, Doutrelau S, N’Guessan B, Geny B, Hoppeler H, Lampert E, Mettauer B, Ventura-Clapier R, Richard R (2006) Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol 100:1249–1257

    Article  PubMed  CAS  Google Scholar 

  • Roberts AC, Butterfield GE, Cymerman A, Reeves JT, Wolfel EE, Brooks GA (1996a) Acclimatization to 4,300-m altitude decreases reliance on fat as a substrate. J Appl Physiol 81:1762–1771

    PubMed  CAS  Google Scholar 

  • Roberts AC, Reeves JT, Butterfield GE, Mazzeo RS, Sutton JR, Wolfel EE, Brooks GA (1996b) Altitude and beta-blockade augment glucose utilization during submaximal exercise. J Appl Physiol 80:605–615

    PubMed  CAS  Google Scholar 

  • Rodriguez FA, Casas H, Casas M, Pages T, Rama R, Ricart A, Ventura JL, Ibanez J, Viscor G (1999) Intermittent hypobaric hypoxia stimulates erythropoiesis and improves aerobic capacity. Med Sci Sports Exerc 31:264–268

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez FA, Ventura JL, Casas M, Casas H, Pages T, Rama R, Ricart A, Palacios L, Viscor G (2000) Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. Eur J Appl Physiol 82:170–177

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez FA, Murio J, Ventura JL (2003) Effects of intermittent hypobaric hypoxia and altitude training on physiological and performance parameters in swimmers [abstract]. Med Sci Sports 35:S115

    Google Scholar 

  • Roels B, Millet GP, Marcoux CJ, Coste O, Bentley DJ, Candau RB (2005) Effects of hypoxic interval training on cycling performance. Med Sci Sports Exerc 37:138–146

    Article  PubMed  Google Scholar 

  • Roels B, Thomas C, Bentley DJ, Mercier J, Hayot M, Millet GP (2007) Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. J Appl Physiol 102:79–86

    Article  PubMed  CAS  Google Scholar 

  • Rusko HR (1996) New aspects of altitude training. Am J Sports Med 24:S48–S52

    PubMed  CAS  Google Scholar 

  • Stepto NK, Hawley JA, Dennis SC, Hopkins WG (1999) Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc 31:736–741

    Article  PubMed  CAS  Google Scholar 

  • Terrados N, Melichna J, Sylven C, Jansson E, Kaijser L (1988) Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol Occup Physiol 57:203–209

    Article  PubMed  CAS  Google Scholar 

  • Truijens MJ, Toussaint HM, Dow J, Levine BD (2003) Effect of high-intensity hypoxic training on sea-level swimming performances. J Appl Physiol 94:733–743

    PubMed  CAS  Google Scholar 

  • Vallier JM, Chateau P, Guezennec CY (1996) Effects of physical training in a hypobaric chamber on the physical performance of competitive triathletes. Eur J Appl Physiol Occup Physiol 73:471–478

    Article  PubMed  CAS  Google Scholar 

  • Villa JG, Lucia A, Marroyo JA, Avila C, Jimenez F, Garcia-Lopez J, Earnest GP, Cordova A (2005) Does intermittent hypoxia increase erythropoiesis in professional cyclists during a 3-week race ? Can J Appl Physiol 30:61–73

    PubMed  Google Scholar 

  • Wadley GD, Lee-Young RS, Canny BJ, Wasuntarawat C, Chen ZP, Hargreaves M, Kemp BE, McConell GK (2005) Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. Am J Physiol 290:E694-E702

    Google Scholar 

  • Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA (1997) Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol 75:7–13

    Article  PubMed  CAS  Google Scholar 

  • Wilber RL (2001) Current trends in altitude training. Sports Med 31:249–265

    Article  PubMed  CAS  Google Scholar 

  • Zoll J, Ponsot E, Dufour SP, Doutrelau S, Ventura-Clapier R, Vogt M, Hoppeler H, Richard R, Fluck M (2006) Exercise training in normobaric hypoxia in endurance runners. III. Muscular adaptations of selected gene transcripts. J Appl Physiol 100:1258–1266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the International Olympic Committee and by the French Ministry of Sport. Additional funding for the study was provided by Faculty Research Grants Westminster University, London, UK and University of New South Wales, Sydney, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire P. Millet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roels, B., Bentley, D.J., Coste, O. et al. Effects of intermittent hypoxic training on cycling performance in well-trained athletes. Eur J Appl Physiol 101, 359–368 (2007). https://doi.org/10.1007/s00421-007-0506-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0506-8

Keywords

Navigation